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Neuroinflammation is the fundamental immune response against multiple

factors in the central nervous system and is characterized by the production

of inflammatory mediators, activated microglia and astrocytes, and the

recruitment of innate and adaptive immune cells to inflammatory sites, that

contributes to the pathological process of related brain diseases, such as

Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids,

as a species of important natural compounds, have been widely revealed to

alleviate neuroinflammation by inhibiting the production of pro-inflammatory

mediators, elevating the secretion of anti-inflammatory factors, and

modulating the polarization of microglia and astrocyte, mainly via

suppressing the activation of NLRP3 inflammasome, as well as NF-kB, MAPK,

and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/b-Catenin,
PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will

provide the latest and comprehensive knowledge on the therapeutic benefits

and mechanisms of natural flavonoids in neuroinflammation, and the natural

flavonoids might be developed into food supplements or lead compounds for

neuroinflammation-associated brain disorders.
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Introduction

Neuroinflammation generally refers to a complex immune response in the central

nervous system (CNS) to various endogenous or exogenous stimuli, such as misfolded

proteins, toxins and pathogen, leading to brain tissue inflammatory cell infiltration,

gliosis, neuronal loss, etc. (1). Pro-inflammatory mediators, produced by microglia,

astrocytes and other immune cells in the process of neuroinflammation, repress the
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differentiation and trigger apoptosis and necroptosis of neurons,

increase the production of excitatory neurotransmitters and

inhibit the transmission of monoamine neurotransmitter,

ultimately resulting in neuronal degeneration (2–4). And

amyloid-b (Ab), tau, a-synuclein and other misfolded proteins

aggregate in neurons or intercellular neurons during

inflammation, that forms neurofibrillary tangles and senile

plaques in cerebral cortex and hippocampus, and generates

Lewy bodies in substantia nigra pars compacta (5, 6).

Furthermore, the integrity of tight junctions of endothelial

cells and the components of basal lamina are degraded in

inflammatory states, which augments the permeability of

blood-brain barrier (BBB) and subsequently leads leukocytes

invading the brain parenchyma (7, 8). Therefore, intervening

neuroinflammation may be an important strategy to the

treatment of brain disorders.
The physiological and pathological
mechanisms of neuroinflammation

The roles of neuroinflammation are different, normally,

inflammation is a defense mechanism that initially protects the

brain via clearing up pathogens, cell fragments, mis-folded

proteins and other stimulus to maintain or restore the integrity

of tissues (9). Nevertheless, uncontrolled neuroinflammation

engenders neuronal degeneration and BBB disruption, that is

marked by the secretion of pro-inflammatory cytokines,

chemokines, and small-molecule messengers, which are

primarily released by activated microglia and astrocytes (10).

Microglia are macrophages derived from erythromyeloid pro-

genitors in the yolk sac, and exhibit a wide array of functions that

include regulation of programmed cell death of neurons, striping

excess synapses from developing neurons and promotion of neurite

formation (11). With the change of brain microenvironment,

microglia, like peripheral macrophages, are activated by various

inflammatory stimuli, and polarize into classical M1 type and

alternative M2 type (12). Specific as follows, M1 microglia are

typically characterized by the secretion of pro-inflammatory

cytokines and chemokines, such as IL-6, IL-1b, TNF-a, and
MCP-1 , br inging about unbr id led and prolonged

neuroinflammation (13). On the contrary, M2 microglia with the

markers of Ym-1, FIZZ-1 and Arg-1, secrete anti-inflammatory

cytokines, including IL-4, IL-10, and IL-13, to suppress

inflammation (14).

Astrocytes are neural parenchymal cells derived from neural

stem cells, and are able to regulate the extracellular balance of

ions, fluid and transmitters, modulate cerebral blood flow and

the formation and maintenance of the BBB (15). In the process

of inflammation, astrocytes polarize into neurotoxic phenotype

(A1), that is characterized by cellular hypertrophy, increased
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production of glial fibrillary acidic protein and complement,

astrogliosis, and glial scars formation, in addition to pro-

inflammatory factors secretion (16). Besides, A1 astrocytes

directly influence vascular and perivascular cells leading to

alterations in BBB permeability (17). In contrast, astrocytes are

activated by protective factors in inflammation and polarize into

neuroprotective phenotype (A2), that increase the release of

neurotrophic factors, such as BDNF, NGF and VEGF, as well as

thrombospondins like TSP-1, which promote outgrowth and

survival of neurons (18, 19).

Cellular crosstalk among microglia, astrocytes and neurons

poses feedback loops and brings maladjusted and self-

magnifying neuroinflammation. Normally, astrocytes offer

nutritional support molecules for microglia to promote their

morphological and functional stability, while in the process of

neuroinflammation, A1 astrocytes release inflammatory

mediators and increase the permeability of BBB to activate M1

microglia accompanied by an enhanced ability to migrate (20,

21). Meanwhile, molecular factors secreted by M1 microglia also

polarize astrocytes into A1 state inducing astrocytosis and

the secretion of neurotoxic factors (22). Furthermore,

proinflammatory mediators released by A1/M1 directly initiate

neuronal apoptosis and necroptosis, and due to the decrease in

A1/M1 uptake capacity, intercellular excitatory transmitters

such as glutamate are increased, resulting in neuronal

excitotoxicity (23, 24). Conversely, A2/M2 secrete anti-

inflammatory cytokines, neurotrophic factors and other

protective mediators to inhibit neuroinflammation and

promote neuronal generation and survival (25). Therefore, the

functional changes of microglia and astrocytes affect neuronal

function and central nervous immune system, and bring about

the occurrence or aggravation of various brain diseases.

