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Abstract

Multistage tumorigenesis is a dynamic process characterized by the accumulation of muta-

tions. Thus, a tumor mass is composed of genetically divergent cell subclones. With the

advancement of next-generation sequencing (NGS), mathematical models have been

recently developed to decompose tumor subclonal architecture from a collective genome

sequencing data. Most of the methods focused on single-nucleotide variants (SNVs). How-

ever, somatic copy number aberrations (CNAs) also play critical roles in carcinogenesis.

Therefore, further modeling subclonal CNAs composition would hold the promise to improve

the analysis of tumor heterogeneity and cancer evolution. To address this issue, we devel-

oped a two-way mixture Poisson model, named CloneDeMix for the deconvolution of read-

depth information. It can infer the subclonal copy number, mutational cellular prevalence

(MCP), subclone composition, and the order in which mutations occurred in the evolutionary

hierarchy. The performance of CloneDeMix was systematically assessed in simulations. As

a result, the accuracy of CNA inference was nearly 93% and the MCP was also accurately

restored. Furthermore, we also demonstrated its applicability using head and neck cancer

samples from TCGA. Our results inform about the extent of subclonal CNA diversity, and a

group of candidate genes that probably initiate lymph node metastasis during tumor evolu-

tion was also discovered. Most importantly, these driver genes are located at 11q13.3 which

is highly susceptible to copy number change in head and neck cancer genomes. This study

successfully estimates subclonal CNAs and exhibit the evolutionary relationships of muta-

tion events. By doing so, we can track tumor heterogeneity and identify crucial mutations

during evolution process. Hence, it facilitates not only understanding the cancer develop-

ment but finding potential therapeutic targets. Briefly, this framework has implications for

improved modeling of tumor evolution and the importance of inclusion of subclonal CNAs.

Introduction

Cancer, a dynamic disease, is characterized by unusual cells with somatic mutations. These

mutations are caused by environmental factors accumulated during an individual’s lifetime;

this accumulation of mutational events results in a large degree of genetic heterogeneity
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among cancer cells. The intratumor heterogeneity causes difficulties in devising personalized

treatment strategies.

To decipher intratumor heterogeneity, understanding how cancer evolves is a key step. The

hypothesis for the somatic evolution of cancer was proposed in the 1970s [1]. It states that all

tumor cells descend from a single founder cell, and cells with some advantageous mutations

become more competitive than normal cells for growth and clonal expansion. This hypothesis

could also be formed through random drift. Gradually, subsequent clonal expansion occurs,

and the tumor evolves into an organization of multiple cell subpopulations. Understanding

clonal evolution in cancer is one of the goals of cancer medicine [2]. Presently, sequencing

technology enables performing a large-scale molecular profiling of tumors to comprehend

cancer development and determine disease progression. However, the process of evolution is

not directly observed because tissues for measuring somatic mutations are typically obtained

from patients at a single time point. Thus, the ancestral relationship among tumor subclones

have to be inferred, and this is closely related to a well-studied problem, phylogenetic tree

reconstruction. To construct a phylogenetic tree, the mutations in each cancer cell should be

measured to infer evolutionary relationships among various cells. For addressing this concern,

the current technology of single-cell sequencing seems appropriate [3, 4]. However, this tech-

nology is not widely used because of some technical limitations and financial considerations

[5]. Most studies on tumor evolution rely on DNA sequencing technology with a bulk tumor

containing genetically different cells. Therefore, the cellular prevalence of each subclone have

to be measured through the relative read count information of the variants.

Single-nucleotide variants (SNVs) and copy number aberrations (CNAs) are widely used

data types to study tumor evolution. Recently, studies inferring the population structure and

clonal architecture have either focused on SNVs according to variant allele frequencies (VAFs)

or on CNAs with read counts obtained through DNA sequencing [6, 7]. Methods for either

type of data can adopt the other type of data to improve their reconstruction, and most meth-

ods have developed corresponding computational tools.

The first category of method reconstructs models with only SNV data. AncesTree and clon-

ality inference in tumors using phylogeny (CITUP) are the representatives of this category,

and they build models based on heterozygous SNV to study cancer progression, assuming that

the copy number is two [8, 9]. To relax the assumption of the normal copy number status,

many studies have included CNAs to correct the baseline [10–13]. For instance, Pyclone is one

of the clonal inference approaches, and it applies a hierarchical Bayes binomial distribution to

model allelic counts [13]. This approach applies a Dirichlet process prior on group mutations

and infers the posterior distribution to estimate the cellular prevalence, which is the fraction of

cancer cells harboring a mutation.

Unfortunately, the aforementioned algorithms only considered abnormal copy number

states but do not infer the clonal structure of copy number changes. If we do not account for

clonal evolutionary architecture, the estimation of CNAs would be inaccurate and just

reported as an average of the CNAs of all tumor subclones. Hence, in contrast to the SNV-

based models, some studies focus on subclonal CNA heterogeneity [7, 14–18]. They recognize

that subclonal CNAs could technically improve the analysis accuracy. THetA is one of the

most popular tools for subclonal copy number decomposition [7]; it searches all possible com-

binations of copy numbers across all segments and applies the maximum likelihood approach

to infer the most likely subclonal structures. However, THetA has an identifiability concern,

such that several solutions of subclone structures and copy number status levels can explain

the read-depth information equally well [15, 16].

Integrating other data, such as single-nucleotide polymorphisms, to jointly analyze tumor

progression is a solution to the identification problem. The methods developed on the basis of
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these integrated data types constitute another category of cancer subclone reconstruction

approaches [14–18]. In 2014, Oesper et al. modified THetA to THetA2, which designs a proba-

bilistic model of B-allele frequencies (BAFs) to solve the identification problem and simulta-

neously improves the efficiency of the algorithm [14]. Furthermore, PyLOH resolves the

identifiability problem by integrating CNAs and loss of heterozygosity (LOH) within a unified

probabilistic model [15]. PyLOH aims at determining the contamination from normal cells

and evaluating tumor purity, which is the fraction of tumor cells within a tumor tissue. Instead

of tumor purity, MixClone improves PyLOH with a more delicate measurement of tumor pro-

gression, the subclonal cellular prevalence (SCP) [16]. The major concept of PyLOH and Mix-

Clone is to use the Poisson and binomial models simultaneously to analyze the read depth and

BAFs.

