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Abstract

There are many adult studies reporting static stretch (SS)-induced deficits and dynamic

stretch (DS) performance improvements shortly after the intervention. However, there is

only a single study examining stretch-induced performance changes with youth at 24 hours’

post-stretch. The objective of this study was to examine physiological responses of young

trained athletes at 24-hours after experiencing SS or DS protocols. Eight young male, elite

handball players (age: 16.1±5.1 years) were tested prior to-, 3-minutes and 24-hours follow-

ing the three conditions (DS, SS, Control) in a randomized and counterbalanced order. Simi-

lar volumes of SS (2 repetitions of 75s for each leg) and DS (5 repetitions of 30s for each

leg) involved one stretch each for the quadriceps and hamstrings. Tests included (i) two 4s

maximal voluntary isometric contractions (MVC) at 60˚ of knee flexion with 2-min rest, (ii)

two maximal isokinetic contractions each at 60˚/sec and 300˚/sec with 1-min rest, and (iii)

two drop jumps with 30-sec rest. To simulate a full warm-up, dynamic activity including 5

minutes of aerobic cycling (70 rpm; 1 kilopond), 4 submaximal isometric contractions and 4

drop jumps were instituted before the pre-tests and following the interventions. Two-way

repeated measures ANOVAs revealed that 1) both the SS and control conditions exhibited

knee extensor 60˚.s-1 (SS:-10.3%; p = 0.04, Control: -8.7%; p = 0.07) and 300˚.s-1 (SS:

-12.9%; p = 0.005, Control: -16.3%; p = 0.02) isokinetic deficits at post-test, 2) DS impaired

knee flexor 60˚.s-1 isokinetic work and power-related measures at post-test (Work: -10.1%;

p = 0.0006; Power: -19.1%; p = 0.08) and at 24-hours’ post-test (Work: 9.9%; p = 0.023;

Power: -9.6%; p = 0.01), 3) DS (12.07% and 10.47%) and SS (13.7% and 14.6%) enhanced

knee flexor 300˚.s-1 isokinetic force and power-related measures compared to control. In

conclusion, testing-induced knee extensor isokinetic impairments were counterbalanced by

DS, however the hip flexion DS could have produced minor muscle damage for at least 24-

hours decreasing knee flexor forces and power at 60˚.s-1.
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Introduction

Prolonged static stretching (SS) has been reported to impair subsequent performance [1–3].

The time course of impairments with SS can range from 2- [4, 5], 5- [6–8], 10- [9–14], 20-

[15], 60- [16] and 120-minutes [17]. However, in some studies, deficits reported soon follow-

ing SS are not apparent shortly thereafter. For example, Bradley et al. [8] reported counter-

movement jump (CMJ) deficits at 5 minutes, which were not present at 15 minutes post-

stretching. Two main mechanisms purported to be responsible for this performance reduction

with acute static stretching involve (i) neurological inhibition, leading to a decrease in neuro-

muscular activation or the reflex sensitivity [1, 2, 18] and (ii) mechanical factors, causing a

decrease in the stiffness of the musculotendinous unit (MTU) that can affect the length-tension

relationship of the muscle [4, 19, 20].

In contrast, dynamic stretching (DS) is often reported to enhance or have no significant

impairment effects on subsequent performance [1, 2]. DS-induced increases in performance

(i.e. jump height, 1-RM, isokinetic torque, sprint, agility) have been shown to continue for 2-

[21–25], 5- [26–29], 10- [10, 30, 31] and 20-minutes post-stretching [32, 33]. Although there

are more studies reporting either no change or improvements in performance post-DS, not all

DS demonstrate performance improvements. Indeed, DS-induced impairments have been

reported at 5- [34], 10- [35], and 30-minutes post-intervention [26]. One major limitation of

all the stretching-related studies is that the measures were typically conducted immediately

after testing or between 2–30 minutes after stretching. Very little is known about the longer

duration acute effects of SS and DS.

Prolonged mechanical stretching of the musculotendinous unit may induce damage

reducing muscle force production [36], but the extent of this damage may not be practically

meaningful in adults [1]. Acute muscle stretching can reduce tendon stiffness, forcing the

muscle to work at shorter, and weaker (force-length relationship), lengths [16, 37–39].

