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Background: Asthma is a heterogeneous disease. There are several phenotypic

classifications for childhood asthma.

Methods: Unsupervised consensus cluster analysis was used to classify

36 children with persistent asthma from the GSE65204 dataset. The

differentially expressed genes (DEGs) between different asthma subtypes

were identified, and weighted gene co-expression network analysis

(WGCNA) was carried out. Gene Ontology and Kyoto Encyclopedia of Genes

and Genomes enrichment analysis was performed for DEGs and critical gene

modules. Protein–protein interactions (PPI) were constructed to obtain the hub

genes. Finally, differences in the immune microenvironment were analyzed

between different subtypes.

Results: Two subtypes (C1, C2) were identified using unsupervised consensus

clustering. The DEGs between different asthma subtypes were mainly enriched

in immune regulation and the release of inflammatorymediators. The important

modular genes screened by WGCNA were mainly enriched in aspects of

inflammatory mediator regulation. PPI analysis found 10 hub genes (DRC1,

TTC25, DNALI1, DNAI1, DNAI2, PIH1D3, ARMC4, RSPH1, DNAAF3, and DNAH5),

and ROC analysis demonstrated that 10 hub genes had a reliably ability to

distinguish C1 from C2. And we observed differences between C1 and C2 in

their immune microenvironment.

Conclusion: Using the gene expression profiles of children’s nasal epithelium,

we identified two asthma subtypes that have different gene expression patterns,

biological characteristics, and immune microenvironments. This will provide a

reference point for future childhood asthma typing and personalized therapy.
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Introduction

Asthma is a heterogeneous disease (Bonnelykke and Ober,

2016; Ntontsi et al., 2021) characterized by wheezing, chest

tightness, coughing, and shortness of breath (Wu et al., 2019).

Because its pathogenesis is unknown, asthma is a vague term

describing clinical manifestations and physiological

characteristics. Several phenotypes have been proposed,

including TH2-associated asthma, early-onset allergic

TH2 asthma, late-onset persistent eosinophilic asthma,

exercise-induced asthma, non-TH2 asthma, obesity-related

asthma, and neutrophilic asthma (Wenzel, 2012). Although

these phenotypes can classify asthma from certain

perspectives, much controversy still remains.

The phenotype is the result of gene expression downstream,

and to accurately type asthma, we still need to start at the

molecular level. The term “asthma” has become obsolete, and

more scholars believe that the term “asthma syndrome” should

be used (Cloutier et al., 2020), while a wide range of scholars

continue to explore its biological definition. Currently, with the

rapid development of microarray and high throughput

sequencing technologies, the research about asthma at the

molecular level is rapidly developing. Yeh et al. (2018)

identified three asthma subtypes based on peripheral blood

mononuclear cells on microarray, the first of which had the

highest eosinophil level, the second had a low eosinophil and

neutrophil level, and the third showed a high neutrophil level and

a poor treatment effect. Yan et al. (2015) used Affymetrix

microarrays to analyze the sputum RNA sequences of asthma

patients. The results showed that asthma patients could be

divided into three subtypes, and different clinical

manifestations and physiological characteristics were found

among the three subtypes. Hekking et al. (2018) used nasal

brushings, sputum, and endobronchial brushing specimens for

microarray analysis of differential gene expression in children

with severe asthma versus adults with severe asthma, and they

found significant differences in the genetic profiles of

eosinophilic airway inflammation, group 3 innate

lymphocytes, lung injury, and mast cells between adults with

severe asthma and children with severe asthma. These studies

provide ample evidence that further typing of asthma at a

molecular level holds broad potential.

Asthma is a group of diseases that are underdiagnosed and

undertreated, and although the available diagnostic methods are

simple and accessible, and available treatments provide symptomatic

relief (Cloutier et al., 2020), the pathogenesis remains unclear.

Although the incidence of asthma is increasing every year (Loftus

and Wise, 2015), the causative genes are not known. Studies of

asthma at the molecular level are receiving increasing attention, but

few studies have been conducted to subtype asthma at the molecular

level and even fewer to subtype children’s asthma at amolecular level.

In this paper we assumed that the molecular subtypes of

childhood asthma can be defined by gene expression data from

the nasal epithelium. Therefore, we used unsupervised consensus

clustering to classify children with asthma into different subtypes and

then analyzed the biological functions, immune microenvironment

and hub genes of different subtypes to corroborate the nature of

asthma heterogeneity. We hope to help clarify the pathogenesis of

asthma and contribute to the potential targeted therapy.