Most of the above mentioned methods that reconstruct the process of copy number evolu-

tion assume heterozygous SNV sites within chromosome segments. This assumption facilitates

the decomposition of clonal CNAs, but it ignores segments without any somatic SNVs. There-

fore, to more effectively address this concern, we developed a new algorithm, called CloneDe-

Mix, which considers subclonal copy number changes when inferring the clonal evolutionary

structures. It requires only the read-depth information of loci of any sizes no matter SNVs are

included or not. The input can be a predefined segment of the chromosome or simply a single

nucleotide locus. CloneDeMix is a two-way clustering model that clusters each locus into an

appropriate copy number state and a most likely clonal group. The procedure can simulta-

neously evaluate all loci and regions. The algorithm uses information from all samples and loci

simultaneously to infer clone progression and can efficiently reduce the identification bias.

The flowchart of CloneDeMix is demonstrated in Fig 1.

In this study, we demonstrated the performance of the algorithm with simulation data and

applied it to a head and neck cancer dataset from The Cancer Genome Atlas (TCGA) and pri-

mary esophageal squamous cell carcinoma (ESCC) [19]. The simulation demonstrated the

accuracy of clone identification and subclonal copy number change detection, particularly in

early mutational events, which could be the candidate of driver mutations. The specificity of

the copy number detection exceeded 98%, and the sensitivity was nearly 93.5%. These simula-

tions support that our approach can successfully identify the copy number mutation and

deconvolute its amplification or deletion state from the clonal architecture.

Our results obtained for 75 paired normal–tumor samples recapitulated most of the find-

ings reported in head and neck cancer [20–23]. The novel subclonal CNAs have also been

identified, and their subclonal structure has been shown to facilitate the discovery of driver

mutations for advanced tumor progression. Furthermore, we provide evidence for the associa-

tion between tumor heterogeneity and metastasis. A large heterogeneity tends to promote

tumor metastasis. To sum up, CloneDeMix demonstrated ability to accurately identify subclo-

nal CNAs and clarify intratumor heterogeneity. It is useful complement to other methods for

cancer evolution studies.

Methods

Two-way poisson mixture model

We delineated the structure of cellular evolution based on two concepts: SCP and mutational

cellular prevalence (MCP), as shown in Fig 2. The SCP is defined as the fraction of cells that

are relatively homogeneous and carry the same set of mutations. The MCP is defined as the

fraction of cells that carry a certain mutation. The SCPs can be added to match the MCPs

according to the evolutionary structure of subclones (Fig 3A). The evolution matrix, an upper

triangular matrix, in Fig 3A provides information on the ancestral relationship among the

Two-way mixture model on subclonal structure of tumors
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subclones. There are five subclones in this toy example and their relationship is shown in the

evolution tree in Fig 3A. The percentages indicate the corresponding SCPs. In this evolution-

ary structure, six mutations create five subclones. For example, locus A exists in every tumor

subclone because of its presence at the top of the tree. Hence, the MCP of this locus can be cal-

culated as the sum of all SCPs. By contrast, locus G is a later mutation and only exists in the

leaf subclone C4. The corresponding MCP is equal to the SCP of C4.

Fig 1. Flowchart of CloneDeMix. Our approach includes three main steps, data preparation, running CloneDeMix, and

inference of tumor heterogeneity.

https://doi.org/10.1371/journal.pone.0206579.g001
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The read depth of each locus is proportional to the copy number and MCP. To delineate

the read depth of each somatic copy number variant into its copy number state and MCP, this

study proposes a two-way mixture model (CloneDeMix). Any locus in a sample has only two

states, namely normal and mutated states; the proportion of both types differs across different

loci. For example, locus E shows copy number changes in subclone C2 but not in the other sub-

clones (Fig 3B). Hence, all other subclones comprise the normal allele for locus E. Furthermore,

locus F has copy number changes in C3, C4, and C5; hence, it is classified as normal in sub-

clones C1 and C2. CloneDeMix clusters all loci according to their copy number state and MCP.

As shown in Fig 3C, all loci in this case are classified into five copy number states and simulta-

neously into five MCP levels. This results in 21 groups because we could not distinguish the

MCP levels for the loci of two copies. The MCPs for the five MCP groups are unknown and

have to be estimated. Thus, CloneDeMix provides the copy number and MCP for each locus.

The input in CloneDeMix is the read depth of each analyzed locus. When the locus repre-

sents a segment, such as an exon or a predefined amplicon, the average read depth is adopted.

Let Xi be the read depth of locus i or the average read depth rounded to the closest integer in

region i, and assume that it follows a two-way mixture Poisson distribution.

PðXijfrhg; fpkhg; abase;iÞ ¼
Pm1

k¼1

Pm2

h¼1
pkh fkhðXijrh; abase;iÞ 8i ð1Þ

Each component fkh(Xi) in the model represents the distribution of read depths sampled

from the k-th and h-th groups of the copy number state and MCPs, respectively. The read

count for each combined group is specified as a Poisson distribution; the mean of this distribu-

tion is proportional to a function of the mutated copy number and the MCP. It is specified as

mhk ¼ abase;i � ð2ð1 � rhÞ þ ckrhÞ;

Fig 2. Illustration of SCP and MCP. A tissue has two decompositions. Panel (A) provides an overhead view that divides the cells

into several disjoint groups according to their mutations. The cells in the same group are relatively homogeneous and carry the

same set of mutations. The size of a group or the fraction of cells is called the SCP. In contrast to the SCP, panel (B) demonstrates

the MCP, which is defined as the fraction of cells carrying a certain mutation.

https://doi.org/10.1371/journal.pone.0206579.g002
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where rh is the MCP for the h-th group, ck is the copy number of the k-th copy number group,

and abase,i is a normalization number for locus i. The corresponding mixture weight is denoted

as πkh. Without further evidence, the copy number of the normal cells can be considered to be

two in CloneDeMix. The number of groups for copy numbers and cellular proportions are

pre-specified as m1 and m2, respectively; we select m1 and m2 according to the Akaike infor-

mation criterion (AIC).

Estimating MCPs and copy number by using expectation–maximization

algorithm

The parameters of CloneDeMix include the normalization constants abase,i, MCPs r = {rh}, and

weights P = {πkh }. The plug-in estimator of abase,i is estimated from the paired normal sample

of each tumor sample. Because all samples are assumed to be globally normalized, and the

sample-specific variation is removed before the analysis, the read depth of locus i in the normal

sample represents an unbiased estimator of the mean read depth in the tumor sample when

the copy number is two. Hence, we use half of the read depth of locus i in the paired normal

sample as the estimator of abase,i. In case of no paired normal sample, we suggest taking half of

the sample mean across all existing normal samples to estimate abase,i. All other parameters are

estimated using the expectation–maximization (EM) algorithm to approximate the maximum

likelihood estimation (MLE).

