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Transthyretin (TTR) is a transporter for thyroid hormone and retinol bind-

ing protein that has recently been reported to have proteolytic activity

against certain substrates, including amidated neuropeptide Y (NPY).

However, the proteolytic activity of TTR towards NPY is not fully under-

stood. Here, we used fluorescence-based assays to determine the catalytic

kinetics of human TTR towards human amidated NPY. The Michaelis

constant (KM) and catalytic efficiency (kcat/KM) of TTR proteolysis were

15.88 � 0.44 lM and 687 081 � 35 692 M
�1�s�1, respectively. In addition,

we demonstrated an effect of the C-terminal sequence of TTR. When the

C-terminal sequence of TTR was made more hydrophobic, the KM and

kcat/KM changed to 12.87 � 0.22 lM and 983 755 � 18 704 M
�1�s�1,

respectively. Our results may be useful for the development of TTR as a

therapeutic agent with low risk of the undesirable symptoms that develop

from amidated NPY, and for further improvement of the kcat/KM of TTR.

Neuropeptide Y (NPY) is a 36-amino-acid peptide

that is distributed in several body systems and has

diverse roles in several biological processes [1–10].
The primary structure of NPY is highly conserved

particularly among mammalian species, suggesting

important physiological roles of the peptide in ani-

mals [11,12]. Similar to other neuropeptides, NPY is

expressed as a biologically inactive peptide and

requires peptidylglycine a-amidating monooxygenase-

dependent amidation of the C-terminal end to form

an active molecule [13]. In addition, the neuroprotec-

tive effect of the peptide occurs via the activation of

Y receptor [14]. Overexpression of NPY phenotype

was observed with transthyretin (TTR) knockout

[15,16]. Regulation of the neuropeptide maturation by

TTR through down-regulation of peptidylglycine a-
amidating monooxygenase expression was suggested

as a mechanism [17]. Currently, the use of NPY as a

therapeutic agent for particular neurodegenerative dis-

eases has been suggested [18–20; for review, see 21].

Transthyretin is a homotetrameric protein that is

expressed in and secreted from the liver into the blood

stream, and from the choroid plexus into the cere-

brospinal fluid [22,23]. Its main physiological function

is as a transporter for thyroid hormone and retinol

binding protein (RBP) [24]. Recently, proteolytic activ-

ity of TTR was revealed [25], but only a few natural

substrates have been identified so far, including ami-

dated NPY [23,26,27]. The cleavage sites for TTR on

amidated NPY are arginine residues 33 and 35 in the

C-terminal region [23]. Although the proteolysis has

been confirmed as necessary for the neuroprotective

effects of TTR [28], the catalytic reaction towards its

substrates, particularly NPY, is not fully understood.

In the primary structure of TTR, the particular amino

acid residues participating in the formation of the central
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channel where the binding site for thyroid hormone is

located have been highly conserved during the evolution

of vertebrates. The predominant changes are in the N-

terminal region of the TTR subunit [29,30]. Our previous

studies demonstrated a connection between the alteration

in length and hydropathy of the amino acid sequence of

the N-terminal segment of TTR and the binding affinities

for thyroid hormone and RBP [31,32]. A few changes of

amino acid sequence have also been observed in the C-

terminal sequence of TTR [30,33–35] and these were

demonstrated to lead to an increase in the binding affin-

ity for RBP [36] and catalytic activity towards

apolipoprotein A-I [37]. However, the effect of the

changes in the C-terminal region on the catalytic activity

of TTR towards amidated NPY remains unknown.

The study of enzyme kinetics could provide insights

into the catalytic mechanism and provide a powerful

tool for studying the effect of the structural changes on

TTR proteolysis. Therefore, in this study, the kinetic

parameters of the proteolytic cleavage of human ami-

dated NPY by human TTR were studied, and these

were compared to those of pigC/huTTR (also named

TTR-HPc), a human chimeric TTR in which the C-

terminal sequence of human TTR was changed to that

of Sus scrofa TTR. Our results demonstrated the effect

of the hydrophobic sequence on the catalytic activity of

TTR towards amidated NPY.