Impairments in the efficiency of the electromechanical transfer of force may be induced

by stretch-induced changes in endo-, epi- and perimysial transmission [40] as well as the

stretch-induced reductions in muscle stiffness [3, 41]. Mechanical changes and disruptions

may not resolve rapidly and could influence performance for days. However, while this

research has been conducted in animals and adult humans, the consequences of prolonged

effects from stretch-induced changes in muscle and connective tissue have not been exam-

ined with youth.

Haddad et al. [42] is the only study to demonstrate SS-induced performance impairments

and DS-induced performance enhancements at 24 hours post-stretching. Their protocol

employed 17–19 year old elite soccer players who stretched either with SS or DS for 2 sets of 7

minutes: 30 seconds each for 5 muscle groups (each muscle group received 30s for the right

and 30s for the left side with 15s recovery between repetitions and a 3-minute recovery

between sets). Since their measures involved athletic performance such as repeated sprints,

30-meter sprint and jump performance, there is also a need to examine more specific physio-

logical measures.

The preponderance of stretching studies have used adult participants and studies are

needed examining the response of youth to stretching protocols. Indeed, the response of

youth to stretching can differ. For example, Chaouachi et al. [43] reported that stretch training

reduced acute SS-induced impairments, whereas stretch training with adults did not attenuate

acute SS deficits [6]. With only one published study [42] investigating prolonged acute effects

(24 hours post-stretching), further research is also needed to substantiate these earlier findings

[44]. The objective of the present study was therefore to examine responses of adolescent male

trained athletes at 24 hours after experiencing SS or DS protocols. Based on the prior work by
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Haddad et al. [42], it was hypothesized that SS and DS-induced impairments and enhance-

ments would occur, respectively.

Methods

Experimental design

The young athletes were involved with three experimental conditions: SS, DS, and control

(without stretching), in a randomized, counter-balanced order. The effect of the conditions on

subsequent physiological measures was monitored with isometric and isokinetic maximal vol-

untary contraction (MVC) forces and electromyography (EMG) measurements of the quadri-

ceps and hamstrings at 24-h post-stretching.

Subjects

Eight young handball players (age: 17.33±1.07 years (under 19 years team), mass: 78.6±14.5

kg, height: 1.83±0.07 m, BMI: 23.4±3.7, % body fat: 3.8±0.5, experience: 7.83±1.34 years) from

the same team volunteered to participate in the study. All eight players performed the three

conditions and thus were included in the statistical analysis. No musculoskeletal injuries were

reported in the 4 weeks prior to the beginning of the study. Players participated in handball

training on average 10.1±1.1 hours/week and 1–2 matches a week but they did not train

between the pre-test and post-24 hour tests. Prior to the study, all players and parents were

informed about the potential risks and benefits associated with participation. All players and

their parents/guardians signed informed consent forms. The athletic participants were fully

familiarized with the procedures and they were informed that they could withdraw from the

study at any time without penalty. This study was approved by the national university institu-

tional review board for human subjects and complied with requirements for Declaration of

Helsinki.

Procedure

Data were collected over 4-weeks (March-April 2017) during the competitive season (August-

May). In the first week, all players attended 2 orientation sessions on the same day. The first

session was dedicated to anthropometric measurements. The second session involved familiar-

ization with all tests and procedures. Detailed information about stretching and strength mea-

surements were provided. All players performed a familiarization trial to practice the three

tests: 1) isometric MVC at 60˚ of knee flexion, 2) isokinetic knee extensor and flexor strength

measurements in concentric modes at two selected angular velocities (60˚�s-1 and 300˚�s-1) and

3) drop jump. EMG activities were recorded during the familiarization session to ensure the

youth were familiarized and comfortable with the material and conditions.

In the following 3-weeks, players performed one of the three conditions in a counterbal-

anced order. A Latin Squares, three-condition research program was used. This design is a

compromise, designed to balance the strengths of counterbalancing with financial and practi-

cal reality. It attempts to circumvent some of the complexities and keep the experiment to a

reasonable size.