We introduce a sequence of latent binary variables for locus i. Variables Yi ¼
fYikhgk¼1;...;m1;h¼1;...;m2

take the value of 0 or 1, indicating the memberships of the copy number

and MCP groups for locus i. If Yikh = 1, then XijYikh ¼ 1; ck; rh; âbase;i has the following

Fig 3. Two-way mixture model for inferring tumor progression by using copy numbers. (A) A toy example for tumor

progression of five distinct subclones. Six of the ten loci (A, B, E, F, G, and J) have gained or lost copy numbers, and the remaining

loci (C, D, H, and I) show no copy number change. The mutation in each locus forms a new subclone. MCPs can be determined by

multiplying the SCP and evolution matrix. (B) The copy number status of each locus is listed in the table, and the MCP of each locus

is listed under the table. (C) Each locus belongs to one of the 21 clusters in CloneDeMix. The columns represent five MCP levels,

and the rows represent five copy number states considered in the example.

https://doi.org/10.1371/journal.pone.0206579.g003
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distribution

fkhðXiÞ ¼ PoissonðXijmhk ¼ âbase;i � ð2ð1 � rhÞ þ ckrhÞÞ: ð2Þ

A complete form of the conditional distribution is

PðXijZi;Yi;~r; âbase;iÞ ¼
Q

h

Q
k fkhðXijâbase;iÞ

Yikh : ð3Þ

According to the mixture model construction, the probability of Yikh = 1 is πkh. Specifically,

PðYikh ¼ 1Þ ¼ pkh for each locus i: ð4Þ

Hence, the density functions of Yi ¼ fYikhgk¼1;...;m1;h¼1;...;m2
follow multinomial distributions

with probability functions

PðYijPÞ ¼
Q

h

Q
kpkh

Yikh : ð5Þ

According to the definition of conditional probability, the joint density function of Xi and

Yi can be written as follows:

PðXi;YijP;~r; â base;iÞ ¼ PðXijYi;~r; âbase;iÞPðYijPÞ ¼
Q

h

Q
kfkhðXijâbase;iÞ

YikhQ
h

Q
kpkh

Yikh

¼
Q

h

Q
k½pkhfkhðXijâbase;iÞ�

Yikh : ð6Þ

The log likelihood of P and ~r is

lðP;~rjX;YÞ ¼ log
Q

iPðXi;YijP;~r; âbase;iÞ ¼
P

i

P
h

P
kYikhlogðfkhðXijâbase;iÞpkhÞ: ð7Þ

Because there is no closed form for the maximum likelihood estimator of P and ~r, we

adopted the EM algorithm to determine the MLE. The EM algorithm iteratively maximizes the

expected log likelihood in two steps: E and M steps.

The E step of the EM algorithm determines the expected value of the log likelihood over the

value of the latent variable Y, given the observed data X and current parameter value P = P0

and ~r = ~r0. Thus, we derive the following equation:

EYjP0 ;c;~r0 ;X½lðP;~rjX;Z;YÞ� ¼ EYjP0 ;c;~r0 ;X½
P

i

P
h

P
kYikhlogðfkhðXijâ base;iÞpkhÞ�

¼
P

i

P
h

P
kEYjP0 ;c;~r0 ;X½YikhlogðfkhðXijâbase;iÞpkhÞ�

¼
P

i

P
h

P
kEYjP0 ;c;~r0 ;X½Yikh� � logðfkhðXijâbase;iÞpkhÞ ð8Þ

According to the definition of Yikh,

EYjP0 ;X ½Yikh� ¼ 1� PðYikh ¼ 1jP0;XÞ þ 0� PðZikh ¼ 0jP0;XÞ ¼

PðXijP
0; c;~r0;Yikh ¼ 1Þ � PðYikh ¼ 1jP0Þ

PðXijP
0Þ

¼
PðXijP

0; c;~r0;Yikh ¼ 1Þ � PðYikh ¼ 1jP0Þ
P

k

P
h½PðXijc;~r0;P0;YikhÞPðYikhjP

0Þ�
¼

fkhðXijâbase;iÞ � p0
khP

k

P
h½fkhðXijâbase;iÞ � p0

kh�
ð9Þ

Let EYjP0 ;X½Yikh� ¼ Y0
ikh and substitute it into Eq (8); with some arrangement, we obtain

EYjP0 ;c;~r0 ;X½lðP;~rjX;Z;YÞ� ¼
P

i

P
h

P
kEYjP0 ;c;~r0 ;X½Yikh� � logðfkhðXijâ base;iÞpkhÞ

¼
P

i

P
h

P
kY

0

ikh � logðfkhðXijâbase;iÞpkhÞ

¼
P

i

P
h

P
kY

0

ikh � ½logðfkhðXijâbase;iÞÞ þ logðpkhÞ� ð10Þ

Two-way mixture model on subclonal structure of tumors
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The M step of the EM algorithm maximizes Eq (10) overP, ~r to determine the next esti-

mates (e.g., P1 and ~r1). The maximization overP involves only the second term in Eq (10):

p1

kh ¼ argmaxpkhð
P

i

P
hY

0

ikh � logðpkhÞÞ under
P
pkh ¼ 1 ð11Þ

The solution is p1
kh ¼

Pn
i¼1
Y0
ikh=n. The maximization of ~r concerns the first term of Eq (10),

and the solution has no closed form. Numeric algorithms, such as the Newton–Raphson

method, are required to solve the equation. We used the Newton–Raphson method with the R

function optim(), and the iterative algorithm for ~r is

~r1 ¼ argmax~r ð
P

i

P
hY

0

ikh � logðfkhðXijâbase;iÞÞÞ

¼ argmax~rð
P

i

P
hY

0

ikh � ½� âbase;i � ð2ð1 � rhÞ þ ckrhÞ þ Xilogðâbase;i � ð2ð1 � rhÞ

þ ckrhÞÞ�Þ ð12Þ

The solutions (P1, ~r1) are substituted into Eq (10) to replace P0, ~r0. The expectation is then

rewritten as EYjP1 ;c;~r1 ;X½lðP;~rjX;YÞ�. The algorithm continues iteratively to maximize the

expectation of the log likelihood.