Materials and methods

Purification of TTR from human plasma

An ethical approval request form, patient information

sheet, and informed consent form were used following

approval by the ethical review committee for research in

human subjects, Faculty of Science, Prince of Songkla

University, Thailand. Human TTR was isolated and puri-

fied from plasma by affinity chromatography followed by

preparative discontinuous native-PAGE [31]. The purity

and concentration of the protein were determined by SDS/

PAGE and the Bradford assay [38], respectively.

Synthesis and purification of pigC/huTTR

Chimeric TTR, pigC/huTTR, consisting of the residues Gly1

to Ala120 of human TTR and Leu121 to Leu130 of S. scrofa

TTR, was synthesized by using the heterologous gene expres-

sion system of Pichia pastoris, and purified by preparative

discontinuous native-PAGE as previously described [36,37].

Physicochemical properties of TTR

The relative subunit mass and the electrophoretic mobility

under the native condition of TTR were determined by

gradient SDS/PAGE and native-PAGE, respectively [37].

The crossed-reactivity of TTR to specific antibody was ana-

lyzed by western blotting [32], using sheep polyclonal anti-

body against serum human TTR (dilution 1 : 4000; Abcam,

Cambridge, UK) and horseradish peroxidase-linked sheep

IgG (dilution 1 : 5000; Calbiochem, San Diego, CA, USA)

as primary and secondary antibodies, respectively.

Hydropathy profiles of TTRs

The hydropathy profiles of human native TTR and pigC/

huTTR were generated by Kyte–Doolittle [39] plot analysis,

using a scanning window of seven amino acid residues.

On-gel analysis of human amidated NPY

cleavage by TTR

Aliquots (14 lM) of human amidated NPY (Calbiochem) in

50 mM Tris/HCl, pH 7.4 were incubated alone or in the

presence of TTR (2.8 lM) at 37 °C for various times.

Thereafter, the reaction mixtures were mixed with a loading

buffer containing 1% SDS, and 1% b-mercaptoethanol,

then, without heating, immediately analyzed by Tricine

SDS/PAGE (16.5% T, 6% C resolving gel; 4% T, 3% C

stacking gel). The proteins were detected by Coomassie

Blue G-250 (Bio-Rad Laboratories, Hercules, CA, USA) or

silver staining (Merck Millipore, Burlington, MA, USA).

The reaction mixture of human amidated NPY and albu-

min purified from human serum (HSA) was included as

negative control.

Labeling amidated NPY with Alexa Fluor 488 and

characterization

Human amidated NPY was labeled with Alexa Fluor 488

according to the manufacturer’s protocol (Invitrogen,

Carlsbad, CA, USA). The labeled product was isolated

from free dye by gel filtration chromatography on a Bio-

gel P2 column and quantitatively determined by absorp-

tion spectrophotometry at wavelengths 280 and 494 nm,

the latter of which is the maximum wavelength of free

dye. The degree of labeling was calculated from the absor-

bance of the conjugate solution at 280 and 494 nm, as

described by the manufacturer. The analysis of the label-

ing peptide was performed by Tricine SDS/PAGE. In

brief, an aliquot of the labeled peptide was treated in a

buffer containing 1% SDS and 1% b-mercaptoethanol,

without heating, prior to analysis by Tricine SDS/PAGE

(16.5% T, 6% C resolving gel; 4% T, 3% C stacking gel).

The fluorescence of the labeled peptide was observed

under UV light and peptide on the gel was detected by

staining with Coomassie Brilliant Blue R-250. The fluores-

cence spectrum of the labeled amidated NPY was deter-

mined using an RF-1501 spectrofluorophotometer
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(Shimadzu, Kyoto, Japan) and then compared to the

labeled peptide after the cleavage by TTR.