Materials and methods

Data collection

The Gene Expression Omnibus (Barrett et al., 2013) (GEO,

http://www.ncbi.nlm.nih.gov/geo/) is a public gene expression

database for high-throughput microarray and next-generation

sequence functional genomic data sets submitted by the research

community, built and maintained by the National Center for

Biotechnology Information (NCBI). The GSE65204 dataset

(Yang et al., 2017), which contains nasal epithelium from

36 children with persistent asthma and 33 healthy children,

was downloaded from the GEO database (Supplementary

Table S1). Gene expression microarray data from 36 children

with persistent asthma was selected for the next step in the

analysis. RNA was sequenced using the GPL14550 chip platform.

Gene probes were converted to gene symbol id, and duplicate

gene probes were averaged (Supplementary Data Sheet S1). This

study was based on selected data from 36 children with persistent

asthma. GEO belongs to public databases. The patients whose

data are in the database provided ethical approval. Users can

download relevant data for free for research and publish relevant

articles. Our study was based on open source data, so there were

no ethical issues.

Unsupervised consensus clustering

The ConsensusClusterPlus package (Wilkerson and Hayes,

2010) in R was used for cluster analysis, using agglomerative pam

clustering with a 1-Pearson correlation distance and resampling

80% of the samples for 10 repetitions. The optimal number of

clusters was determined by an empirical cumulative distribution

function plot. With the first consensus clustering parameter

(>0.8), we determined the number of clusters. The stats

package (version 3.6.0) in R was applied to perform principal

component analysis (PCA) for evaluating the differences between

the different clusters.

Differentially expressed gene screening

The limma (version 3.40.6) package in R was utilized to

obtain differentially expressed genes (|Log2FC|> 1, adjusted

p-value< 0.05) between different asthma subtypes.
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Weighted gene co-expression network
analysis

The WGCNA package in R was used to construct a

weighted gene co-expression network analysis. The

pickSoftThreshold function was used to obtain the optimal

value of the weighted parameters of adjacent functions, and

the optimal value of the weighted parameters was the soft

threshold for the scale-free network. The adjacency matrix

was transformed into a topological overlap matrix (TOM) to

estimate the distance between each gene pair. Hierarchical

clustering was then performed with a dynamic approach to

build clustering trees and classify genes into different

modules. Finally, we assessed the correlation between

asthma subtypes and each module with Pearson’s

correlation analysis and identified the critical module. For

further screening of hub genes in the critical module, the

following conditions were set: MM is 0.8, GS is 0.2, weight

is 0.15.

Gene ontology and kyoto encyclopedia of
genes and genomes pathway analysis

The clusterProfiler (version 3.14.3) package in R was used for

GO and KEGG analysis, and the conditions were set that the

minimum gene set was 5 and the maximum gene set was 5000,

with p-value < 0.05. GO and KEGG analysis of DEGs and genes

of the critical module selected by WGCNA were performed. The

GO analysis was used to discover critical biological information

about target genes, including cellular components (CC),

biological processes (BP), and molecular functions (MF).

KEGG is a comprehensive database that integrates genomic,

chemical, and systemic functional information and is

commonly used to link genomic information to high-level

functional information.

Construction for protein–protein
interaction network and screening hub
genes

Candidate genes were screened by overlapping between

DEGs obtained by selection limma analysis, and the genes of

the critical module were obtained by WGCNA. The obtained

candidate genes were imported into the database (http://string-

db.org), and the minimum required interaction score was set to

medium confidence (0.40) with no limit on the maximum

number of interactions. Cytoscape software was used for PPI

visualization, and we used the MCC algorithm in the

CytoHubba plugin to filter the top 10 nodes, which are

considered hub genes.

Receiver operating characteristic

We performed a ROC analysis using the R package pROC

(version 1.17.0.1). At two-tailed p-value < 0.05 was considered

statistically significant. The accuracy of the hub genes grouping

in pediatric asthma patients was assessed by plotting ROC curves

for hub genes.

Immune cell infiltration analysis

The abundance of eight immune cell species and two stromal

cell populations of children with asthma were calculated using

the MCPCounter (Becht et al., 2016a) method, selected in the R

package IOBR (Zeng et al., 2021). We compared the differences

in the immunological microenvironment between the two

subtypes of children. Finally, the relationships between hub

genes and immune cells and stromal cells were analyzed.