Each week included a pre-test session (day 1—DS, SS, Control), post-test, and a 24-h post-

test session (day 2). Tests included strength measures: (i) two isometric MVCs (4 second dura-

tion) at 60˚ of knee flexion (a third contraction was performed if more than 5% difference in

peak force was observed in the two first trials) with 2-min rest, (ii) two maximal isokinetic con-

tractions at 60˚.s-1 with 1-min rest, and (iii) two isokinetic contractions at 300˚.s-1with 1-min
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rest and, two drop jumps with 30-seconds’ rest. Two-minutes’ rest was provided between the

pre-test and the intervention (see further).

A reported limitation of many stretching studies is that the stretching is performed in iso-

lation and a full warm-up has not been incorporated [1]. Thus in order to simulate a full

warm-up, a dynamic aerobic activity was instituted before the pre-tests and following the

interventions. Prior to the pre-test, and after the intervention, each player performed a

warm-up on a stationary cycle ergometer for 5-minutes at 70 rpm and 1 kilopond. The

warm-up also contained four submaximal contractions at approximately 50–75% of MVC

for 4-seconds each and 10-seconds’ rest between repetitions, followed by 3 drop jumps at

75% of their best jump height with 15-30-seconds’ rest between repetitions. There was no SS

in the warm up performed immediately before the tests. The same prior warm up and testing

were used after 24-hours. Post-tests were conducted 3-minutes after the cycling to prevent

any potential impact of fatigue. No training was permitted between post-test and 24-h post-

test with the participants’ coach being part of the process. The latter was present at all testing

sessions to ensure the participants exercised at their maximal capacity and also to ensure

they did not perform any kind of training sessions that would have impacted the results of

the study.

For diet monitoring, each player was given a meal plan (food and hydration) composed in

collaboration with the club’s nutritionist. The day before testing, they were prohibited from

consuming any known stimulant (e.g., caffeine) or depressants (e.g., alcohol) substance. To

avoid dehydration, ad libitum drinking was permitted during all training sessions.

Stretching protocols (intervention). The SS and DS stretching protocols were used in

previous studies (Turki et al. 2011; Haddad et al. 2013). The same duration was instituted for

each muscle group in the two stretching protocols.

Static stretching (SS): The SS involved lengthening the muscle until the point of discom-

fort was reached [7, 45, 46] and then the muscle was maintained in the lengthened position for

two sets of 75-sec each for each muscle group [9, 47]. SS exercises included the following:

Quadriceps: Standing knee flexion and hip extension stretch: The participant stood on one

foot facing a wall, with the foot-in-hand on the same side, one hand resting on the wall for

balance. The heel was placed in contact with the buttocks until discomfort was felt, and

remained in that position while keeping the back straight without moving the thigh. If

touching the buttocks with flexed knee alone did not provide sufficient stress on the quadri-

ceps, the participant was urged to extend the hips (knee moves posterior or dorsal to the

frontal plane of the body).

Hamstrings: Sit and reach stretch for hamstrings and lower back. The participant sat on the

floor, with legs straight, and ankles dorsiflexed, attempting to contact and hold the feet with

the hands, leaving the lower limbs straight (if possible).

Dynamic stretching (DS): All players performed five repetitions of 30-seconds of DS for

the quadriceps and hamstrings for each leg (30-seconds right leg / 30-seconds left leg) through

a full, but not painful range of motion at a high speed while still maintaining control [1, 2, 48].

Hence the motion was not ballistic.

Quadriceps: Butt kicks: The participant performed quick kicks to the buttocks (knee flex-

ion) as they moved forward with one kick per second alternating the legs.

Hamstrings: Dynamic hip flexion stretch: The participant kicked the legs forwards (hip flex-

ion) at an angle greater than 90˚, while keeping the knees in full extension at a rate of one kick

per second. The action was performed in a controlled manner to decrease the chances of inju-

ries from uncontrolled ballistic movements.
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Isokinetic and isometric testing. Knee extension strength (force) was measured with an

isokinetic dynamometer (Isoforce, TUR Gmbh, Germany). Participants sat on the dynamome-

ter with their hips, thighs, and upper body firmly strapped to the seat. In this position, their

hip angle was at 100˚ of flexion. The lower leg (left leg) was then attached to the arm of the

dynamometer at a level slightly above the lateral malleolus of the ankle joint, and the axis of

rotation of the dynamometer arm was aligned with the lateral femoral condyle. The dyna-

mometer arm was then set at 60˚ from full knee extension. Each player performed four

submaximal familiarization contractions before performing two MVCs; the highest force con-

traction at 60˚ was used for normalization of EMG data. All participants were verbally and vig-

orously encouraged to exert maximal effort during both MVCs. The peak force and the force

exerted within the first 100ms of effort (instantaneous strength) were analyzed [10, 49, 50].