Determining the order of copy number variants

Based on the subclone size inferred using two-way cluster modeling, we can determine the

order of any pairs of recurrent mutations existing in multiple samples. Herein, we use the

notation MCP r̂ij to indicate the estimated MCP of mutation i from the model of sample j. If a

pair of mutations is recurrent in tumors with a fixed order, the relative size of their estimated

MCPs should be consistent. For any two loci a and b with somatic mutations, the MCP profiles

across p samples are (̂ra1;...; r̂ap) and (̂rb1;...; r̂bp). To determine whether the two mutations are

highly related, the Wilcoxon signed-rank test can be applied to the profiles of the two muta-

tions. In the event of significant inequality, when one mutation is more common in cells than

the other mutation, it indicates a recurrent evolutionary order between the two mutations.

Results

In this study, we first evaluated the prediction accuracy of CloneDeMix by simulated data.

Simulation study is useful to verify how well an algorithm behaves with data generated from

the theory, but it cannot inform us how well the theory fits reality. To that end, we collected

normal RNA sequences from TCGA and applied down-sampling to these normal data to cre-

ate artificial copy number changes. We used the data to compare CloneDeMix with THetA by

evaluating weighted root mean square error of MCP estimation and positive rate of copy num-

ber prediction. We also applied CloneDeMix on head and neck cancer data from TCGA and

serial biopsies of esophageal cancer [19] to infer genomic evolution based on copy number

change.

Simulation

The simulation considered four variant states of copy numbers, namely 0, 1, 3, and 4 copies.

Four MCPs were included: 0.1, 0.3, 0.5, 0.7, and 0.9. Each combination was repeated three

times, thus resulting in 60 regions with copy number changes. Furthermore, each region was

assigned 20 bases generated with a Poisson distribution whose mean value was determined by

its assigned copy number state and MCP. In addition to the mutated regions, 100 normal

regions were scattered among the mutated regions; their copy number state was two. The sim-

ulation generated depths for a long sequence with 3,200 bases for each of the 60 samples.

Two-way mixture model on subclonal structure of tumors
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CloneDeMix was subsequently applied to the simulation data to reconstruct respective copy

number states and MCP groups. The entire simulation process was repeated 10,000 times to

obtain a conclusion.

The simulation was performed to evaluate the model estimation accuracy. Table 1 shows

the mean and standard deviation (SD) of simulation results for MCP estimation, and Fig 4

demonstrates the accuracy of assignments for copy number states. As presented in Table 1, the

MCP estimates were very close to the underlying truth, indicating high performance for MCP

estimation. Notably, the bias decreased as the ground value of the MCP increased. Detecting

mutations of low cellular prevalence was relatively difficult because the signal was not ade-

quately strong.

As illustrated in Fig 4, the accuracy of the copy number assignment under each condition

was calculated from 10,000 simulations. The specificity of CloneDeMix was found to be

99.58%, and the sensitivity for amplification and deletion were 93.65% and 93.89%, respec-

tively. Thus, CloneDeMix represents a high specificity and efficiently controls false positive

results. As mentioned in the discussion on MCP estimation, estimating mutations of low cellu-

lar prevalence was biased. These biased MCPs directly caused the misclassification of the copy

number state and reduced the model sensitivity. In conclusion, these simulations support that

CloneDeMix can successfully identify the potential copy number mutations and deconvolute

its amplification or deletion state from the clonal architecture.

Comparison with THetA2

In this section, we evaluated CloneDeMix on a more realistic simulation scenario and com-

pared it with THetA2. The core concept of this simulation scenario is the use of down-sam-

pling technique to resample reads of real normal sequencing data with artificial copy number

changes.

To that end, we first collected 75 normal samples from TCGA and then performed standard

quintile normalization to reduce noise. For simplicity, we only used chromosome 1 for valida-

tion, and chromosome 1 was first cut into 200 different regions. According to the raw data, we

have the raw read counts of each region per sample. The 75 samples were equally divided into

case and control. In the control group, the resampled read count of each region was generated

from a binomial distribution. For the parameter setting of a binomial distribution, the number

of trials is set as two times raw read count and the success probability is 0.5. This procedure is

called down-sampling and it guarantees the mean of resampled count is the same as the mean

of raw count. In the case group, we need to randomly assign 20 regions to have copy number

change. The resampled read count of CNA region also followed the binomial distribution with

the number of trials equal to two times of the raw read count, but the success probability is set

as 0.5×(2×(1-MCP)+C×MCP)/2 which is determined by a predefined copy number C and

MCP. The predefined copy number of a variant was set to be 0, 1, 3, and 4. The MCP was set

to be 15 different values ranging from 0.1 to 0.9 as shown in Fig 5.

Table 1. Mean and SD of MCP estimation.

Summary statistics

True value Mean SD

0.1 0.100 0.0067

0.3 0.300 0.0036

0.5 0.499 0.0022

0.7 0.699 0.0014

0.9 0.900 0.0008

https://doi.org/10.1371/journal.pone.0206579.t001
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Most studies integrate CNAs and single nucleotide change to improve the accuracy of copy

number identification and to reduce the bias of cellular prevalence estimation. However, those

approaches only study the regions that contain single nucleotide change, and this constraint

apparently limits our understanding of the chromosome structure change. It has been reported

that CNAs affect a larger fraction of the genome in cancers than any other type of somatic

genetic mutation does [23]. For example, a large-scale study of somatic CNAs across different

cancers shows that in a typical cancer sample, 17% of the genome was amplified and 16%

genome was deleted on average [24]. Hence, for a fair comparison, we only compared Clone-

DeMix with THetA2 because THetA2 is also a subclonal copy number decomposition method

and supports direct tumor heterogeneity inference without considering SNVs.

Both of CloneDeMix and THetA2 are developed for multiple clone identification, but

THetA2 tends to identify single clone in our experience. Therefore, we designed the resampled

data as a mixture of normal cells and one subclone of tumor cells. In this simple case, the MCP

is equal to the tumor purity and we explored the model performance in different purity. In Fig

5A, we measured the performance of purity estimation by weighted root mean square error

(WRMSE) which is a type of adjusted RMSE. WRMSE adopts the inverse of true purity as the

Fig 4. Result of copy number estimation. The size of the circle is proportional to the number of loci assigned to each estimated status from 10,000 simulations. The

CNA status is divided into three conditions: deletion, amplification, and normal conditions.

https://doi.org/10.1371/journal.pone.0206579.g004
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weight for adjustment because the variance of purity estimation is a function of the true purity.

The variation of purity estimate increases when the purity increases. Across the 15 different

purity settings, CloneDeMix outperforms THetA2 on measuring purity as demonstrated in

Fig 5A. It is notable that the WRMSEs of THetA2 are missing zero in Fig 5 at low purity set-

tings (0.1, and 0.16) because THetA2 cannot identify tumor population at low tumor purity.