Statistical analysis

Statistical analysis was performed using R software. The t-test

and means ± standard deviations were used for measures that

conformed to the normal distribution. Categorical data is

expressed in absolute numbers and percentages. Differences

between two subtypes were tested by Student’s t-test for

continuous variables, and the difference was considered

statistically significant at p-value < 0.05.

Results

Unsupervised consensus clustering

For 36 asthmatic children, an unsupervised cluster analysis was

performed. The results showed a high concordance of gene

expression patterns in each cluster after 36 children with asthma

were divided into two subtypes (18 patients in each subtype)

(Figures 1A,B). The consistency analysis of the clustered samples

was performed next. The results showed a very high consistency of

gene expression patterns within each module when k = 2, and the

clustering scores for each subgroupwere higher than 0.8 (Figure 1C).

The consensus matrix heatmap defined two subtypes of samples for

which consensus values ranged from 0 (in white, samples never

clustered together) to 1 (dark red, samples always clustered together)

(Figure 1D). This indicates that this classification method was more

stable than other methods. The PCA analysis revealed that patients

in both subtypes were distributed in both directions, confirming the

robustness of the clustering results and the differences between the

two clusters (Figure 1E). There were no differences in race, age, or

gender between the two groups (Table 1).
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Differential expressed gene screening

Comparing the two subtypes, using |log2FC| > 1 and FDR <
0.05 as the setting conditions, a total of 228 differential genes

(196 upregulated and 32 downregulated genes) were identified in

C1 compared with C2 (Supplementary Table S2). Their volcano

plot and heatmap are shown in the figure (Figures 2A,B).

Weighted gene co-expression network
analysis

Weighted co-expression network construction
Using gene expression profiles, the MAD (median absolute

deviation) for each gene was first calculated, and then the top

50% of genes with the smallest MAD values were eliminated.

Removal of outlier genes and samples was conducted using the

goodSamplesGenes method of the WGCNA package in R. The

optimal soft threshold (β = 5) was determined when the signed

R2 reached 0.88 for the first time (Figures 3A,B). At this point,

the average degree of connectivity of the network was

relatively high and could contain enough information. The

module merge threshold was set to 0.25 to merge modules that

were close to each other and similar. In addition, the

minimum number of genes for the module was set to 30,

the sensitivity was set to 3, and a total of 24 modules were

generated (Supplementary Table S3). There were 2413 genes

in the lightcyan1 module (Supplementary Table S4),

darkorange had 1070 genes, cyan had 384, and red had

214. The grey module was a collection of genes that could

not be assigned to any module, so this module was excluded in

the next step of the analysis.

Critical module identification
To find the co-expression similarity of all modules, the

feature genes were calculated based on the correlation

between modules. Compared to other modules, the correlation

coefficient of the lightcyan1 module and C1 subgroup was 0.77

FIGURE 1
Consensus clustering of gene expression profiles for asthma cases based on theGSE65204. (A)Cumulative distribution curves for subtypeswith
cluster count (k) ranging from 2 to 10. (B) Relative change in area under CDF curve for subtypes with cluster count (k) ranging from 2 to 10. (C) The
bar-plot represents the consensus scores for subtypes with cluster count (k) ranging from 2 to 6. (D)Consensus matrix heatmap, which defining two
clusters of samples for which consensus values range from 0 (in white, samples never clustered together) to 1 (dark red, samples always
clustered together). (E) PCA plot of the patients with asthma.
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(p = 3.0e-8) (Figures 3C,D). The genes in lightcyan1 module thus

may play an important role in the typing of C1 and C2. The

picture shows the gene significance (GS) for group C1 and

module membership (MM) in the lightcyan1 module

correlation coefficient of 0.86 (p < 0.0e+0) (Figure 3E).

Therefore, the lightcyan1 module is an important module

associated with asthma typing. The module has 2413 genes.

Setting conditions were as follows: MM is 0.8, GS is 0.2,

weight is 0.15, further screening of 551 hub genes in

lightcyan1 (Supplementary Table S5).

TABLE 1 Demographic characteristics of asthma subjects with different molecular subtypes.