The prolonged effects of stretching on velocity specific isokinetic torque were also examined.

Players performed two contractions at 60˚.s-1 and two contractions at 300˚.s-1.

EMG measurements. Since stretch-induced performance impairments have been par-

tially attributed to neuromuscular activation impairments (Behm and Chaouachi 2011, Kay

and Blazevich 2012, Behm et al. 2016), muscle activation measured with EMG activity (Behm

et al. 2001b, 2004, 2011b, Costa et al. 2014, Fowles et al. 2000, Hough et al. 2009, Janes et al.

2016, Power et al. 2004) was monitored from the isometric MVC trial with the highest force

output and for all the isokinetic contractions. MVC EMG data were recorded before the first

set of isokinetic contractions for both conditions to ensure similar normalization of EMG in

the two trials. During the MVC measurements, EMG activity was recorded and sampled at

2000 Hz with sensors placed on the three heads of the quadriceps muscle (rectus femoris, vas-

tus medialis, vastus lateralis) and hamstrings (semimembranosus, semitendinosus) [20] using

Delsys Trigno Wireless EMG System (Delsys, Boston, MA, USA). EMG skin preparation and

electrode placement followed SENIAM recommendations [51]. Consequently, the Delsys

EMG system streamed the data digitally into EMGworks software. The software stored and

expressed the raw EMG data as absolute root-mean-square amplitude values (mV).

Drop Jump: After EMG and MVC measurements, a drop jump test using a mat equipped

with photoelectric cells (Optojump, Microgate, BZ, Italy) was performed pre-, post- and 24-h

after performing the different stretching conditions to assess jump height, contact time and

reaction force. Participants were instructed to jump as high as possible with the shortest possi-

ble time on the floor.

Statistical analyses

Statistical analyses were computed using the SPSS software (Version 23.0, SPSS, Inc, Chicago,

IL, USA). The assumption of sphericity and normality was tested for all dependent variables.

The assumptions were satisfied for each data set. Reliability was assessed with Cronbach’s

alpha intraclass correlation coefficient (ICC) measurements from the pre- and post-test values

from the control session. Measures were analyzed with a 2-way repeated measures ANOVA (3

conditions x 3 times) to identify specific main effects and interactions. When the F value was

significant, a Bonferroni post-hoc comparisons were conducted for main and interaction

effects. Cohen’s d effects sizes (ES)[52] were also calculated by SPSS software to determine

the magnitude of the differences between main effects. To identify specific significant interac-

tions the Cohen’s effect size calculation was employed as follows: Effect Size = (M2—M1) /

SDpooled. The following criteria were used: ES< 0.2 was classified as trivial, 0.2–<0.5 was

considered small; 0.5–<0.8 represented medium; and�0.8 represented a large effect size. Min-

imally clinically important or meaningful differences can be observed by examining the stan-

dard error of the mean (SEM) or whether the difference is classified as a trivial effect size
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(<0.2). Since the SEM is the variation in scores due to unreliability of the measure, a change

that is less than the SEM is likely due to measurement error rather than a true observed change

(11).

Reliability: Table 1 illustrates the generally excellent reliability of most measures in the pres-

ent study. Time to peak torque and MVC rectus femoris EMG activity were the only measures

that consistently ranged between ~0.7–0.8 (acceptable range).

Table 1. Reliability with Cronbach alpha intraclass correlation coefficients (ICC) and standard error of the means (SEM), RMS: Root mean square.