Determination of the catalytic kinetics of TTR

The kinetic assay of TTR was performed in 384-well

polystyrol microplatten, lClear� (Greiner Bio One,

Kremsm€unster, Austria) at 37 °C, using Alexa Fluor 488-

labeled human amidated NPY as substrate. The assay reac-

tion (20 lL) contained purified TTR and the labeled

human amidated NPY (1–20 lM) in 50 mM Tris/HCl, pH

7.5. The fluorescence intensity of the proteolytic product

was monitored every minute for 30 min, at 37 °C in a Syn-

ergy HT plate reader (BioTek, Winooski, VT, USA) filters

kex = 485 � 20 nm, kem = 528 � 20 nm).

Assay buffer alone and the reaction containing the labeled

amidated NPY or TTR alone were included as controls in all

of the assays. The fluorescence level of the assays was nor-

malized to the controls, and plotted against time. The initial

velocity (V0) of each reaction was determined from the slope

of the curve expressed as a relative fluorescence per minute,

and then converted to concentration per minute (lM�min�1)

using a calibration curve of fluorescence intensity vs concen-

tration of the labeled amidated NPY. Then, the V0 vs sub-

strate concentration was plotted and fitted with the

Michaelis–Menten equation using non-linear regression.

Maximum velocity (Vmax) and Michaelis constant (KM) val-

ues were estimated from a Lineweaver–Burk plot. The turn-

over number (kcat) was calculated as the ratio of Vmax to

total concentration of TTR used in each reaction. The cat-

alytic efficiency (Kcat/KM) was obtained from the

Lineweaver–Burk plot. Mean and standard error of the

kinetic values of human native TTR and pigC/huTTR were

calculated from six and three replicates, respectively.

Statistical analysis

The kinetic data between two groups were assessed by Stu-

dent’s t-test, and P < 0.05 was considered to be statistically

significant.

Results

The hydropathy profiles of TTRs

To construct pigC/huTTR, the amino acid residue at

positions 121, 123 and 124 of human wild-type TTRwere

replaced by leucine, serine and serine, respectively. In

addition, three extra amino acid residues, i.e. glycine, ala-

nine and leucine, were added to the C-terminal end. In

the comparison, pigC/huTTR has three more non-polar

amino acid residues than human TTR. Based on the

hydropathy profiles of human native TTR and pigC/

huTTR generated by Kyte–Doolittle plot analysis,

differences in the hydropathy profiles between the two

TTRs were observed only at the C-terminal region

(Fig. 1). The C-terminal sequence of pigC/huTTR

showed more hydrophobicity, which was in agreement

with a higher number of non-polar amino acid residues

in the C-terminal region of pigC/huTTR.

Characterization of purified TTRs

According to SDS/PAGE (7–15% gradient resolving gel,

4% stacking gel) analysis, the subunit masses of human

native TTR and pigC/huTTR were 18.0 and 18.7 kDa,

respectively. The two had a similar pattern of cross-reac-

tivity with the specific antibody to human TTR

(Fig. 2A). The analysis by native-PAGE showed that

both TTRs were faster than albumin in human plasma

(HP) and had a similar mobility to TTR in HP (Fig. 2B).

On-gel analysis of the cleavage of human

amidated NPY by TTR

On Tricine SDS gel, human amidated NPY showed a

single band migrating to a position corresponding to a

Fig. 1. Comparison of hydrophobicity plots of human native TTR

and pigC/huTTR. The plots were generated by Kyte–Doolittle plot

analysis with window size of seven amino acid residues. The

dashed boxes indicate the C-terminal regions at which the amino

acid sequences were changed.
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molecular mass of 3480 Da (Fig. 3A). After incuba-

tion at 37 °C for 1 h, the intensity of the amidated

NPY band in the assay containing either human native

TTR or pigC/huTTR significantly decreased compared

with that containing amidated NPY or HSA alone. In

addition, by silver staining, the cleaved fragment of

the amidated NPY with an approximate molecular

mass of 2510 Da was clearly observed, particularly

within the first 15 min of the incubation with TTR

(Fig. 3B).