Group C1
(N = 18)

Group C2
(N = 18)

Total
(N = 36)

p-value FDR

Gender 0.5 1

Female 10 (27.78%) 7 (19.44%) 17 (47.22%)

Male 8 (22.22%) 11 (30.56%) 19 (52.78%)

Age 0.92 1

10 years 6 (16.67%) 5 (13.89%) 11 (30.56%)

11 years 6 (16.67%) 6 (16.67%) 12 (33.33%)

12 years 6 (16.67%) 7 (19.44%) 13 (36.11%)

Participant race 1 1

Hispanic: No 15 (41.67%) 14 (38.89%) 29 (80.56%)

Hispanic: Yes 3 (8.33%) 4 (11.11%) 7 (19.44%)

Participant race 1 1

African American: No 1 (2.78%) 2 (5.56%) 3 (8.33%)

African American: Yes 17 (47.22%) 16 (44.44%) 33 (91.67%)

Participant race 0.6 1

White: No 15 (41.67%) 17 (47.22%) 32 (88.89%)

White: Yes 3 (8.33%) 1 (2.78%) 4 (11.11%)

Participant race

Asian: No 18 (50.00%) 18 (50.00%) 36 (100.00%)

Participant race 1 1

Indian_Alaska: No 17 (47.22%) 17 (47.22%) 34 (94.44%)

Indian_Alaska: Yes 1 (2.78%) 1 (2.78%) 2 (5.56%)

FIGURE 2
Identification of the DEGs between the two molecular subtypes. (A) Volcano plot of the DEGs. (B) Heatmap of the DEGs.
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Gene ontology and kyoto encyclopedia of
genes and genomes pathway analysis

GO and KEGG analysis of DEGs
GO and KEGG analysis of DEGs was done using the

clusterProfiler package in R. GO functional enrichment

analysis and KEGG pathway analysis were both set at

p-value < 0.05 as a qualifying condition. A total of 431 GO

entries were obtained from GO enrichment analysis. The

results show that DEGs were primarily related to the

cilium (GO: 0005929), cytoskeleton (GO: 0005856),

microtubule (GO: 0005874), dynein complex (GO:

0030286), and so on. BP acted mainly through cilium

movement (GO:0003341), axonemal dynein complex

assembly (GO:0070286), cytoskeleton organization (GO:

0007010), microtubule-based processes (GO:0007017),

cornification (GO:0070268), etc. The MF aspect mainly

involves Toll-like receptor 4 binding (GO: 0035662),

arachidonic acid binding (GO: 0050544), long-chain fatty

acid binding (GO: 0036041), and icosatetraenoic acid binding

(GO: 0050543) functions. The results are shown in Figure 4A.

The results of KEGG pathway annotation analysis showed

that DEGs are mainly involved in 10 relevant information

pathways, including the IL-17 signaling pathway, steroid

hormone biosynthesis, cAMP signaling pathway, oxytocin

signaling pathway, riboflavin metabolism, thiamine

metabolism, purine metabolism, starch and sucrose

metabolism, fluid shear stress and atherosclerosis, and

Huntington’s disease (Figure 4C).

GO and KEGG analysis of lightcyan1 module
genetics

The GO and KEGG analysis of 2413 genes was performed in

the lightcyan1 Module Genetics using the clusterProfiler package

in R. GO functional enrichment analysis and KEGG pathway

analysis were both set at p-value < 0.05 as a qualifying condition.

FIGURE 3
Weighted gene co-expression network analysis of gene expression profiles for asthma cases based on GSE65204. (A) Analysis of the scale-free
index for various soft-threshold powers (β). (B) Analysis of the mean connectivity for various soft-threshold powers. (C) Heatmap of the correlation
between the module genes and phenotype. (D) Heatmap of modular feature vector clustering. (E) Correlation between module membership and
gene significance, where r denotes the absolute correlation coefficient between GS and MM absolute correlation coefficient.
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A total of 1149 GO entries were obtained from GO enrichment

analysis. The CC aspect was mainly related to cilium (GO:

0005929), cytoskeleton (GO:0005856), microtubule (GO:

0005874), dynein complex (GO:0030286), and so on. BP acted

mainly through biological processes such as the release of

cytochrome c from mitochondria (GO:0090199), response to

reactive oxygen species (GO:0000302), and retinoid metabolic

process (GO:0001523). The MF aspect mainly involves

leukotriene-C4 synthase activity (GO:0004464), prostanoid

receptor activity (GO:0004954), peroxidase activity (GO:

0004601), MHC class II protein complex binding (GO:

0023026), and so on (Figure 4B). The results of KEGG

pathway annotation analysis showed that the

lightcyan1 module genetics is mainly involved in 32 related

information pathways, including drug metabolism-cytochrome

P450 (hsa00982), peroxisome (hsa04146), ferroptosis

(hsa04216), retinol metabolism (hsa00830), nicotine and

nicotinamide metabolism (hsa00760), cholesterol metabolism

(hsa04979), and so on (Figure 4D).