Measure Cronbach Alpha ICC Standard Error of the Measurement: Control, DS, SS Conditions

Knee Extensor Isokinetic 300˚.s-1

Peak Torque 0.963 8.8–9.75

Peak Torque / kg (relative) 0.981 0.25–0.27

Time to Peak Torque 0.730 0.047–0.068

Mean Power 0.947 29.3–29.8

Power / kg (relative) 0.977 0.66–0.76

Maximum Work 0.947 12.9–14.2

Work / kg (relative) 0.968 0.328–0.338

Total Work 0.947 12.9–14.3

Knee Flexor Isokinetic 300˚.s-1

Peak Torque 0.876 5.4–7.5

Peak Torque / kg (relative) 0.935 0.19–0.24

Time to Peak Torque 0.690 0.23–0.24

Mean Power 0.836 10.1–17.5

Power / kg (relative) 0.864 0.19–0.42

Maximum Work 0.916 8.7–12.8

Work / kg (relative) 0.927 0.19–0.28

Total Work 0.916 9.1–12.8

Knee Extensor Isokinetic 60˚.s-1

Peak Torque 0.951 13.6–18.8

Peak Torque / kg (relative) 0.694 4.1–5.1

Time to Peak Torque 0.733 0.022–0.036

Mean Power 0.964 9.9–11.5

Power / kg (relative) 0.688 0.16–0.48

Maximum Work 0.946 16.5–20.4

Work / kg (relative) 0.962 0.40–0.55

Total Work 0.902 16.5–20.3

Knee Flexor Isokinetic 60˚.s-1

Peak Torque 0.857 5.5–12.6

Peak Torque / kg (relative) 0.958 0.17–0.27

Time to Peak Torque 0.657 0.044–0.048

Mean Power 0.620 5.8–10.6

Power / kg (relative) 0.720 0.08–0.27

Maximum Work 0.921 11.4–15.7

Work / kg (relative) 0.909 0.27–0.29

Total Work 0.766 11.4–26.3

MVC Electromyography (EMG)

Vastus Lateralis RMS EMG 0.817 0.016–0.027

Rectus Femoris RMS EMG 0.729 0.017–0.026

Vastus Medialis RMS EMG 0.855 0.021–0.032

https://doi.org/10.1371/journal.pone.0210318.t001
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Results

Knee extensors

Main effects for time exhibited prolonged knee extension MVC time to peak torque,

decreases in knee extension isokinetic peak torque at 60˚.s-1, and 300˚.s-1 as well as relative

peak torque, mean absolute and relative power and work, and total work at 300˚.s-1 (Table 1).

Significant interactions illustrated that both control and SS conditions experienced pre- to

post-test decrements in knee extension isokinetic peak torque at 60˚.s-1, and 300˚.s-1 as well as

relative peak torque, mean absolute and relative power at 300˚.s-1 (Table 2). Fig 1 illustrates

mean ± standard deviation knee extensors condition (static stretching (SS) and control) x time

(pre-test, post-test and post-24 hours test) interactions with significant differences between all

pre- and post-tests.

There were no significant main effects or interactions with vastus lateralis, rectus femoris or

vastus medialis RMS EMG activity during the MVC tests.

Table 2. Knee extension (KE) time main effects and condition x time interactions impairments all occurred at post-test.

Measures Time Main effects Interaction Control @ post-test Interaction Static Stretch @ post-test

Knee Extensor MVC Time To Peak Torque F(2, 4.08); p = 0.041;