Overall, an increase of inflammatory mediators, polarization

of microglia and astrocytes, and crosstalk among microglia,

astrocytes and neurons, are the key factors for the occurrence

and development of neuroinflammation, thereby, adjusting the

above changes are effective strategies to treat neuroinflammation-

related brain disorders.
Effects of natural flavonoids on
neuroinflammation

Flavonoids, natural compounds with a basic structural unit

of 2-phenylchromone, are widely present in herbs and various

dietary sources, such as fruits, vegetables, tea, and cereal in the

form of glycosides or free state. Human interventions and

experimental studies have shown a role of natural flavonoids

in brain diseases, as evidenced by the reduction in multiple pro-

inflammatory mediators. Therefore, understanding the effects

and mechanisms offlavonoids in anti-neuroinflammation would
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be highly valuable for developing nutritional guidelines and

therapeutic strategies to related brain disorders.
Effects of flavones and flavonols on
neuroinflammation

Flavones and flavonols are important groups of flavonoids

that are widely studied. Luteolin (Figure 1), a flavone compound,

is found in various herbs, vegetables, and fruits, such as perilla

leaf, peppermint, celery, carrot, and apple. Luteolin is reported to

down-regulate the secretion of IL-1b, TNF-a, and IL-6 (26–28),
Frontiers in Immunology 03
suppress p65 and p38 phosphorylation in lipopolysaccharide

(LPS)-induced C6 cells (26), inhibit nucleus p65, ASC, NLRP3,

and cleaved-Caspase-1 protein expression, and increase Nrf2

protein in oxyhemoglobin-induced primary cortical neurons

and glia cells (27, 28). In LPS, Ab1-42 and triple-transgenic-

induced AD mice, luteolin ameliorates behavior impairment,

inhibits overproduction of pro-inflammatory mediators

(26, 29–31), as well as restrains GFAP, p38 protein expression

and the phosphorylation of JNK and p65 (26, 31). In other

studies, luteolin is reported to decrease the release of pro-

inflammatory mediators (27, 28), decrease TRAF6, TLR4, and

p-p65 expression as well as TRAF6 ubiquitination in the brain of
FIGURE 1

Structures of flavones and flavonols with anti-neuroinflammatory effects.
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intracerebral hemorrhage (ICH)-induced rats (27), suppress

NLRP3 proteins expression and increase the activity of Nrf2 in

the brain of subarachnoid hemorrhage-induced rats (28).

Therefore, luteolin might inhibit the excessive production of

pro-inflammatory cytokines through regulating TLR4/TRAF6/

NF-kB, MAPK, Nrf2 pathways and NLRP3 inflammasome to

treat neuroinflammation-related brain diseases.

Baicalin (Figure 1) and baicalein (Figure 1) are rich in

Scutellaria baicalensis Georgi, an edible medicinal plant. Various

disease models, such as neurodegenerative diseases and

encephalomyelitis have proved the anti-neuroinflammatory effects

of baicalin and baicalein. In ischemia-reperfusion (I/R) and chronic

unpredictable mild stress (CUMS)-induced mice, baicalin

supplementation leads a reduction of IL-6, IL-1b, and TNF-a (32,

33), a trend of decreased TLR4 protein expression, and an increase

of phosphorylation of PI3k, Akt and FoxO1 in the hippocampus of

mice (33). Moreover, baicalin decreases IL-18 and iNOS levels (34–

37), suppresses the protein expression of Iba-1, GFAP, TLR4, p-p65,

p-IkBa, NLRP3, and cleaved-Caspase-1 in the hippocampus of

APP/PS1mice (37), reduces the production of HMGB1 andNF-kB,
and elevates SIRT1 expression in the cerebral cortices and

hippocampus from LPS-induced mice (34–36). Thus, baicalin

possesses the ability to attenuate neuroinflammation via adjusting

NLRP3 inflammasome and PI3k/Akt/FoxO1, SIRT1/HMGB1, and

TLR4/NF-kB signaling pathways.

Baicalein, an aglycone of baicalin, is also widely studied in

neuroinflammation. Baicalein inhibits microglia activation and

polarization with decreasing TNF-a, iNOS, IL-1b, IL-6, CD16
and CD86 production, and enhancing Arg-1 and CD206 levels

in LPS plus IFN-g-induced BV2 cells through activating STAT1

expression and inhibiting TLR4/NF-kB pathway (38), and in

ischemic penumbra from middle cerebral artery occlusion

(MCAO)-induced rats through the inactivation of IkBa, JNK,
ERK and p38, as well as nuclear translocation of p65 (38–40). In

other studies, baicalein is reported to reduce IFN-g, IL-5, and IL-
12 secretion, as well as repress GFAP and Iba-1 expression in

substantia nigra (SN) and midbrain from MPTP or rotenone-

induced PD mice via downregulating cleaved-Caspase-1,

cleaved-GSDMD, and NLRP3, as well as promoting PSD95,

SYP, BDNF, p-TrkB, CREB, p-PI3k, p-Akt, and p-CaMK II

expression (41, 42). In summary, baicalein restrain microglia

activation and polarization through inhibiting NLRP3

inflammasome and regulating MAPKs, STAT1, TLR4/NF-kB,
BDNF/TrkB/CREB signaling pathways.

Morin, 3,5,7,2’,4’-pentahydroxyflavone, is a bioactive

flavonol compound that is extensively found in a variety of

herbs, vegetables and fruits, like onion, orange, mulberries and

almond hulls. Lots of researches have intensely demonstrated

the anti-neuroinflammatory properties of morin (43, 44). Morin

has been reported to decrease the secretion of NO, TNF-a, and
IL-6, and suppress the protein expression of NF-kB in the

striatum, prefrontal cortex and hippocampus from social
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defeat stress-induced mice (45) and in the hippocampus from

Ab1-42-induced AD rats (46). Besides, morin represses the

production of nNOS and GFAP in brain of ifosfamide-induced

neurotoxicity rats via decreasing the production of NF-kB and

JNK, and increasing Nrf2 expression (47). These suggest that

morin could suppress neuroinflammation via JNK, NF-kB and

Nrf2 signaling pathways.