Construction for PPI and screening hub
genes

The DEGs and hub genes in lightcyan1 were mapped to each

other, and 154 candidate genes were obtained (Figure 5A).

Subsequently, 154 candidate genes were imported into the

STRING database, and the resulting data were imported into

Cytoscape to construct the PPI network. A total of 102 nodes and

317 edges were obtained (Figure 5C). Using the MCC algorithm in

Cytoscape software’s CytoHubba plugin to screen out the top

10 nodes, namely hub genes, which are DRC1, TTC25, DNALI1,

DNAI1,DNAI2, PIH1D3, ARMC4, RSPH1,DNAAF3, andDNAH5

(Figure 5B). All 10 hub genes were upregulated in the C1 group.

FIGURE 4
GO and KEGG analysis. (A) GO enrichment analysis of genes in the DEGs. (B) GO enrichment analysis of genes in the lightcyan1 module. (C)
KEGG enrichment analysis of genes in the DEGs. (D) KEGG enrichment analysis of genes in the lightcyan1 module.

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2022.974936

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.974936


Receiver operating characteristic analysis

The ROC analyses of 10 hub genes were performed

separately. The AUC (95% CI) were 0.95 for DRC1,

0.96 for TTC25, 0.94 for DNALI1, 0.93 for DNAI2, 0.96 for

PIH1D3, 0.92 for ARMC4, 0.99 for DNAAF3, 0.90 for

DNAAF3, and 0.98 for DNAH5 (Figure 6). This indicates

that the 10 hub genes can group children with asthma at

molecular level.

Immune cell infiltration analysis

The abundance of eight immune cell and two stromal cell

populations were assessed using the MCPcounter method in R

(Becht et al., 2016b). The abundance of neutrophils, monocytic

lineage cells (cells originating frommonocytes), and NK cells was

significantly higher in C2 than in C1 (p < 0.05). However, the

abundance of endothelial cells in C1 was significantly higher than

in C2 (p < 0.05) (Figure 7A). In addition, we found that cytotoxic

lymphocytes showed the strongest positive correlation with

T cells, with a correlation coefficient of 0.82. NK cells had the

strongest negative correlation with B lymphocytes, with a

correlation coefficient of −0.59 (Figure 7B). We further

analyzed the relationship between 10 hub genes and the

regulation of expression in eight immune cells and two

stromal cells, finding that 10 hub genes were negatively

regulated on neutrophils, monocytic lineage, and NK cells; the

10 hub genes were positively regulated in the endothelial cells

(Figure 8).

FIGURE 5
Screening of Hub genes. (A) Venn diagram of candidate genes. (B)Hub genes. (C) Protein-protein interaction (PPI) network based on candidate
genes.
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Discussion

About 339million people worldwide are currently affected by

asthma, and that number is expected to reach 400million by 2025

(El-Husseini et al., 2020). Despite its high prevalence, asthma’s

pathogenesis remains unclear. Although it is recognized as a

heterogeneous disease, there is still no reasonable explanation for

it or appropriate classification criteria. Although there are several

treatments available worldwide for asthma (Reddel et al., 2022),

many of them either have systemic side effects or are ineffective

for people with severe asthma. In this study, we analyzed the

transcriptional matrix of nasal epithelium.We used unsupervised

consensus clustering analysis to classify children with asthma

into two subtypes, demonstrating that asthma is a heterogeneous

disease. We screened DEGs between C1 and C2 and used

WGCNA to obtain critical modules. Our analysis showed

differences in gene expression, biological function and

immune microenvironment between the two subtypes. Finally,

10 hub genes were screened by constructing PPI. We used ROC

analysis to demonstrate the high reliability of these 10 hub genes

to group asthma. This paper provides a preliminary exploration

of the molecular typing of childhood asthma.