-17.8%

d = 0.31

Power = 0.65

Knee Extensor Isokinetic 60 Peak Torque (Pt) F(2, 8.37); P = 0.003

-6.8%

d = 0.48

Power = 0.93

p = 0.07

-8.7%

ES = 0.45

Power = 0.61

p = 0.04

-10.3%

ES = 0.28

Power = 0.61

Knee Extensor Isokinetic 300 Peak Torque F(2, 10.43); p = 0.001

-10.8%

d = 0.54

Power = 0.97

p = 0.02

-16.3%

ES = 0.54

Power = 0.60

p = 0.005

-12.9%

ES = 0.42

Power = 0.60

Relative Knee Extensor Isokinetic 300 Pt (Pt/Kg) F(2, 11.07); p = 0.001

-10.1%

d = 0.55

Power = 0.98

p = 0.009

-14.9%

ES = 0.38

Power = 0.60

p = 0.02

-11.7%

ES = 0.28

Power = 0.60

Knee Extensor Isokinetic 300 Power F(2, 12.13); p = 0.0001

-16.5%

d = 0.57

Power = 0.98

p = 0.02

-23.7%

ES = 0.53

Power = 0.57

p = 0.004

-18.5%

ES = 0.37

Power = 0.57

Relative Knee Extensor Isokinetic 300 Power (Power/Kg) F(2, 13.63); p = 0.0001

-15.8%

d-0.60

Power = 0.99

p = 0.008

-22.6%

ES = 0.40

Power = 0.60

p = 0.006

-17.7%

ES = 0.28

Power = 0.60

Knee Extensor Isokinetic 300 Mean Work F(2, 7.93); p = 0.03

-12.6%

d = 0.47

Power = 0.92

Relative Knee Extensor Isokinetic 300 Work (Work/Kg) F(2, 8.89); p = 0.002

-11.8%

d = 0.49

Power = 0.94

Knee Extensor Isokinetic 300 Total Work F(2, 7.91); p = 0.003

-12.6%

d = 0.47

Power = 0.92

LE: Leg extension, ISOK: isokinetic, PT: peak torque, 60: 60˚.s-1, 300: 300˚.s-1, d = ETA2.

https://doi.org/10.1371/journal.pone.0210318.t002
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Knee flexors

Significant interactions showed that knee flexors isokinetic absolute and relative peak torque,

work and absolute mean power at 60˚.s-1 were impaired pre- to post-test following dynamic

stretching (Table 3). In addition, significant pre- to post-24 hour deficits were apparent with

isokinetic absolute and relative work and absolute mean power at 60˚.s-1 (Table 3). Further-

more, a main effect for condition revealed significant and near significant lower absolute

(p = 0.05) and relative (p = 0.08) knee flexor isokinetic 300˚.s-1 mean power for control versus

dynamic and static stretching conditions respectively (Table 4).

Fig 2 shows mean ± standard deviation knee flexor dynamic stretching resulted in signifi-

cant decreases from pre- to post-test for isokinetic peak torque at a contraction velocity of 60˚.

s-1 as well as significant decreases for both post-test and 24 hours’ post-test (POST-24) com-

pared to pre-test for total work and mean power.

There were no significant main effects or interactions with semimembranosus or semiten-

donosus RMS EMG activity during the MVC tests.

Drop jump height

Main effects for time demonstrated significant increases in drop jump power (p = 0.05,

p = 0.28) and height (p = 0.008, d = 0.41) at post-test (3.5% and 3.6%) and post-24 hours (3.5%

and 4.9%) (Fig 3).

Fig 1. Figure illustrates mean ± standard deviation knee extensors (KE) condition (static stretching (SS) and control) x time (pre-test,

post-test and post-24 hours test) interactions with significant differences between all pre- and post-tests (�). KE: Knee extensors, ISOK:

isokinetic, PT: Peak torque (kg.metres), 60: isokinetic contraction velocity of 60˚.s-1, 300: isokinetic contraction velocity of 300˚.s-1, Power

(kg.s-1).

https://doi.org/10.1371/journal.pone.0210318.g001
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Discussion

The most important findings of the present study were that 1) both the SS and control condi-

tions exhibited 60˚.s-1 and 300˚.s-1 knee extensors isokinetic force and power-related deficits

at post-test, 2) DS impaired 60˚.s-1 knee flexors isokinetic force and power-related measures at

post-test and 24 hours’ post-test, 3) DS and SS enhanced 300˚.s-1 knee flexors isokinetic force

and power-related measures compared to control (main effect for condition).

The SS and control condition decrements in 60˚.s-1 and 300˚.s-1 knee extensors isokinetic

force and power-related deficits at immediately post-test would indicate that the testing (i.e.

since control condition decreased as well) may have contributed to this performance depres-

sion. With the demands of competitive handball, the youth participants would be expected to

possess a relatively high degree of lower body muscular power (from sprints, agility/change of

direction and kicking), aerobic capacity, and muscular endurance (continuous movement

over a 60-minute match). However, exerting maximal forces on a dynamometer with isoki-

netic and isometric contractions even with familiarization sessions may have presented novel

challenges to their neuromuscular system. The intent to perform maximal contractions may

be compromised in youth to a lack of experience to this contraction intensity, testing devices

or the neurological immaturity of the youth [53–55]. However, this compromise is unlikely

since with a familiarization session and a counterbalanced randomized allocation of testing,

the adolescents would have had 10 opportunities throughout the experiment to perform maxi-

mal isokinetic and isometric contractions. Furthermore, the reliability of the MVC tests were

Table 3. Knee flexion (KF) condition x time interaction impairments with dynamic stretching.