Characterization of Alexa 488-labeled human

amidated NPY

Alexa Fluor 488-labeled human amidated NPY was

prepared at pH 8.0 and isolated from free dye by chro-

matography on a Bio-gel P2 column. The degree of

labeling determined from the absorption spectrum

of the labeled peptide was ~ 0.7 mole of dye per mole

of NPY. Analysis by Tricine-SDS/PAGE demon-

strated two discrete bands of the labeled amidated

NPY, and both of them showed fluorescence under

UV light (Fig. 4A). The position on-gel of the lower

band was the same as that of the unlabeled amidated

NPY, and its fluorescence intensity was about two-fold

greater than the upper band. These two discrete fluo-

rescence bands were still observed when the labeled

amidated NPY was completely denatured by heating

in the presence of 8% SDS prior to Tricine-SDS/

PAGE analysis (data not shown). The fluorescence

intensity of the two discrete bands decreased with the

same rate after incubation with TTR for 1 h (Fig. 4B).

The catalytic kinetics of TTRs

After labeling with Alexa 488, the fluorescence spec-

trum of the labeled human amidated NPY was not dif-

ferent from that recommended for Alexa Fluor 488

conjugates (i.e. kex/kem = 494/519 nm) by the manufac-

turer. The maxima kex and kem of the labeled amidated

NPY were 501 and 521 nm, respectively. By using fil-

ters kex = 485 � 20 nm and kem = 528 � 20 nm to

monitor the fluorescence intensity, it was shown that

the fluorescence level of the reaction of the labeled

NPY increased immediately the catalytic reaction of

TTR was started. The linear increase of the fluores-

cence intensity of the reaction was observed within the

first 10 min or longer depending on the concentration

of the labeled amidated NPY. Based on this assay

technique, Michaelis–Menten kinetic parameters,

including KM and kcat of human TTR proteolysis

towards human amidated NPY, were determined

(Fig. 5). It was shown that the affinity for human ami-

dated NPY of human TTR was about 1.2-fold

M (kDa) M HP

Coomassie ECL

A B

14.4

20.1

30

45

66

97

HSA

TTR

Fig. 2. Analysis of TTRs by SDS/PAGE (A) and native-PAGE (B). (A) Aliquots (2 lg) of purified human native TTR (human TTR) and pigC/

huTTR were separated in duplicate by SDS/PAGE (7–15% gradient resolving gel). One of the gels was stained with Coomassie Blue R-250

(Coomassie) and the other was subjected to western blot analysis using antibody specific to human TTR followed by enhanced

chemiluminescence detection (ECL). Standard low molecular mass marker (M) was included. The positions corresponding to monomeric

and dimeric forms of TTR are indicated by closed and open arrowheads, respectively. (B) Aliquots (1 lg) of TTRs were separated by native-

PAGE and visualized by Coomassie Blue staining. HP was overloaded to show the positions of TTR and albumin (HSA).
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increased (Table 1) when its C-terminal sequence was

changed from hydrophilic (GRAVY index �0.68) to

hydrophobic (GRAVY index 0.26) as observed in

pigC/huTTR. In addition, the Kcat/KM of pigC/huTTR

was significantly ~ 1.4-fold greater than human TTR

(Table 1).

Discussion

The ability of human TTR to catalyze the cleavage of

NPY, the cleavage sites for TTR on the NPY mole-

cule, and the effect of the cleavage by TTR on NPY

function were recently revealed [23]. In spite of this,

relatively few biochemical details about the catalysis of

TTR towards NPY are known. Here, fluorescence-

based enzymatic assay was performed to investigate

the catalytic kinetics of TTR. In addition, the effect of

the C-terminal sequence on the catalytic activity of

TTR was examined.

Post-translational modifications such as glycosyla-

tion and oxidation were reported in human TTR [40–
42]. In particular, the modifications of cysteine at posi-

tion 10 were reported leading to a decrease in the tet-

rameric stability and, thus, enhanced tetramer

dissociation and amyloidogenesis of TTR [43,44].