In this study, unsupervised consensus clustering analysis was

performed on the GSE65204 dataset in the GEO database. The

results of the analysis showed that 36 children with asthma

included in the study were divided into two subtypes, C1 and

C2, which indicates that a heterogenetic nature for asthma.

Furthermore, the specific biological functions and immune

status of the two groups of children were analyzed.

The analysis of differences between the two subtypes of

children yielded 228 DEGs, including 196 up-regulated genes

and 32 down-regulated genes in C1 relative to C2. The GO

enrichment analysis of DEGs is mainly related to Toll-like

receptor 4 binding, arachidonic acid binding, long-chain fatty

acid binding, and icosatetraenoic acid binding. A large number of

studies have demonstrated that the above pathways play a role in

immune regulation and the release of inflammatory mediators

(Ramstedt et al., 1984; Kumar et al., 2016; Leitner et al., 2019;

Zhang et al., 2020). Therefore, we speculate that the two subtypes

are involved in different immunomodulatory pathways.

KEGG pathway annotation analysis showed that DEGs were

mainly involved in IL-17 signaling pathway, steroid hormone

biosynthesis, cAMP signaling pathway, oxytocin signaling

pathway, and so on. Among them, IL-17 is associated with

autoimmunity (Amatya et al., 2017). Thus, we hypothesize

that differences in the IL-17 signaling pathway may be critical

for asthma typing in children. The phenotype of asthma is

regulated by steroid hormones, but the mechanism of its

occurrence is not yet explained (Payne and Freishtat, 2012). It

has been suggested that cAMPmodulates inflammatory response

and thus influences the treatment of asthma (Bergantin, 2021). In

this study, it was calculated that differences in the cAMP

signaling pathway were associated with the differentiation of

asthma subtypes, but further experiments are needed to verify

whether this is consistent with the above-documented pathways.

A study in rats concluded that oxytocin neurons in the

paraventricular hypothalamic nucleus increased over time

during an asthma attack (Chen et al., 2020). However, there

was no further analysis of whether the oxytocin signaling

pathway affects the asthma subtype.

GO analysis of the lightcyan1 module gene revealed that they

act mainly through biological processes such as the release of

FIGURE 6
ROC analysis of (A) (DNAH5) (B) (DNAAF3) (C) (RSPH1) (D) (ARMC4) (E) (PIH1D3) (F) (DNAI2) (G) (DNAI1) (H) (DNALI1) (I) (TTC25) (J) (DRC1).
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cytochrome c from mitochondria, response to reactive oxygen

species, and retinoid metabolic processes. Cytochrome c plays an

important role in respiration, reactive oxygen species, and

apoptosis (Kalpage et al., 2019), so we speculate that it may

be related to the pathogenesis of asthma. A number of studies

have demonstrated that the occurrence of asthma is associated

with reactive oxygen species (Zuo et al., 2013). The present study

found that critical model genes are clustered in the response

pathway to reactive oxygen species, which provides a new idea for

studying the pathogenesis of asthma. Retinoic acid has been

found to be involved in asthma relief (Golebski et al., 2021). This

may provide new targets for the treatment of asthma.

The results of KEGG pathway annotation analysis showed

that the lightcyan1 module genes are mainly involved in

32 related information pathways, including drug metabolism-

cytochrome P450, peroxisome, ferroptosis, retinol metabolism,

nicotine, and nicotinamide metabolism, cholesterol metabolism,

etc. Lynch and Price suggested that the diversity of cytochrome

P450 could influence the response to beta-blockers in different

children (Lynch and Price, 2007). This may guide the choice of

future treatment options for children with asthma. Peroxisome

proliferator-activated receptors are an essential component in the

pathogenesis of asthma. It has been suggested that this receptor

can exert anti-inflammatory effects by inhibiting NF-kB, so it is

considered to have anti-inflammatory potential (Kytikova et al.,

2020). However, how to induce high expression of this receptor is

an unresolved issue at present. Ferroptosis has been a hot

research topic in tumor-like diseases in recent years, and

some scholars have found that ferroptosis is closely related to

the development of acute lung injury and asthma (Xu et al.,

2021). This opens up new ideas for future research on the

pathogenesis of asthma. It has been suggested that

transcriptional modification and cytokine-cytokine receptor

interactions of retinol metabolism can induce the production

of interleukin-10 (IL-10) + activators of type 2 innate lymphoid

cells (ILC2s). IL-10+ ILC2s maintain and repair the integrity of

FIGURE 7
Immune cell infiltration analysis. (A) Immune cell and stromal cell infiltration abundance in different subtypes. (B) Relevance heatmap of
immune cells and stromal cells.
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the epithelial barrier and may control Th cell responses (Golebski