Measure Interaction Pre- vs. Post Pre- vs. Post-24

Knee Flexor Isokinetic 60 Peak Torque (Pt) F(2, 9.71); p = 0.002

d = 0.37

Power = 0.95

p = 0.00021

-8.5%

ES = 0.52

Relative Knee Flexor Isokinetic 60 Pt (Pt/Kg) F(2, 7.45); p = 0.035

d = 0.24

Power = 0.76

p = 0.00027

-8.1%

ES = 0.29

Knee Flexor Isokinetic 60 Mean Power F(2, 6.85); p = 0.0

d = 0.22

Power = 0.66

p = 0.08

-19.1%

ES = 0.94

p = 0.01

-9.6%

ES = 0.47

Knee Flexor Isokinetic 60 Work F(2, 7.63); p = 0.05

d = 0.22

Power = 0.65

p = 0.0006

-10.1%

ES = 0.46

p = 0.023

-9.9%

ES = 0.45

Relative Knee Flexor Isokinetic 60 Work (Pt/ Kg) F(2, 8.89); p = 0.029

d = 0.25

Power = 0.75

p = 0.001

-9.7%

ES = 0.37

p = 0.05

-8.6%

ES = 0.34

ISOK: isokinetic, PT: peak torque, d = ETA2, ES = effect size

https://doi.org/10.1371/journal.pone.0210318.t003

Table 4. Table illustrates a main effect for condition with the control condition being significantly (�) lower than the dynamic and static stretch conditions when

testing with isokinetic 300˚.s-1.

MAIN EFFECT FOR CONDITION Control Dynamic Stretch Static Stretch

Knee Flexor Absolute Power (Kg.s-1) 148.5±41.6 �

F(2, 8.01); p = 0.05

168.8±42.1

13.6% "

d = 0.48

172.3±40.3

16.1%"

d = 0.58

Knee Flexor Relative Power (Kg.s-1/kg) 2.99±1.3 �

F(2, 5.94); p = 0.08

3.34±0.95

11.7%"

d = 0.35

3.5±1.1

17.1%"

d = 0.42

https://doi.org/10.1371/journal.pone.0210318.t004
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Fig 2. Figure shows mean ± standard deviation knee flexor (KF) dynamic stretching resulted in significant

decreases from pre- to post-test for isokinetic (ISOK) peak torque (PT: kg.metres) at a contraction velocity of 60˚.

s-1 (�) as well as significant decreases for both post-test and 24 hours’ post-test (POST-24) compared to pre-test

(#) for total work (Joules) and mean power (kg.s-1).

https://doi.org/10.1371/journal.pone.0210318.g002

Fig 3. Figure illustrates a main effect for time with the pre-test demonstrating lower drop jump height (cm) and

power (kg.s-1) than both the post-test and 24 hours’ post-test (POST-24). Means ± standard deviations are

illustrated.

https://doi.org/10.1371/journal.pone.0210318.g003
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typically high. Although two minutes of rest was provided between the post-stretch interven-

tion second cycling bout and post-testing, it might be possible that the combination of isoki-

netic, MVC testing, countermovement jump pre-tests and cycling could have contributed to

small magnitude post-test deficits that were offset by dynamic stretching.

In contrast to the SS and control-induced post-test deficits, the lack of significant DS knee

extension impairments at post-test, suggests the dynamic movements counterbalanced the

control and SS-induced post-test force deficits. A number of adult DS studies report subse-

quent improved force and power development and athletic performance (i.e. jump height) [25,

29, 56–58]. The Behm et al. [1] meta-analysis indicated that the weighted mean performance

enhancement associated with 48 adult DS studies was 1.3% ± 4.7%. The mechanisms related to

these performance enhancements could be attributed to DS-related elevation of core tempera-

ture [59], increased nerve conduction velocity, muscle compliance, enzymatic cycling, [60],

induction of post-activation potentiation in the stretched muscle [25, 32, 57], increased central

drive [1, 2] and decreased inhibition of antagonist muscles [29, 61].

However, DS impaired 60˚.s-1 knee flexors isokinetic force and power-related measures at

post-test and 24 hours’ post-test. Whereas Haddad et al. [42] was the first study to report SS-

induced decrements 24 hours after a bout of SS, this is the first study to show DS impairments

at 24 hours post-DS. One of the DS exercises was a swinging hip flexion and extension motion.