However, mutation of the residue did not affect the

proteolytic activity of TTR [25]. On the other hand,

glycosylation and its effects on conformational struc-

ture and thus function were reported in proteins pro-

duced by using the expression system of P. pastoris

[23,45]. Therefore, we performed an analysis of the

MM (Da)

6210

2510

8160

10 600

14 400

3480

+     – +     – +     – +     – +     –

0 min      1 min      2 min      4 min     15 min   

B

A

Fig. 3. Analysis of NPY cleavage by TTR on Tricine SDS/PAGE.

Human amidated NPY (1.5 lg) was incubated alone or with either

human native TTR (human TTR) or pigC/huTTR (~ 3 lg) at 37 °C for

1 h prior to analysis by Tricine SDS/PAGE (16.5% T, 6% C

resolving gel; 4% T, 3% C stacking gel). For negative control, the

amidated NPY was incubated with albumin purified from HSA

instead of TTR. The reaction containing TTR or HSA alone was also

included. Visualization of the protein bands was carried out by

Coomassie Blue staining (A). The cleaved fragment of the

amidated NPY with an approximate molecular mass of 2510 Da

was observed by silver staining (B). M, standard protein marker.

0 h 1 h

B

M

Coomassie Fluorescence

2510
3480

6210
8160

10 600

14 440

M (Da)

A

Fig. 4. Characterization of fluorogenic human amidated NPY. (A)

Aliquots of unlabeled and Alexa Fluor-labeled human amidated NPY

were subjected to analysis by SDS/PAGE. To detect the peptide

bands, gel was subjected to Coomassie Blue staining (Coomassie).

The fluorescence of the labeled peptide was observed by placing

the gel under UV light (Fluorescence). M, standard peptide marker.

The positions of lower and upper bands of the labeled NPY are

indicated by closed and opened arrowheads, respectively. (B) The

labeled human amidated NPY was incubated with or without

human native TTR at 37 °C, for 1 h. Then the reaction mixture was

analyzed by SDS/PAGE.
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relevant physicochemical properties in order to con-

firm the characteristics of pigC/huTTR and compare

them with the human native TTR purified from

plasma. Although the apparent subunit masses of the

two studied proteins were slightly different from that

previously reported for human TTR [34,36,41], which

was based on the differences of the polyacrylamide

percentage of the resolving gel and the efficiency of the

analysis method, both proteins showed similar subunit

masses and masses of the dimeric forms (~ 31 kDa),

and these were in the range of that previously reported

for human TTR [34,36]. In addition, the cross-reactiv-

ity with the antibody specific to human TTR and the

mobility on-gel under the native condition of the two

proteins were similar to each other, and also to that

previously reported for human TTR [36]. This con-

firmed that the human native TTR purified from

plasma and the recombinant pigC/huTTR produced

by the heterologous gene expression system of P. pas-

toris prepared for the present study had major charac-

teristics similar to native human TTR, including the

presence in a tetrameric form and having the proper

molecular folding that was necessary for the prote-

olytic function of TTR.

Neuropeptide Y is widely distributed and its func-

tions are related to several physiological and patho-

physiological processes of the body; in addition, the

degradation of different parts of the NPY molecule

leads to distinct responses in the body [46–48] (for

review, see [49]). The analysis of catalysis on Tricine-

SDS gel demonstrated the cleavage of amidated NPY

only in the reaction with TTR, not HSA, and the

cleavage pattern of the amidated NPY was similar in

the catalytic reaction of human native TTR and pigC/

huTTR. This confirmed the specificity of the catalytic

reaction of TTR towards amidated NPY; however, it

also possibly implied a small effect of the C-terminal

sequence on the catalytic activity of TTR. Although

the gel-based assay could provide the conformational

state of the catalytic product, there was no clear

insight into the interaction between TTR and its sub-

strate in the catalytic reaction. Therefore, the catalytic

kinetics of TTR were further determined by a fluores-

cence-based assay, and the results significantly demon-

strated the effect of the hydrophobicity of the

C-terminal sequence on the catalytic activity of TTR

towards NPY in the amidated form.