Quercetin (Figure 1), a natural flavonol is widely distributed

in herbal medicines, fruits and vegetables, such as tea, apple,

grape, and onion. In LPS-induced primary microglia or BV2

cells, quercetin decreases the ability of phagocytic, reduces the

levels of inflammatory mediators including NO, TNF-a, IL-6,
IL-1b, MCP-1, CXCL10, iNOS, COX-2, and lipocalin-2, and

increases the secretion of IL-10 through activating AMPK and

Nrf2 signaling pathways, as well as inhibiting NF-kB signaling

pathway (48–50). In vivo studies, quercetin is reported to

improve aging-, or LPS-induced behavior disorders, inhibit

microglia and astrocytes activation, as well as decrease IL-1b
levels via elevating SIRT1 protein expression and suppressing

NLRP3, cleaved-Caspase-1 protein production in the brain of

mice (49–51). Besides, in LPS-stimulated or traumatic brain

injury rats, quercetin decreases the production of pro-

inflammatory mediators in rat brain through suppressing NF-

kB pathway, as well as initiating the Nrf2/HO-1 pathway (52).

Thus, quercetin is a safe and effective dietary supplement to

ameliorate neuroinflammation via increasing SIRT1 protein

expression, inhibiting NLRP3 inflammasomes activation and

adjusting NF-kB, Akt, AMPK, and Nrf2/HO-1 pathways.

Kaempferol (Figure 1), a dietary flavonol, presents in most

plant-based foods, such as tea, broccoli, kale, cabbage and

grapefruit, which has been described to possess resultful anti-

neuroinflammatory effects. In LPS-induced BV2 cells,

kaempferol reduces iNOS, IL-1b, IL-18, and TNF-a levels,

suppresses CD32 production, and enhances Arg-1 and CD206

expression through down-regulating NLRP3, ASC, Caspase-1,

p-p38 and p-NF-kB (53, 54). In vivo studies, kaempferol

diminishes the production of COX-2, MCP-1, ICAM-1, IL-1b,
IL-6, and TNF-a, and attenuates microglia activation in striatum

of LPS-induced mice via suppressing the protein expression of

HMGB1 and TLR4 (55), and in ischemic cortices from I/R rats

through decreasing the phosphorylation and nuclear

transposition of p65 (56). Kaempferol also decreases iNOS,

COX-2 and IL-18 production through inhibiting NF-kB, p38
phosphorylation and NLRP3 inflammasome activation in the SN

from PD rats induced by 6-hydroxydopamine (6-OHDA) (53).

These researches suggest that kaempferol could regulate

microglia polarization and reduce the pro-inflammatory

mediators via suppressing NLRP3, HMGB1/TLR4, MAPKs,

and NF-kB signaling pathways.

Icariin (Figure 1), a typical flavonol glycoside isolated from

Epimedium brevicornu Maxim. has been studied to treat a

variety of inflammation-related brain disorders. In LPS-treated
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glia, icariin down-regulates NO, TNF-a, IL-1b, IL-18, COX-2,
and iNOS levels (57, 58). In MPTP- or 6-OHDA-induced PD

mice, icariin alleviates dopaminergic neuronal damage, decreases

the secretion of pro-inflammation cytokines and inhibits the

protein expression of Iba-1 and GFAP in brain through

suppressing NLRP3 inflammasome activation and promoting

Nrf2, Keap1, HO-1 and NQO1 protein production (59, 60). In

other study, icariin also reduces the levels of pro-inflammatory

mediators including IFN-g, MCP-1, IL-12, IL-17A, and GM-CSF

in serum and brain of APP/PS1 mice (61). Thus, icariin shows

great potentiality to attenuate neuroinflammation.

A natural flavonol glycoside, hyperoside (Figure 1) isolates

from many herbs, such as Cuscuta chinensis Lam., Forsythia

suspensa, and Crataegus pinnatifida Bge. Numerous studies have

pointed out that hyperoside possesses anti-neuroinflammatory

effects. Hyperoside supplement is reported to alleviate IL-1b, IL-6,
IL-8, and TNF-a secretion through up-regulating SIRT1, Wnt1,

b-Caspase, Shh, and Patch in LPS-treated HT22 cells (62). And in

MPTP-induced PD mice, hyperoside reverses the motor

dysfunction, reduces pro-inflammatory factors production and

down-regulates Iba-1 and GFAP via reducing NLRP3, ASC, and

P20 expression and increasing PACAP content and CREB

phosphorylation in the SN (63). Furthermore, in streptozotocin

plus high-fat diet-induced type 2 diabetic neuropathy rats,

hyperoside alleviates cognitive dysfunction, and decrease the

production of IL-1b, IL-6, TNF-a, and iNOS through

suppressing NF-kB and Caspase-3 proteins expression in the

brain (64). Therefore, hyperoside has great potential to alleviate

neuroinflammation via inhibiting NLRP3 inflammasome

activation, as well as regulating SIRT1/Wnt and NF-kB pathways.

Rutin (Figure 1), a flavonol glycoside abundantly distributed

in tea, buckwheat, passion flower, and apple, exerts potent anti-

neuroinflammatory properties. In LPS-treated BV2 cells, rutin

promotes the phenotypic transformation of M1 to M2 with

reducing IL-6, TNF-a, IL-1b, NO, iNOS, and CD86 levels, and

up-regulating Arg-1, CD206 and IL-10 via inhibiting the

expression of TLR4 and MyD88, and blocking NF-kB and

IKKb phosphorylation (65). Rutin is also found to improve

Tau-P301S-induced memory deficits, suppress the activation of

microglia and astrocytes, as well as decrease the levels of pro-

inflammatory mediators, through the inactivation of IKKb and

p65 in the brain of AD mice (66). Thus, rutin shows great

potential to ameliorate neuroinflammation via TLR4/MyD88/

NF-kB signaling pathway.