We calculated the true positive rate (TPR) and false positive rate (FPR) of copy number assign-

ment at different purity levels in Fig 5B and Fig 5C. We found that both of them performed

well when tumor purity was larger than 0.5. CloneDeMix outperformed THetA2 in the low

purity. It indicates CloneDeMix and THetA2 are equally well at exploring large subclones

while CloneDeMix has better detection power for small subclones.

Preprocessing of TCGA data

We analyzed the whole-exon sequencing data of 75 head and neck tumor samples with their

paired normal samples from TCGA (https://portal.gdc.cancer.gov/projects/TCGA-HNSC).

This dataset includes a total of 20,846 genes with 180,243 exons. We assumed the copy number

state of a single exon to be homogeneous. Each exon was represented by the mean read depth.

The read-depth profile of a tumor sample was normalized with loess transformation against its

paired normal sample. The baseline parameter abase,i for exon i was estimated from the paired

Fig 5. Comparison of CloneDeMix and THetA2 with resampled data. (A) The Y-axis is the weighted root mean square error (WRMSE) for measuring the

performance of MCP (or purity) estimate, and X-axis represents the true purity setting. (B) The true positive rate (TPR) of copy number detection. (C) The

false positive rate of copy number detection.

https://doi.org/10.1371/journal.pone.0206579.g005
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normal sample by using half of the read depth of the normal sample at the same locus. Because

the normal sample could also have an abnormal copy number status, we checked it against all

other normal samples. The target normal sample was first normalized against all other normal

samples by using the cyclic loess method and was subsequently processed through CloneDe-

Mix to identify the copy number status at each locus. In this step, the average profile of all

other normal samples was treated as the baseline. If, for example, an abnormal copy number is

found to be k, the raw read depth of this locus would be divided by k to provide the estimate of

abase,i for tumor modeling.

Copy number distribution and clone structure

We applied CloneDeMix to each normalized sample and estimated the copy number state of

each locus as well as the corresponding MCPs. Fig 6A shows the chromosomes that were

mutated most frequently, and the results of all other chromosomes are shown in S1 Fig. This

figure presents the copy number events across 180,243 exons for each of the 75 tumor–control

sample pair. The proportion of exons with a normal copy number was high in all samples, and

it was close to 100% in the control samples. The proportion was significantly decreased in the

tumor samples, indicating considerable structural variations during cancer development.

On average, 4.7% and 8.7% of exons were estimated to have deletion and amplification,

respectively. We also found that the exons located at 3p, 21p, and 18q were deleted most fre-

quently, and the average proportions of deletion within these chromosomal arms were 19%,

17%, and 13%, respectively. Conversely, the estimated amplification frequently occurred at 3q,

8q, and 5p, with average frequency levels of 29%, 24%, and 23%, respectively. Previous studies

have reported a loss of 3p and 8p as well as gains of 3q, 5p, and 8q not only in head and neck

cancer but also in most tumors [20–23]; these results are concordant with our findings. Other

novel subclonal CNA regions that were not reported in pan-cancer data analysis [20–23] were

identified as multiple tumor subpopulations were considered (e.g. Deletion in 21p, S1 Fig).

These subclonal CNA signals may be diluted in the previous studies that assumed only one

homogeneous tumor clone and inferred CNAs from the average of whole tumor information.

Our results confirm the identification strength of large-scale structural variations based on

clonal evolution.

Fig 6B presents a summary of MCP estimation. The number of MCPs was determined

using the model selection criterion AIC. We associated the number of subclones in the tumors

with clinical outcomes because this number is closely related to tumor heterogeneity. The tar-

get phenotype included tumor invasion and metastasis, which are particularly ominous signs

of poor prognosis in head and neck cancer. The association analysis was applied to only 68

samples because the clinical records of the other samples were incomplete in TCGA. Part A of

S2 Fig illustrates the box plot of the number of MCP groups under each clinical group. In this

figure, a sample is denoted as “NO” if no record of either invasion or metastasis exists; other-

wise, it is denoted as “YES.” There appeared to be a tendency of increased tumor heterogeneity

for tumors with invasion or metastasis. The variation of numbers of MCPs was larger for this

group. To more comprehensively clarify this factor, we dichotomized the number of MCPs

into two groups. The number of MCPs exceeding 4 indicated strong tumor heterogeneity,

whereas a lower number indicated less heterogeneity. The contingency table (Part B of S2 Fig)

shows the dichotomization of tumor heterogeneity associated with the clinical outcomes. The

corresponding odds ratio was 3.64, and the p value evaluated with logistic regression was

0.029. For the samples with higher tumor heterogeneity, the odds of invasion and metastasis

were 3.64 times higher than those for the samples with lower tumor heterogeneity. In recent

studies of head and neck cancer, this association between tumor heterogeneity and metastasis
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was explored by whole exome sequencing and single cell RNA sequencing [25–27]. These

studies also found the difference in tumor heterogeneity between primary and matched lymph

node metastases samples.

Fig 6. Copy number estimation of chromosomes with high mutation rates. (A) The estimated copy number states for exons across the genome

are presented by different colors. Light blue and red represent the deletion and amplification events, respectively. Black indicates no copy number

changes. (B) The black dots indicate the estimated MCPs with respect to the left axis. The red bars represent the number of MCPs with respect to

the right axis.

https://doi.org/10.1371/journal.pone.0206579.g006
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We further investigated the association of overall patient survival and tumor heterogeneity

by survival analysis, and used two different ways to demonstrate this association. First, we

directly considered the subclone number as a covariate of survival analysis, and then applied

Cox model to analyze the effect of subclones. We got a p-value, 0.036, by Wald’s test, and

apparently tumor heterogeneity is a risk factor for survival. Next, we considered three different

tumor heterogeneity levels of samples and performed Kaplan-Meier (KM) curve for different

levels. To this end, all of the samples are divided into three classes by its subclones number,

low-heterogeneity (less than 5 subclones), median-heterogeneity (5� subclone number� 8),

and high-heterogeneity (large than 8 subclones). The sample sizes of the three classes are 20,

36, and 19, respectively. Fig 7 showed the survival curves of the three classes with different col-

ors, and the survival curve of high-heterogeneity samples is worse than the others. Hence,

high-heterogeneity is associated with poor overall survival. It indicates the tumor behavior var-

ies with its heterogeneity. The heterogeneity and mortality in head and neck cancer was also

investigated by a different approach [26], and it also concluded that high-heterogeneity in

tumors had doubled the hazard of death.