Among synthetic fluorophores, Alexa Fluor 488 has

been successfully used in several labeling techniques

[50]. In the labeling process, the Alexa dye reacts with

primary amines on protein molecules [51,52], and its

conjugate product was claimed to have more fluores-

cence and be more photostable than the conjugates of

conventional dyes [51]. Similarly to other dyes in the

Alexa series, Alexa 488 is synthesized in succinimidyl

ester form, which allows the reaction to take place
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Fig. 5. Kinetic plots of the proteolytic reaction of TTR towards

human amidated NPY. The proteolytic reactions of the labeled

human amidated NPY with human native TTR or pigC/huTTR were

performed at 37 °C. The fluorescence intensity of the catalytic

reactions was monitored and the V0 of each reaction was

determined. The plot of the V0 vs concentration of the amidated

NPY fitted with the Michaelis–Menten equation (A) and a

Lineweaver–Burk double reciprocal plot (B) are shown. The kinetic

parameters KM, kca and kcat/KM of the catalytic reactions calculated

from the Lineweaver–Burk are presented in Table 1. Error bars

indicate the standard error of the mean.

Table 1. The kinetic parameters KM, kcat and kcat/KM of the

catalytic reactions toward human amidated NPY of human native

TTR and pigC/huTTR. The results are presented as

means � standard error of the mean based on n replications.

Type of

TTR KM (lM) kcat (min�1) kcat/KM (M�1�s�1) n

Human

TTR

15.88 � 0.44 10.88 � 0.51 687 081 � 35 692 6

pigC/hu

TTR

12.87 � 0.22 12.65 � 0.08 983 755 � 18 704 3
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efficiently at pH 7.5–8.5 [53]. To label human ami-

dated NPY with Alexa Fluor 488, we followed the

standard protocol suggested by the manufacturer at

pH 8.0. According to the results of the analysis by

SDS/PAGE, the Alexa dye was successfully linked to

the amidated NPY.

Within the 36 amino acid residues of human ami-

dated NPY, tyrosine at position 1 and lysine at posi-

tion 4 contain primary amines as side chains, and

these are the targets for Alexa 488. In comparison of

the positions of the residues in the molecule of NPY

and the pKa values of the primary amine (i.e. 9.2 for

tyrosine and ~ 10.5 for of lysine), tyrosine at position

1 and lysine at position 4 have a similar potential to

interact with Alexa 488 at pH 8.0. Therefore, the

labeled amidated NPY could be expected to be in two

forms, i.e. with one and two molecules of the Alexa

dye attached. These are correlated with the observa-

tion of two discrete rather than a single fluorescence

band of the labeled amidated NPY and the same rate

of decrease in fluorescence level of the two bands upon

cleavage by TTR.

The phenomenon of fluorescence quenching of a flu-

orophore by intrinsic amino acid residues in the pro-

tein to which it is linked is known. A few amino acids

were demonstrated as fluorescence quenchers for Alexa

488, and tyrosine is one of the strong quenchers [54].

In the molecule of human amidated NPY, tyrosine

residues were found at positions 20, 21, 27 and 36 [55].

Only the tyrosine at position 36 is located after the

known cleavage sites for TTR. In this study, the fluo-

rescence of Alexa Fluor 488-labeled amidated NPY

increased when the cleavage of the peptide by TTR

started. Dynamic quenching, which arises from photo-

induced electron transfer between Alexa Fluor 488 and

the phenolic OH group of the tyrosine residues in the

amidated NPY [54], possibly occurred, and as a result

low fluorescence amidated NPY formed. The cleavage

by TTR could lead to loss of tyrosine quencher partic-

ularly at position 36, resulting in energy release and,

thus, fluorescence intensity detection. In our experi-

ment, the increase of fluorescence was correlated to

the cleavage of the labeled amidated NPY; in addition,

the changes of the fluorescence increase could be moni-

tored and used for proteolytic kinetics determination.

As a result, the proteolysis kinetic parameters, includ-

ing KM, Kcat and kcat/KM, of human TTR towards

human amidated NPY were first revealed.