The range of motion is considerably greater with hip flexion than with hip extension [62].

Even with proper execution, if this hip flexion ROM exceeded the participants typical ROM

then, it might be possible that a minor, undetected, musculotendinous strain could be induced.

Although the participants were monitored by researchers and the coach during the DS proto-

col, it is possible that some of the participants in the enthusiasm and competitiveness of a team

group setting could have kicked their legs anteriorly to such a degree that some minor ham-

strings muscle damage occurred inhibiting subsequent isokinetic force and power at an angu-

lar speed of 60˚.s-1. Further evidence for possible peripheral or muscle damage is the lack of

change in EMG activity at post-test or 24 hours’ post-test. A muscle strain or delayed onset

muscle soreness would not be expected to fully recover in 24 hours [63, 64]. Whereas Power

et al. [17] reported non-significant evoked contractile property force decrements two hours

after stretching, Behm et al. [9] and Fowles et al. [16] demonstrated approximately 12% and

18% decreases in evoked twitch force respectively. Impairments in evoked force can reflect

impairments to myofilaments or excitation contraction coupling, which might take days to

resolve. Furthermore, DS-induced impairments have also been attributed to decreased muscu-

lotendinous unit passive stiffness and passive resistive torque [35, 65]. DS is recommended to

be performed as a controlled movement through the range of motion of the active joint(s) [1,

2, 23]. Although monitored by the researchers, youthful exuberance might have progressed

these DS to less controlled ballistic movements, which possibly led to some degree of muscle

damage. Future studies should investigate the potential damaging effect of DS, as the design of

the present protocol cannot bring conclusive evidence to the question.

However, impairments were not apparent with 300˚.s-1 knee flexors isokinetic force and

power-related measures. In fact, with DS and SS conditions, the 300˚.s-1 knee flexors isokinetic

force and power-related measures were higher compared to control (main effect for condi-

tion). The force velocity relationship illustrates that the greatest forces are exerted at lower

velocities with decreasing force output at higher velocities [66–68]. Hence, with lower force

and power outputs at 300˚.s-1, possible DS-induced minor hamstrings muscle damage may

not have been apparent. It is widely believed that SS induces performance deficits [1–3, 69].

While the Behm et al. [1] meta-analysis calculated a SS-induced 3.7% weighted mean perfor-

mance reduction, the individual study data revealed 119 significant performance (i.e. isometric

and dynamic strength tests and jump height) reductions, 145 non-significant findings, and 6
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significant improvements. Thus, a greater number of SS studies in the literature either pro-

vided no significant impairments or actually improved performance. In the present study, DS

and SS conditions may have positively impacted neural excitation that offset testing-induced

(control condition) decrements. Since EMG is a gross measure of neuromuscular activation,

and not linearly related to muscle force [70, 71] any possible increases in neural excitation

may not have been apparent. The curvilinear relationship of force and EMG presents an EMG

activity plateau at higher forces [70, 71]. Since testing involved maximal isometric and isoki-

netic contractions, the lack of change in maximal EMG activity is not that surprising.

Main effects for time showed improvements for drop jump performance at post-test and

post-24 hours. A main effect for time includes the control condition and thus especially with

young participants, the improvements might be attributed to a practice or learning effect with

testing.

Conclusions

In conclusion, testing-induced impairments of 60˚.s-1 and 300˚.s-1 knee extensors isokinetic

force and power-related deficits at post-test were counterbalanced by DS. The greater range of

motion associated with hip flexion DS could have led to some muscle damage that decreased

the higher knee flexor forces and power associated with slower contractions at 60˚.s-1 for up to

24 hours. However, testing-induced decrements of the lower maximum forces exerted with

higher velocity contractions were offset by DS and SS. Thus, as recommended by recent studies

[72, 73], a full warm-up incorporating appropriate durations of SS (<60 seconds per muscle

group) [1–3] can be incorporated since the combination of SS, DS and dynamic activities

should not negatively impact power activities. However, DS must be closely monitored to

ensure that it is performed under controlled conditions, without pain, through the range of

motion. It is recommended that youth need extensive familiarization with novel testing proce-

dures (i.e. isometric and isokinetic dynamometry).
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