Fig 7. Survival curves between different classes of heterogeneity levels. There are three Kaplan-Meier (KM) curves. The blue, yellow, and green represent the

group of low, median, and high heterogeneity, respectively.

https://doi.org/10.1371/journal.pone.0206579.g007
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Inference of evolutionary order of mutations

As stated in the Methods section, we inferred the evolutionary order of recurrent variants with

multiple samples. For easy comprehension, we demonstrated the result at the gene level through

a series of summary steps. We first selected the genes with consistent amplification or deletion

states in more than 25% of the exons within at least one sample. A total of 3,244 genes were

included in this demonstration, and this set is called the background gene set. For each sample,

the MCP of a gene was represented by the mean MCP of its exons. We then performed the Wil-

coxon signed-rank test using the gene-level MCP of any two genes across the samples to derive

all pairwise evolutionary relationships. For example, if the MCP of gene i was larger than that of

gene j (p = 0.05), the mutation on gene i was more likely to be an earlier event than that on gene

j. This relationship was marked as 1; otherwise, it was marked as 0. The 0–1 matrices of pairwise

evolutionary relationships were separately calculated for samples with and without nodal metas-

tasis, and they could be denoted as a matrixMneg andMpos. The element of the matrix could be

denoted asME,ij, representing the evolutionary order of mutations on gene i against mutations

on gene j inferred with samples under the E condition, which could be neg or pos.
The evolutionary order matrix can be used to construct an evolutionary tree of all muta-

tions. However, a tree of 3,244 genes is highly complicated, rendering the comparison of differ-

ent clinical traits difficult. Therefore, for simplification, we proposed a progression score to

summarize the relative position of a mutation on the evolutionary tree of tumor formation.

The scores of a gene in advanced tumors can be compared with those of genes in newly devel-

oped tumors to select the ones that recurrently occur in the early stage of tumor development.

The P score of gene i under condition E is thus defined as a summary statistic from the evolu-

tion matrix and is formulated as follows:

P score ðgene ijEÞ ¼
P

j6¼iME;ij=ð
P

j6¼iME;ij þ
P

k6¼iME;kiÞ: ð13Þ

Among all relations of gene i with other genes, the P score provides the number of times

the mutation in gene i is more likely to occur before that in other genes. If a gene is close to the

root of an evolutionary tree, its corresponding P score must be higher than that of its descend-

ing gene.

We first investigated the P-score behavior of prevalent genes which have been discussed in

head and neck cancer [22], and the results are listed in Table 2. The P-score of PIK3CA is con-

sistently larger than 0.9 across different clinical traits. That is, the mutation of PIK3CA occurs

early in the tumor progression. In contrast, patients with perineural invasion acquire early

mutation of CDKN2A gene more often. Some of the well-known cancer genes are not power-

ful in our P-score analysis. For example, we identified structure variation of TP53 only in a few

patients, and these few MCPs are not enough to construct a powerful P-score.

We compared the P score between the samples with and without nodal metastasis by plot-

ting a scatter plot (Fig 8). Most background genes tend to mutate in a random order not

Table 2. The P-score of CDKN2A, E2F1, and PIK3CA in different clinical outcomes.

All patients Margin status Vital status ECS Invasion

Positive Negative Dead Alive Positive Negative Yes No

CDKN2A 0.665 0.676 0.703 0.747 0.511 0.593 0.625 0.875 0.292

E2F1 0.726 0.092 0.840 0.697 0.889 0.618 0.899 0.078 0.997

FAT1 0.776 0.937 0.714 0.714 0.931 0.683 0.657 0.687 0.866

HAS2 0.081 0.041 0.078 0.016 0.371 0.757 0.064 0.351 0.006

TGFBR2 0.591 0.443 0.629 0.697 0.412 0.646 0.643 0.684 0.394

PIK3CA 0.964 0.998 0.955 0.978 0.947 0.990 0.906 0.991 0.924

https://doi.org/10.1371/journal.pone.0206579.t002
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related to tumor progression. According to our P score definition, we postulated that the driv-

ing genes of lymph node metastasis would be scattered above the diagonal line. The genes

above the diagonal line of the plot are more likely to acquire mutations at an earlier stage of

tumor formation and occupy a significant proportion of the tumor at its advanced stage. This

would yield higher P scores when only the samples with lymph node metastasis are considered.

By contrast, the prevalence of mutations in those genes might be low in the samples without

lymph node metastasis and hence yield lower P scores.

To confirm our conjecture, we selected the genes by their biological functions using Con-

sensusPathDB web (http://cpdb.molgen.mpg.de/) and investigated whether genes related to

metastasis in the literature are more likely to be distributed above the diagonal line. Because

cell migration is a crucial step in the metastatic cascade, we selected cell-migration-related

genes, which are marked as black in Fig 8. Consequently, we found that 43 genes had the func-

tion of cell migration. Most of these genes were distributed above the diagonal line of the P

score scatter plot, whereas some were distributed below the diagonal line. Recurrent mutations

in these cell migration genes are expected to be the driving forces for the initiation of lymph

node metastasis, consistent with our observations. For example, HAS2 is a member of the gene

family encoding putative hyaluronan synthases, which control the biosynthesis of hyaluronan

and critically modulate the tumor microenvironment. Several studies have shown that the

inhibition of HAS2 reduced the invasion of oral squamous cell carcinoma [28–30]. Similar to

HAS2, ANGPT1 is located in the upper left corner and has been recently investigated for the

mechanism of lymph node metastasis [31–34]. ANGPT1 plays an important role in the regula-

tion of vascular development and maintenance of vessel integrity. A study showed that the

activity of ANGPT1 induced the enlargement of tumor blood vessels to facilitate tumor cell

dissemination and increased the ability of metastasis in tumors [34]. Fibroblast growth factor

Fig 8. Scatter plot of P scores between nodal positive and nodal negative samples. The red points indicate the background gene set. The red curve indicates the loess

smoothing curve constructed using all points in the figure. Genes related to cell migration are marked in black. The genes from 11q13.3 are marked in blue. The

literature supporting genes are labeled.

https://doi.org/10.1371/journal.pone.0206579.g008
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(FGF)-4 is another notable example. The P score of FGF4 significantly differs in nodal positive

and negative patients. FGF4 is a member of the FGF family and possesses broad mitogenic and

cell survival activities. It has been proposed to be involved in tumor growth, cell proliferation,

and lymph node metastasis [35–37]. In contrast to the black genes located in the upper left cor-

ner of the plot in Fig 8, few studies have reported any relationship between the black genes

located in the lower right corner and lymph node metastasis, although they have the same bio-

logical function. A complete literature review of the genes associated with cell migration and

tumor metastasis is presented in S1 Table. The observations suggest that our inference of the

clonal evolutionary order is relevant and can be applied for identifying causal drivers.