Moreover, other flavones and flavonols compounds, such as

hispidulin, cymaroside, myricitrin and troxerutin also exert anti-

neuroinflammatory effects. They could restrain the activation and

polarization of microglia, as well as inhibit the expression of pro-

inflammatory mediators via suppressing NLRP3 inflammasome

activation and regulating PI3k/Akt, MAPKs, Nrf2 or NF-kB
signaling pathways in PD, AD, traumatic brain injury, depression

and I/R injury, which are specifically showed in Table 1.
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Effects of flavanones and flavanonols on
neuroinflammation

Pinocembrin is a kind of flavanone mainly extracted from

honey and propolis. Pinocembrin inhibits microglia activation,

reverses the up-regulation of TNF-a, iNOS, COX-2, IL-6, and
IL-1b in the hippocampus from intermittent hypoxia-induced

mice via suppressing the protein expression of NLRP3, ASC, and

cleaved-Caspase-1, as well as enhancing BNIP3, LC3-II, ATG7,

Beclin-1, and ATG5 expression (91). In other study,

pinocembrin is found to alleviate CUMS-induced depressive-

like behaviors, reduce pro-inflammatory cytokines and increase

IL-10, TGF-b secretion in the hippocampus through the up-

regulation of Nrf2 and HO-1, and the inactivation of NF-kB
(92). Thus, pinocembrin has great potential to alleviate

neuroinflammation through regulating NLRP3 inflammasome

activation, BNIP3-mediated mitophagy, Nrf2/HO-1 along with

NF-kB signaling pathways.

Farrerol (Figure 2), a type of 2,3-dihydroflavonoid, isolated

from rhododendron leaves, down-regulates the expression of

IL‐6, IL‐1b, TNF‐a, iNOS, COX‐2, NO, and PGE2 in LPS-

induced BV2 cells through inhibiting p65 and Akt

phosphorylation (93). And in MPP+‐treated BV2 cells,

farrerol is also found to decrease pro-inflammatory mediators

levels via suppressing TLR4 and MyD88 expression, as well as

p65 and IkBa phosphorylation (94). Moreover, farrerol

alleviates motor dysfunction and mitigates microglial

activation in the SN of LPS-induced rats (93). Thus, farrerol

exerts anti-neuroinflammatory effects through regulating Akt

and TLR4/MyD88/NF-kB pathways.

Naringin and its aglycone naringenin (Figure 2) are widely

found in citrus fruits as a biological neuroactive flavanones

compound which has anti-neuroinflammatory activities. In

social-defeat stress-induced neurobehavioral deficits mice and

MCP-1-stimulated rats, naringin is reported to reverse

behavioral impairments, and reduce TNF-a, IL−1b, IL-6, and
NO secretion in striatum, prefrontal cortex, and hippocampus

(95, 96). Moreover, naringin could also cut pro-inflammatory

mediators down in the brain of haloperidol−revulsive or

bisphenol-A-mediated rats (97, 98). Besides, in LPS-induced

BV2 cells, naringenin, the aglycone of naringin, is found to

inhibit pro-inflammatory factors such as NO, IL-1b, and IL-18

release, and up-regulate Arg-1, and IL-10 through suppressing

NLRP3 and cleaved-Caspase-1 protein expression, and

inhibiting JNK and ERK phosphorylation (99, 100). In other

study, naringenin improves the cognitive deficiency, decreases

pro-inflammatory cytokines secretion, and inhibits GFAP

protein expression in the hippocampus from AD mice (101).

These results suggest that naringin and naringenin play

beneficial roles in neuroinflammation and related diseases.

Hesperidin and its aglycone hesperetin (Figure 2) with anti-

neuroinflammatory effects, are mainly distributed in citrus fruits
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such as oranges, grapefruit, and lemons. Hesperidin is found to

inhibit the release of TNF-a, IL-1b, IL-6, as well as MCP-1 in

LPS-stimulated BV2 cells and HT22 cells and the brain of N-

methyl-D-aspartate-induced mice through inhibiting NF-kB
pathway (102). Besides, hesperidin also down-regulates the
Frontiers in Immunology 06
levels of pro-inflammatory mediators, decreases HMGB1,

RAGE, p-IkBa, and p-p65 protein expression, and increases

the protein levels of BDNF and p-TRkB in corticosterone-

stimulated PC12 cells and hippocampus of CUMS-processed

mice (103).
TABLE 1 Effects of flavones and flavonols on neuroinflammation.

Compound Model Type of disease/
disorder

Index Pathway Ref

Hispidulin LPS-induced BV2 cells Neuroinflammation ↓: pro-inflammatory mediators inhibit Akt/STAT3/NF-kB pathway (67)

Isovitexin LPS-induced BV2 and mouse primary
cortical microglia cells, LPS-induced
mice

Neuroinflammation ↓: pro-inflammatory mediators
↑: M2 polarization

promote CaMKKb/AMPK-PGC-1a
signaling pathway

(68)

Scutellarin LPS-induced primary astrocytes, LPS-
induced mice, LPS-induced rats

Neuroinflammation,
depression

↓: pro-inflammatory
mediators, GFAP, Iba-1
↑: IL-4

inhibit TLR4/NF-kB pathway and NLRP3
inflammasome

(69,
70)

Nobiletin LPS-induced BV2 cells, LPS-induced
mice and rats

Neuroinflammation,
depression

↓: pro-inflammatory
mediators, Iba-1
↑: IL-10

promote AMPK pathway, inhibit MAPKs,
Akt, NF-kB pathways and NLRP3
inflammasome

(71,
72)

APP/PS1 mice AD ↓: pro-inflammatory
mediators, GFAP

inhibit NLRP3 inflammasome (73)