Among the NPY-specific cleaving enzymes that have

been identified to date, neprilysin (NEP) and TTR

contain specific catalytic reactions toward both NPY

and amyloid b-peptide (Ab) [23,25,26,48,56–58]. The

NPY peptide fragment generated from the proteolysis

of NEP could protect neurons from the toxic effects

of Ab [58]. Therefore, exogenous NPY has been sug-

gested as a therapeutic strategy to stimulate the prolif-

eration of progenitor and production of newly

generated neurons for several neurodegenerative dis-

eases including Alzheimer’s and Parkinson’s diseases

(for review, sees [21]). Despite its role as an angiogenic

factor, a higher level of NPY has been reported to be

associated with particular pathogenic symptoms and

disorders of the central nervous system including anxi-

ety and depression [59,60]. In addition, repeated

administration or an abnormally elevated level of

NPY was associated with the development of athero-

sclerotic cardiovascular disease [61] (for reviews, see

[62,63]). As a consequence, a therapeutic strategy to

prevent NPY-associated arrhythmias in myocardial

infarction and chronic heart failure was suggested (for

reviews, see [63,64]). On the contrary, the NPY frag-

ments generated from the cleavage by TTR contain

residues 1–33 and 1–35 that lack the ability to bind

with their own receptors [23]. Therefore, by compar-

ison with Ab-degrading enzymes such as NEP, TTR is

more beneficial with regard to its specific actions on

both Ab degradation and NPY deactivation, with the

latter reducing the pathogenic risk that can arise from

the cleaved fragments of NPY.

In the comparison to human TTR, S. scrofa TTR

has a three amino acid residue extension at the C-

terminal end [33]. The hydropathy profile generated by

the Kyte–Doolittle method (Fig. 1) and the GRAVY

value confirmed more hydrophobicity of the C-term-

inal region of pigC/huTTR compared to human TTR.

Our previous results demonstrated a relationship

between changes of the C-terminal sequence of TTR

subunits and the changes of binding affinity to RBP

and catalytic activity towards apolipoprotein A-I of

the protein [36,37]. Here, according to the proteolysis

kinetic parameters, i.e. KM and kcat/KM, which chan-

ged from 15.88 � 0.44 lM in human TTR to

12.87 � 0.22 lM in pigC/huTTR and from 687 081 �
35 692 in human TTR to 983 755 � 18 704 M

�1�s�1 in

pigC/huTTR, respectively, we demonstrated that

changing the C-terminal region of human TTR to be

more hydrophobic significantly increased the affinity

for human amidated NPY and the Kcat/KM of human

TTR. In aqueous solution, NPY has a potential to

form an amphiphilic secondary structure containing

two helical termini, i.e. a left-handed polyproline II

helix in the N-terminal region (residues 1–13) and an

a-helix in the C-terminal region (residues 19–32), and
the most hydrophobic region of the peptide is between

residues 15 and 31. The C-terminal part of NPY is

important for binding to receptors and providing the
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biological effects, while the N-terminal part is required

for the conformational stability of the whole molecule

(for review, see [65]). In addition, the hydrophobic

interactions with the N-terminal amphiphilic region

stabilized the conformation of the amphiphilic a-helix
(in residues 13–32) and, thus, determined the binding

of NPY to cell surfaces [66]. An increase of the

stability of the polyproline II conformation of the

N-terminal segment, and thus the whole molecule, of

the amidated NPY by the hydrophobic environment

generated from the hydrophobic C-terminal sequence

is a possible explanation for the decrease of KM of the

catalytic reaction of TTR towards amidated NPY

when its C terminus was changed to a more hydropho-

bic sequence as observed in S. scrofa.

In conclusion, our study is the first to reveal the

kinetic parameters of the proteolytic activity of human

TTR towards human amidated NPY; in addition, the

effect of the hydrophobic C-terminal sequence on the

catalytic activity of the TTR was demonstrated. The

present results, together with the reports of the prote-

olytic activity of TTR towards Ab, support the benefi-

cial potency of TTR as a therapeutic agent with low risk

of the undesirable symptoms that develop from ami-

dated NPY, and in addition, provide information for

further improvement of the Kcat/KM of TTR.
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