Another notable observation is about the neighboring genes of FGF4. As mentioned, FGF4

is an important gene for driving lymph node metastasis. It is located in 11q13.3, which is fre-

quently amplified in head and neck squamous cell carcinoma [35]. Sugahara also listed several

other genes in 11q13.3 that are related to cancer development, namely TPCN2,MYEOV,

CCND1, ORAOV1, TMEM16A, FADD, PPFIA1, CTTN, SHANK2, and DHCR7. We also

assessed their status by using the P score analysis; the genes are indicated in blue in Fig 8. All

these genes were above the diagonal line. Their corresponding P scores showed considerably

significant differences between patients with and without nodal metastasis. Hence, we postu-

lated that those genes in 11q13.3 are possibly related to lymph node metastasis in head and

neck cancer. Several previous studies have confirmed this observation, as reported in S2 Table.

Application on serial biopsies of esophageal cancer

We next applied CloneDeMix on multiregional whole-exome sequencing data from 13 primary

esophageal squamous cell carcinoma (ESCC) patients [19]. There are 51 tumor regions and 13

matched morphologically normal esophageal tissues sequenced with the mean coverage of

150×. For fair comparison, we selected 11 of 13 patients based on its platform. We also removed

patient ESCC07 because we only got two regions successfully aligned to the reference genome.

In total, we included 10 patients in this application, and, for each patient, we have four different

tumor regions with one matched esophageal tissue. As preprocess of TCGA data, the read-

depth profiles of ESCC tumors are normalized with loess transformation against its paired nor-

mal sample. For each individual, the paired normal tissue is also used to calculate the estimates

of baseline, and then applied CloneDeMix to tumors for gene-specific CNVs and MCPs.

In this application, we aim to explore the variability of evolutionary structure among multi-

regional tumors by inferring the order of copy number change. For the purpose of studying

variability between regions, we only focused on the frequently mutated genes which are infor-

mative about tumor evolution. Although the construction through these genes is not able to

resolve completely the entire evolutionary structure, the inferred structure between regions

can still facilitate the understanding of tumor progression. To that end, we collected the target

gene list from the Ion AmpliSeq Comprehensive Cancer Panel which includes 7,044 exons of

409 tumor suppressor genes and oncogenes. The estimated CNVs and MCPs of the ESCC

biopsies for this gene set were summarized and interpreted as follows.

We first investigated genomic heterogeneity of ECSS through MCP comparison. MCP is a

gene-specific measurement of fraction of cells that carry a certain mutation, and we can study

the overall structure of MCPs across whole genome to reveal the genomic heterogeneity of a

given sample. We calculated the correlation matrix of MCP between samples, and this correla-

tion matrix is presented in Fig 9. The diagonal blocks of this correlation matrix are tissues of

the same sample and are slightly higher than the others. The average correlation of diagonal

block is 0.5 and the average of off-diagonal cells 0.3. It shows that the MCP structure within

each patient is more consistent than between patients.

Two-way mixture model on subclonal structure of tumors

PLOS ONE | https://doi.org/10.1371/journal.pone.0206579 December 12, 2018 17 / 25

https://doi.org/10.1371/journal.pone.0206579


Next, we identified the evolution-related genes for each individual. In ESCC study, each

tumor was dissected into four regions, and this kind of serial biopsies has a natural assumption

that the size of MCPs is comparable within a given tumor. This characteristic can facilitate the

individual-specific heterogeneity study. In order to explore individual-specific heterogeneity,

we first identified genes on the trunk and on the branch of the evolutionary tree separately.

The trunk of the tree refers to the CNAs consisted in all regions while the branch refers to

those only in some regions. We can identify these genes according to the MCP across regions.

A gene is located on the trunk of a tree if its average MCP across four regions is larger than 0.8,

and a gene is located on the branch of a tree if the MCP of one region is larger than the average

MCP of all the remaining regions by 0.7. Instead of tree comparison, we directly compare the

MCP matrix of selected genes (S3 Fig). In S3 Fig, genes in red rectangles are selected to be the

trunk genes, and the remaining genes are on the branch of a tree.

The two types of genes defined above reveals huge variability of evolution structure across

tumors. The genes on the trunk of a given tree represent the genes changed in copy number at

an earlier stage of tumor formation, and these genes have potential ability to drive tumor

growth. For example, most of the genes on the trunk of sample ESCC12 (CCND1, EGFR,

APC, TGFBR2, XPC, XPA, FLI1, and NUMA1) have been identified and initially reported on

Fig 9. Correlation matrix of MCP between samples. Each cell indicates the correlation of MCPs between the corresponding ESCC samples.

https://doi.org/10.1371/journal.pone.0206579.g009
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the esophageal cancer [38–42]. Although the genes on the trunks of trees vary among different

individuals, there are still genes repeatedly identified in multiple individuals such as CCND1,

JAK2, UGT1A1, FLI1, NFE2L2, SOX2, CDKN2B, and MYC. Specifically, CCND1 was identi-

fied in six individuals as the trunk gene and is a well-known cancer oncogene located on

11q13. Its amplification has been reported in several human neoplasias [43].

Incorporating SNV data into CNA heterogeneity study

To complete the exploration of the tumor microenvironment and verify the characteristics of

CNA-related subclone in the tumor progression, we extended our framework to incorporate

SNVs. Following the concept of CloneDeMix modeling, this approach models the allele count

of each SNV locus by Poisson regression and applies clustering approach to infer the fraction

of the cells acquiring this SNV. The complete description of the extended approach and the

detailed flowchart is shown in S1 File. In short, the extended framework can identify the sub-

clones induced by SNVs and CNAs and enhance the completeness of tumor exploration.

We next analyzed SNV data of head and neck cancer to identify the additional subclones

induced by nonsynonymous substitution in tumors. This analysis includes 11,927 SNVs

obtained from 75 paired tumors from TCGA. Among all the SNVs detected, 16.1% fell within

CNA regions, and the modeling of those SNVs should take into account the copy number

adjustment. The results of CNA analysis were used to adjust the copy number change of SNVs.

The number of subclones including only SNV or CNA within each sample is shown in S4 Fig.

In S4 Fig, the distribution of subclone numbers induced by different variant types varies across

samples, and it could be evidence of the complexity of tumor heterogeneity.