Isoorientin APP/PS1 mice AD ↓: pro-inflammatory
mediators, Iba-1

inhibit NF-kB pathway (74)

Diosmin rotenone-induced rats PD ↓: pro-inflammatory mediators inhibit NF-kB pathway (75)

Mulberrin LPS-induced BV2 cells, MPTP-
induced rats

PD ↓: pro-inflammatory
mediators, Iba-1, GFAP

promote Wnt/b-catenin pathway (76)

Diosmetin Streptococcus pneumoniae-induced
bacterial meningitis in rats

Bacterial meningitis ↓: pro-inflammatory mediators inhibit PI3k/Akt/NF-kB pathway (77)

Wogonin Kainate-induced temporal lobe
epilepsy in rat

Epilepsy ↓: pro-inflammatory mediators inhibit NF-kB pathway (78)

Apigenin Acrylonitrile-induced neurotoxicity in
rats

Neurotoxicity ↓: pro-inflammatory
mediators, Caspase-3, Caspase-
9, Bax
↑: Bcl-2

inhibit HMGB-1/TLR4/NF-kB pathway (79)

Luteoloside MCAO-induced rats Ischemic stroke ↓: pro-inflammatory mediators regulate PPARg/Nrf2/NF-kB pathway (80)

Tangeretin MACO-induced rats Ischemic stroke ↓: pro-inflammatory mediators
↑: anti-inflammatory mediators

inhibit TLR4/NF-kB pathway (81)

Troxerutin I/R-induced rats Ischemic stroke ↓: pro-inflammatory mediators
↑: anti-inflammatory mediators

inhibit NLRP3 inflammasome (82)

LPS-induced rats Neuroinflammation ↓: pro-inflammatory mediators promote SIRT1/SIRT3 pathway and inhibit
NF-kB pathway

(83)

Myricetin LPS-induced BV2 cells, LPS-induced
mice

Neuroinflammation ↓: pro-inflammatory
mediators, Iba-1

inhibit MAPKs pathway (84)

Myricitrin LPS-stimulated mice Neuroinflammation ↓: pro-inflammatory mediators inhibit MAPKs and TLR4/HMGB1/NF-kB
pathways

(85)

Cecal ligation and puncture-induced
rats

Sepsis-associated
encephalopathy

↓: pro-inflammatory
mediators, NLRP3

inhibit NF-kB and NLRP3 pathways (86)

Fisetin Cecal ligation and puncture-induced
sepsis-associated encephalopathy in
rats

Sepsis-associated
encephalopathy

↓: pro-inflammatory mediators inhibit NF-kB pathway (87)

Morin hydrate Chronic unpredictable stress-induced
mice

Memory impairment ↓: pro-inflammatory mediators inhibit NF-kB pathway (88)

Quercitrin LPS-induced mice Depressive ↓: pro-inflammatory mediators inhibit PI3k/Akt/NF-kB pathway, promote
CREB/BDNF pathway

(89)

Isorhamnetin High-fat and high fructose diet-
induced mice

Metabolic syndrome-
related cognitive
complications

↓: pro-inflammatory
mediators, MMP-1, MMP-3,
MMP-9, Iba-1

inhibit NF-kB and MAPKs pathways (90)
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In LPS-stimulated BV2 cells, hesperetin, an aglycone of

hesperidin, inhibits the levels of NO, and iNOS via the

inactivation of TLR4, ERK, p38, and p65 (104, 105). And in

LPS-induced mice and Ab1-42-induced AD mice, hesperetin is

found to improve behavioral disorders, suppress astrocyte and

microglia activation, and decrease iNOS and COX-2 production

in the cortical and hippocampus of mice via inhibiting the

protein expression of TLR4 and p-p65 (104–106). On the basis

of their safety and effectiveness, hesperidin and hesperetin may

be further researched to alleviate neuroinflammation as

food supplements.

Dihydromyricetin (Figure 2) is a major bioactive flavanonol

extracted from Ampelopsis grossedentata. In LPS-stimulated BV2

cells, dihydromyricetin reduces the levels of TNF-a, IL-6, IL-1b,
COX-2, and iNOS through inhibiting NLRP3, ASC, Caspase-1,

HIF1a, TLR4 and MyD88 protein expression, as well as Akt, p65,

and IkBa phosphorylation (107, 108). Besides, in the brain from

LPS-induced mice, dihydromyricetin is reported to down-regulate

pro-inflammatory mediators, and suppress CD11b and CD14

expression through TLR4/Akt/HIF1a/NLRP3 pathway (107).

Dihydromyricetin supplement reduces the secretion of IFN-g, IL-
1a, MIP-1b, CXCL2, CCL17, IL-2, and IL-7 in serum, and

improves the loss and dystrophy of microglia in the hippocampus

from social isolation-induced mice (109). Moreover,

dihydromyricetin also ameliorates the memory deficiency and

reduces the levels of pro-inflammatory mediators in the brain of

Ab1-42-processed AD rats (110). These results suggest that

dihydromyricetin could alleviate neuroinflammation-related

brain disorders.

In addition, other flavanones and flavanonols compounds,

such as 7-Methoxyflavanone, dihydroquercetin, liquiritigenin
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exert anti-neuroinflammatory effects which are amply shown

in Table 2.
Effects of isoflavones on
neuroinflammation

Calycosin (Figure 3) is an active isoflavone isolated from

Radix Astragali. Treatment of calycosin protects mice against

ICH-induced damages, improves neurobehavior, reduces the

secretion of TNF-a, IL-6, IL-1b and IL-18, as well as inhibits

microglia activation in perihematomal tissue of the brain from

ICH-induced mice through suppressing IkBa and p65

phosphorylation, and repressing both transcriptional and

translational of NLRP3, ASC, Caspase-1 (128). Besides,

calycosin mitigates the behavioral dysfunctions, protects TH

neurons and down-regulates the levels of pro-inflammatory

mediators in the brain from MPTP‐induced PD mice via

suppressing TLR2, TLR4, and nuclear NF-kB expression, as

well as inhibiting p38, JNK and ERK phosphorylation (129).