et al., 2021). Therefore, retinol metabolism may be closely related

to the pathogenesis of asthma. A related study (Comhair et al.,

2015) in metabolomics found that plasma levels of nicotinamide

were significantly higher in children with asthma than in healthy

children. This may be related to the pathophysiological

explanation of asthma. Cholesterol has a complex effect on

inflammatory response, and a US study (Fessler et al., 2009)

found that serum total cholesterol and high-density lipoprotein

cholesterol levels were significantly lower in asthmatic patients

than in non-asthmatic patients; this may be useful for future

studies in asthma.

The PPI network obtained in this research has a total of

102 nodes and 317 edges base on 154 candidate genes. The

PPI network was further analyzed to yield a total of

10 asthma-typed hub genes include DRC1, DNALI1,

DNAI1, DNAI2, DNAH5, TTC25, PIH1D3, ARMC4,

RSPH1, and DNAAF3. All 10 hub genes were associated

with cilia movement based on previous studies (Mitchison

et al., 2012; Hjeij et al., 2013; Wirschell et al., 2013;

Onoufriadis et al., 2014; Wallmeier et al., 2016; Paff et al.,

2017; Huang et al., 2021; Zur et al., 2021; Bolkier et al., 2022;

Lei et al., 2022). In addition, one study found that asthma

patients with the RSPH1 mutation had significantly higher

levels of nasal-exhaled nitric oxide than other asthma patients

(Knowles et al., 2014). The movement of the mucocilium is

blocked by a pathological mucin imbalance and an innate

immune-depleted proteome that is secreted by IL-13-

remodeling epithelial cells. IL-13 is high in type 2 cytokine

high asthma (Jackson et al., 2020). Whether this is consistent

with the asthma typing in this study requires further study. In

addition, this study revealed an interesting phenomenon: all

of the 10 hub genes we identified were associated with ciliary

dyskinesia syndrome. However, no relationship between

ciliary dyskinesia syndrome and asthma has yet been

documented.

In this study, immune cell infiltration analysis was used to

find that the abundance of neutrophils, monocytic lineage

(cells originating from monocytes), and NK cells was

significantly higher in the C2 than in the C1. One study

found that some children with severe asthma have an

abundance of airway neutrophils, increased release of

cytokine and chemokine that promote airway responses,

more pro-inflammatory macrophages, and a poor response

to inhaled corticosteroid therapy (Grunwell et al., 2019). This

is very similar to some of our conclusions regarding

neutrophils and cells with a monocytic lineage (cells

originating from monocytes). We all know that

macrophages originate from monocytes. In our findings,

the abundance of endothelial cells in C1 was significantly

higher than in C2. Endothelial cells play a key role in the

transport of eosinophils (Korde et al., 2020). The relationship

between C1 and eosinophils asthma deserves our

consideration. In addition, we found a worthy

phenomenon that the regulation between immune cells

and stromal cells in 10 hub genes was completely

consistent with the difference between C1 and C2. Is this

evidence that the altered microenvironment is the result of

hub genes regulation, or is it a coincidence? Further studies

are needed to confirm this.

Undeniably, there are some shortcomings in this study. First,

it was carried out on the gene expression profiles of nasal

FIGURE 8
Relevance heatmap of hub genes to immune cells and stromal cells.
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epithelial cells from 36 children with persistent asthma, so the

sample size of this study was small compared with independent

samples and not experimentally validated. Therefore, a large amount

of data is needed to verify the conclusions of this paper. Second, the

lack of data on the clinical characteristics, treatments, and other

biochemical parameters of the asthmatic children in this study limits

further analysis of the differences between the two subtypes.

Taken together, this paper uses bioinformatics algorithms to

analyze children with persistent asthma, confirming the

heterogeneous nature of asthma and indicating the existence of

different pathogenesis of asthma, which is particularly important

for establishing the molecular-level typing of asthma and targeting

the treatment of different types of asthma, especially for childrenwith

severe asthma. It is hoped that through the unremitting efforts of

scholars, the pathogenesis and treatment of various subtypes of

asthmawill be clarified, and asthma patients will be free from asthma.
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