We also performed the association analysis between the clinical (or pathological) assess-

ments and tumor heterogeneity induced by different variant types. The subclone number is an

intuitive quantity to measure the level of tumor heterogeneity, and we consider three different

types of subclone numbers: (1) the number of SNV-related subclones, (2) the number of

CNA-related subclones, and (3) the number of total subclones. The SNV-related (CNA-

related) subclones are subclones that include SNVs (CNAs) in our analysis. Notably, some sub-

clones include both SNVs and CNAs so they are counted in both the SNV-related and CNA-

related subclones. Similar to the analysis of CNA, we discretized the subclone number into

high and low levels by its median. Fisher exact test was used for the association test between

the clinical traits and the subclone number levels. The results are shown in Fig 10. The number

of CNA-related subclones is better associated with metastasis, tumor grade, and perineural

invasion, while the SNV-related subclone number is better associated with pathological tumor

staging. Since the two types of variants are associated with different traits, the total number of

subclones turns out to be not so informative with mixed information.

Discussion

In this study, we developed CloneDeMix for the deconvolution of tumor progression through

high-throughput DNA sequencing data. The features of CloneDeMix are as follows. First, it

reconstructs an evolutionary structure of copy number changes during tumorigenesis. Most

existing methods for cancer evolution discuss the history of single-nucleotide changes and

derive the potential driver genes. However, the importance of CNAs is growing and its influ-

ence on disease and cancer development is clearly established [44]. Therefore, the reconstruc-

tion of copy number evolution in tumor progression is in demand. Second, CloneDeMix

provides the MCP as a measure of the evolutionary structure. This measurement is used to

estimate the fraction of cells containing a specific set of mutational events. According to the

definition of the MCP, it provides a more direct evolutionary reconstruction than does the
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SCP, which is defined as the size of a subclone in a tumor. For instance, the MCPs of early

mutations in cancer must exceed those of other mutations, but no such structural relationship

exists for SCPs. Although MCPs of a tumor is related to its phylogenetic tree, we do not have

DNA haplotypes to resolve the tree architecture from many possibilities for each individual

tumor. Hence, in this study, we only borrow the strength of multiple samples to understand

potential evolutionary orders using the P score. Third, our model exhibits high flexibility. Clo-

neDeMix can identify the copy number state of any type of variant, from a single nucleotide to

a moderate size of regions. Furthermore, the model facilitates the simultaneous analysis of

multiple types of targets because it depends on only the summary information of each locus.

The simulation study revealed that CloneDeMix can identify the current clonal structures

of a tumor. The accuracy of copy number states was nearly 93%, and the MCP was also accu-

rately restored (Table 1). Furthermore, the application of CloneDeMix to head and neck

cancer data from TCGA yielded promising putative CNAs. The deletions observed on chro-

mosomes 3p, 18q, and 21p and the amplifications on chromosomes 3q, 5p, and 8q are consis-

tent with most cancer studies on copy number identification [20–23]. This observation

strongly supports our CNA inference procedure.

Fig 10. Association between subclone number and clinical traits. Each bar represents the negative log p-value obtained from the association test. The

corresponding clinical or pathological assessments for association test are listed in the x-axis. The dashed line represents the significance level of 0.1. The blue bar is

from the association with the SNV-related subclone number levels (high vs. low) and the yellow bar is from the association with the CNA-related subclone number

levels (high vs. low). The green bar represents the result with the total subclone number levels.

https://doi.org/10.1371/journal.pone.0206579.g010
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When the estimation accuracy reaches a certain level, the most important concern is to

understand the relationship between tumor heterogeneity and disease progression. Tumor

clone dynamics have been associated with clinical outcomes for different types of cancer [45–

47]. Our method provides a quantitative measurement of clonality, and it is associated with

tumor invasion and metastasis development in TCGA database. Tumors with more subclones

are a result of complex branched evolution, implying a series of adaptations to a new environ-

ment. These newly emerged subclones may contribute to metastatic initiation or acquire a

new ability to invade the lymphatic or vascular system. Thus, the strong prognostic association

of the number of MCPs with invasion or metastasis reinforces its clinical relevance; this index

appears to be a novel feature for further exploration.

We established a novel score, the P score, for evaluating the order of a recurrent mutation

in the evolutionary hierarchy by analyzing multiple samples. By comparing the P scores of a

somatic variant between different clinical groups, we could identify the copy number muta-

tions that occur early in the tumor stage and expand the accompanied subclones with time.

The utility of P scores was also demonstrated in the head and neck cancer data according to

the sample status of metastasis. Furthermore, we identified a group of genes that matched this

condition. Specifically, the genes located at 11q13.3 are well known to be frequently amplified

in head and neck squamous cell carcinomas. Their P scores in our analysis were particularly

high for the samples with lymph node metastasis and relatively low for those without metasta-

sis. Accordingly, those gene amplifications are potential causal mutations to drive metastatic

cascade in head and neck cancer. Hence, screening for genes that differ considerably in their P

scores is meaningful for driver gene detection.

To complete the exploration of tumor heterogeneity, we extended our framework to incor-

porate the SNVs into our analysis and applied it to the TCGA data. We identified the sub-

clones induced by either variant types and then performed the association test with clinical

traits. The result from this extended framework shows the improvement of understanding

tumor heterogeneity by integrating SNVs and CNAs. More importantly, the result of real data

study also shows the insights that can better caught with either variant type.

The success of our approach highly depends on the coverage of DNA sequencing. A higher

read depth can more efficiently reflect the clonal structure and copy number changes of differ-

ent loci. Currently, CloneDeMix makes an independent assumption without considering the

dependency among closely located loci. Hence, the neighboring segments are not grouped

into the same copy number events. This can be an advantage as well as a disadvantage because

there is no clear understanding about the range covered by a copy number event. Technically,

we can still integrate the correlation structure into CloneDeMix to improve the flexibility; this

is an ongoing project for our next version of the R package.

We have demonstrated the utility of exploring subclonal structure in tumors with CloneDe-

Mix by simulation and real data, and we expect CloneDeMix to be useful in understanding

tumor heterogeneity and how the tumor evolves to the current status. Moreover, CloneDeMix

has high specificity for detecting early mutations in tumor progression; these early mutations

would be good candidates for disease driver genes and targeted therapies.
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S1 Fig. Copy number estimation results. The estimated copy number states for the exons
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identified across 75 tumors by bar plot. The blue bar represents the subclones consisting of

only SNVs, and the yellow one represents the subclones consisting of only CNAs. The green

bar records the number of subclones consisting of both types of mutations.

(TIF)
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