Thus, calycosin can alleviate neuroinflammation through

modulating NLRP3 inflammasome and MAPKs, TLR/NF-

kB pathways.

Genistein (Figure 3) distributed in soy is an isoflavone and

has anti-neuroinflammatory effects. Genistein ameliorates

hypoxic-ischemic brain damage-induced neuroinflammation

with reducing TNF-a, IL-1b, and IL-6 secretion by the up-

regulation of Nrf2, HO-1 and IkBa, and the inactivation of IkBa
and NF-kB (130). Moreover, genistein improves cognitive

disorders, and reduces MCP-1 release, and elevates the levels

of IL-10, IGF-1, BDNF, and CREB in the hippocampus of
FIGURE 2

Structures of flavanones and flavanonols with anti-neuroinflammatory effects.
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TABLE 2 Effects of flavanones, flavanonols, isoflavones, chalcones, dihydrochalcone and other flavonoids on neuroinflammation.

Category Compound Model Type of
disease/disorder

Index Pathway Ref

Flavanones and
flavanonols

7-
Methoxyflavanone

LPS-induced BV2 cells, LPS-induced mice Neuroinflammation ↓:pro-inflammatory
mediators, Iba-1

inhibit TLR4/MyD88/
MAPKs pathway and
activate Nrf2/NQO-1
pathway

(111)

Bavachin LPS-induced BV2 cells or primary
microglial cells

Neuroinflammation ↓: pro-inflammatory
mediators
↑: anti-inflammatory
mediators, M2
polarization

inhibit TRAF6/NF-kB
pathway and NLRP3
inflammasome

(112)

Liquiritin LPS-treated mice Depression ↓: pro-inflammatory
mediators, Iba-1

enhance FGF-2 expression (113)

Liquiritigenin Ab-treated N2a or BV2 cells, APP/PS1
mice

AD ↓: pro-inflammatory
mediators, Iba-1, M1
polarization
↑: M2 polarization

inhibit NLRP3
inflammasome

(114)

Didymin ICH-induced mice ICH ↓: pro-inflammatory
mediators, MPO, Iba-1

inhibit NLRP3
inflammasome

(115)

Isoflavones Isoformononetin STZ-induced neuroinflammation in rats Neuroinflammation ↓: pro-inflammatory
mediators, GFAP, Iba-1

inhibit NLRP3
inflammasome and NF-kB
pathway

(116)

Biochanin A LPS-stimulated BV2 cells Neuroinflammation ↓: pro-inflammatory
mediators, ROS

inhibit TLR4/MyD88/NF-
kB, PI3k/Akt and ERK
pathways

(117)

Ononin Aluminium chloride-provoked AD rats AD ↓: pro-inflammatory
mediators

inhibit NF-kB and MAPKs
pathways, increase BDNF
and PPAR-g

(118)

Chalcones and
dihydrochalcones

Butein LPS-induced co-culture of BV2 cells and
SH-SY5Y cells

Neuroinflammation ↓: pro-inflammatory
mediators
↑: cell viability

inhibit NF-kB and MAPKs
pathways

(119)

Isobavachalcone LPS-induced BV2 cells, LPS-induced mice Neuroinflammation ↓: pro-inflammatory
mediators

inhibit TRAF6/NF-kB
pathway and activate Nrf2/
HO-1 pathway

(120)

Xanthohumol APP/PS1 mice AD ↓: pro-inflammatory
mediators

activate mTOR/LC3
pathway

(121)

LPS-induced mice Depression ↓: pro-inflammatory
mediators, ROS, Iba-1,
GFAP

inhibit NF-kB pathway and
activate Nrf2/HO-1
pathway

(122)

Isoliquiritin LPS plus ATP-induced primary microglia
cells, LPS-induced mice and chronic social
defeat stress-induced mice

Depression ↓: pro-inflammatory
mediators

inhibit NF-kB pathway and
NLRP3 inflammasome

(123)

Anthocyanidins Cyanidin-3-O-
Glucoside

LPS-stimulated BV2 cells Neuroinflammation ↓: pro-inflammatory
mediators

inhibit NF-kB and MAPKs
pathways

(124)

Biflavonoid Agathisflavone LPS- or IL-1b-induced
co-culture of neuron and glial

Neuroinflammation ↓: pro-inflammatory
mediators, M1
polarization, Iba-1,
GFAP,
↑: M2 polarization

inhibit NF-kB pathway (125)

Isoginkgetin LPS-induced BV2 cells, LPS-induced
depression in mice

Neuroinflammation,
depression.

↓: pro-inflammatory
mediators, ROS, Iba-1

inhibit NF-kB and MAPKs
pathways

(126)

Ginkgetin MACO-induced ischemic stroke in rats Ischemic stroke ↓: pro-inflammatory
mediators

inhibit TLR4/NF-kB, and
JAK2/STAT3 pathways

(127)
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hypoxia-induced mice (131). In other study, genistein is

reported to reduce the levels of IL-6, IL‐1b, TNF-a, IL-8,
iNOS, and CD16, and increase CD206 and Arg-1 expression

in isoflurane-mediated BV2 cells and hippocampal regions from

isoflurane-induced rats through restraining TLR4, MyD88, and

TRAF6 protein expression, as well as suppressing TAK1, p38,

ERK, IkBa and NF-kB phosphorylation (132). These evidences

demonstrate that genistein is able to repress neuroinflammation

via promoting Nrf2 pathway, as well as suppressing MAPKs and

NF-kB pathways.

Puerarin (Figure 3), distributed in Pueraria lobata, could

reduce the secretion of IL-8, IL-18, MCP-1 and CCL2 in TNF-a
plus IL-1b-induced primary nerve cells and the trigeminal

ganglions from complete Freund’s adjuvant-treated mice

through the inhibition of NLRP3, Caspase-1, TGF-b1, NLRP1
protein and Smad3 phosphorylation, and the up-regulation of

SIRT1 (133). Another study shows that puerarin could alleviate

ICH-induced behavioral defects, drop hematoma volume and

histological injury, decrease IL-6, IL‐1b, and TNF-a secretion, as

well as down-regulate 3-NT, 8-OHdG, and ROS levels in the

perihematomal brain tissue of ICH-induced rats via promoting

PI3k and Akt phosphorylation, and suppressing the

phosphorylation of p65 and the nuclear accumulation of p65

(134). Thus, puerarin inhibits the activation of NLRP3

inflammasome, promotes the expression of SIRT1 and

regulates TGF-b1/Smads, PI3k/Akt, and NF-kB pathways to

ameliorate neuroinflammation.

In addition, daidzein, isoformononetin, ononin and other

isoflavonoids compounds are also able to inhibit pro-

inflammatory cytokines secretion via regulating Akt, ERK and

NF-kB signaling pathways to exert anti-neuroinflammatory

effects which are shown in Table 2.
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Effects of chalcones and
dihydrochalcone on neuroinflammation

Isoliquiritigenin (Figure 4), with a chalcone structure, is

derived from licorice root. Isoliquiritigenin alleviates

morphological changes and reduces the levels of COX-2,

iNOS, NO, IL-1b, IL-6, and TNF-a via the up-regulation of

Nrf2, HO-1 and NQO1, and the inhibition of p65 nuclear

translocation in BV2 cells induced by Ab oligomers, and

increases the cell viability in co-culture of BV2 cells and N2a

cells (135). In vivo study, isoliquiritigenin reverses LPS-induced

cognitive deficits, promotes the expression of PSD-95, BDNF,

and synaptophysin, and restrains the secretion of CCL3, TNF-a,
IL-1b, and IL-6 in hippocampus from LPS-stimulated rats via

increasing GSK-3b phosphorylation and Nrf2, HO-1, NQO1

expression, as well as suppressing the protein expression of NF-

kB (136). Moreover, isoliquiritigenin is also reported to improve

cognitive impairment, decrease TNF-a, IL-1b and IL-18

secretion, and suppress the activation of microglia and

astrocytes in hippocampus from kainic acid-induced seizures

rats through inhibiting cleaved-Caspase-3, cleaved-Caspase-9,

and NLRP3 expression, and enhancing Nrf2, HO-1, and NQO1

production (137). Therefore, isoliquiritigenin shows great

potential to attenuate neuroinflammation by regulating NLRP3

inflammasome, Nrf2/HO-1 and NF-kB pathways.

Hydroxysafflor yellow A (HSYA) (Figure 4) exists in Carthamus

tinctorius L. with good effects of alleviating neuroinflammation.

HSYA treatment inhibits NO, TNF-a, IL-1b, IL-6, and iNOS

levels, suppresses CD16 and CD32 expression, as well as promotes

Arg-1 and CD206 production in LPS-induced primary microglia

through the up-regulation of Nrf2, HO-1 and SIRT1 (138). HSYA

also reduces pro-inflammatory cytokines release, increases the
FIGURE 3

Structures of isoflavones with anti-neuroinflammatory effects.
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secretion of IL-4, IL-10 and IL-13, as well as regulates microglia

polarization in Ab1-42-stimulated BV2 cells via suppressing the

expression of TREM2, and TLR4, and the phosphorylation of p65

and IkBa (139). Administration of HSYA down-regulates the levels

of iNOS and COX-2 in 6-OHDA-revulsive SH-SY5Y cells and SN

from 6-OHDA-induced mice through suppressing IkBa production

and the phosphorylation of p65, p38 and JNK (140). Furthermore,

HSYA also lessens the cerebral infarction area, decreases the levels of

NO and iNOS, and increases the production of eNOS in the cortical

penumbra of I/R rats via elevating the expression of IkBa and p-

GSK-3b, and suppressing cleaved-Capase-3 expression and p65

phosphorylation (141). Thus, HSYA could suppress the activation

and polarization of microglia, and reduce pro-inflammatory

mediators production through TREM2/TLR4/NF-kB, Nrf2/HO-1,
and MAPK pathways.

Trilobatin (Figure 4) is a dihydrochalcone compound

distributed in Lithocarpuspolystachyus Rehd., and has anti-

neuroinflammatory effects. Trilobatin is reported to improve

cognitive impairment, reduce activated microglia and astrocytes

with decreasing Iba-1 and GFAP expression, and inhibit the

secretion of TNF-a, IL-1b and IL-6 in the hippocampus from

APP/PS1 and triple-transgenic-induced AD mice through the

down-regulation of HMGB1, TLR4, MyD88, TRAF6 and p-p65

(142, 143). Moreover, in OGD/R-stimulated astrocytes and the

brain of MACO-induced I/R rats, trilobatin reduces the

production of iNOS, and suppresses the activation of microglia

and astrocytes via up-regulating Nrf2, HO-1, NQO1 and SIRT3

protein, as well as suppressing p65 phosphorylation and the

expression of Keap1, TLR4, MyD88, and TRAF6 (144). Thus, as

a potential therapeutic drug, trilobatin can prevent and treat

neuroinflammation-related brain disorders.

Phloretin (Figure 4), a dihydrochalcone flavonoid, is abundant

in apple with anti-neuroinflammatory effects. Phloretin is reported

to down-regulate the secretion of TNF-a in the brain of Ab25-35-
induced AD rats (145), decrease the levels of IL-6, IL-1b, iNOS and
Frontiers in Immunology 10
COX-2, and reduce activated microglia and astrocytes in the brain

from MPTP-induced PD mice (146).

In addition to the above compounds, the other chalcones and

dihydrochalcone compounds such as phloridzin, xanthohumol,

isoliquiritin also have anti-neuroinflammatory effects via

modulating mTOR, NF-kB, or Nrf2/HO-1 pathways, which are

shown in Table 2.
Effects of others flavonoids on
neuroinflammation

There are others types of flavonoids, including flavanols,

anthocyanidins, and bioflavonoids. Some of them also have anti-

neuroinflammatory effects, such as flavanol epigallocatechin-3-

O-gallate (EGCG), anthocyanidin cyanidin-3-O-glucocide,

bioflavonoid isoginkgetin, etc.

(-)-Epicatechin (Figure 5), a dietary flavanols, is widely

distributed in foods such as tea, cocoa and grapes. Treatment

of (-)-Epicatechin improves HFD-induced cognitive and

memory impairment and inhibits the activation of microglia

via decreasing the transcription of TLR4 and NOX4 in the

hippocampus (147). In other study, (-)-Epicatechin represses

the activation of microglia and astrocytes, reduces the levels of

TNF-a, IFN-g, IL-1b, IL-3, IL-5, IL-6, IL-15, and COX-2, as well
as promotes IL-10 and IL-11 secretion in the hippocampus from

aging mice through suppressing Caspase-3, Caspase-9 and NF-

kB protein expression, and promoting Akt and GSK-3b
phosphorylation (148). Therefore, (-)-Epicatechin possesses

ability to lighten neuroinflammation through regulating TLR4/

NOX4, Akt/GSK-3b, and NF-kB pathways.

EGCG (Figure 5) with anti-neuroinflammation effects is the

major catechin component from green tea. EGCG

supplementation down-regulates the levels of TNF-a, IL-6,
and IL-1b in palmitic acid-stimulated BV2 cells and
FIGURE 4

Structures of chalcones and dihydrochalcone with anti-neuroinflammatory effects.
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hypothalamus of HFD mice through suppressing the expression

of JAK2 and STAT3 (149). In APP/PS1 transgenic mice, EGCG

is reported to improve behavioral disorders, inhibit microglia

activation, decrease IL-1b secretion and increase the release of

IL-10 and IL-13 in the hippocampus (150). EGCG also down-

regulates NO and TNF-a levels, as well as inhibits Caspase-3 and

NF-kB protein expression in the cerebral cortex and

hippocampus from ethanol-treated rats (151). Besides, in

CUMS-induced rats and rotenone-stimulated PD rats, EGCG

also ameliorates behavioral disorders, and reduces pro-

inflammatory cytokines secretion (152, 153). Thus, EGCG, as

a dietary compound, treats neuroinflammation-related brain

diseases by modulating JAK2/STAT3 and NF-kB pathway.

Moreover, in PD, depression or ischemic stroke models, the

other flavonoids compounds such as cyanidin-3-O-glucocide,

agathisflavone and ginkgetin also exert anti-neuroinflammatory

effects via PI3k/Akt, TLR4/NF-kB and MAPK pathways, which

are shown in Table 2.
Conclusion and perspective

Neuroinflammation, a complex immune response, is a key

hallmark of brain disorders. Following stimuli, activated

microglia and astrocytes secrete massive pro-inflammatory

cytokines, chemokines and small-molecule messengers, and

cause further tissue dysfunction, which is the characteristic of
Frontiers in Immunology 11
neuroinflammation. Evidently, it is potential to develop

therapeutic and preventive strategies to treat brain disorders

targeting neuroinflammation. Based on the recent investigations,

natural flavonoids exhibit plenty of beneficial anti-

neuroinflammatory effects, such as down-regulating the

expression of pro-inflammatory mediators, accelerating the

secretion of anti-inflammatory cytokines, inhibiting

astrocytosis, and suppressing the activation and polarization of

microglia, and the main mechanisms of natural flavonoids

against neuroinflammation include the inhibition of NLRP3

inflammasome activation and MAPKs, JAK/STAT, NF-kB and

apoptotic pathways, as well as the activation of Nrf2, AMPK,

BDNF/CREB, Wnt/b-Catenin, PI3k/Akt pathways and SIRT1-

mediated HMGB1 deacetylation (Figure 6). And from the

summary of current research, different types of natural

flavonoids share with similar anti-neuroinflammatory

mechanisms without obvious difference, among which,

inflammatory and oxidative signaling pathways have been

widely studied, while other pathways are less studied and need

further study. Moreover, the current researches on natural

flavonoids against neuroinflammation have some limitations.

Firstly, the current researches mainly focus on flavones and

flavonols, other types of flavonoids are less studied. Therefore,

this is an area that warrants further investigation on rest of the

flavonoids in related brain diseases. Secondly, the mechanism

researches pay close attention to the activation and polarization

of microglia, but ignore astrocytes and the crosstalk among
FIGURE 5

Structures of other flavonoids with anti-neuroinflammatory effects.
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microglia, astrocytes and neurons which requires further study.

Overall, these preclinical data help us to further investigate

natural flavonoids and offer ideas for finding new dietary

supplements or lead compounds to treat neuroinflammation

and related brain disorders.
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FIGURE 6

Overview of the pathological course of neuroinflammation and the mechanisms of natural flavonoids against neuroinflammation. (A) Under
neuroinflammation state, microglia and astrocytes are activated and secrete a lot of inflammatory cytokines, chemokines, along with small-
molecule messengers which disturb the normal functioning of neurons and cause damage in brain tissue. (B) Natural flavonoids play anti-
neuroinflammatory effects via inhibiting the activation of NLRP3 inflammasome and MAPKs, JAK/STAT, NF-kB pathways, promoting Nrf2, AMPK,
BDNF/CREB, Wnt/b-Catenin, PI3k/Akt pathways and SIRT1-mediated HMGB1 deacetylation.
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