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The murine interleukin-4 treated macrophage (MIL4) exerts anti-inflammatory and pro-
healing effects and has been shown to reduce the severity of chemical-induced colitis.
Positing M(IL4) transfer as an anti-inflammatory therapy, the possibility of side-effects must
be considered. Consequently, bone marrow-derived M(IL4)s were administered via
intraperitoneal injection to mice concomitant with Citrobacter rodentium infection
(infections colitis), azoxymethane/dextran sodium sulphate (AOM/DSS) treatment
[a model of colorectal cancer (CRC)], or ovalbumin sensitization (airway inflammation).
The impact of M(IL4) treatment on C. rodentium infectivity, colon histopathology, tumor
number and size and tissue-specific inflammation was examined in these models. The
anti-colitic effect of the M(IL4)s were confirmed in the di-nitrobenzene sulphonic acid
model of colitis and the lumen-to-blood movement of 4kDa FITC-dextran and bacterial
translocation to the spleen and liver was also improved by M(IL4) treatment. Analysis of the
other models of disease, that represent comorbidities that can occur in human
inflammatory bowel disease (IBD), revealed that M(IL4) treatment did not exaggerate
the severity of any of the conditions. Rather, there was reduction in the size (but not
number) of polyps in the colon of AOM/DSS-mice and reduced infectivity and
inflammation in C. rodentium-infected mice in M(IL4)-treated mice. Thus, while any new
org October 2021 | Volume 12 | Article 7447381
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therapy can have unforeseen side effects, our data confirm and extend the anti-colitic
capacity of murine M(IL4)s and indicate that systemic delivery of one million M(IL4)s did not
exaggerate disease in models of colonic or airways inflammation or colonic tumorigenesis.
Keywords: intestinal inflammation, macrophage-based therapy, colitis-associated colorectal cancer, Citrobacter
rodentium, airway inflammation
INTRODUCTION

Typically associated with the phagocytosis of microbes,
macrophages perform a myriad of functions in host defense and
homeostasis. This versatile cell is highly responsive to its’
microenvironment and has been broadly classified into (1):
classically activated macrophages (CAMs) that are considered
pro-inflammatory and are evoked by exposure to microbial
stimuli and interferon-g (IFNg); and (2), alternatively activated
macrophages (AAM) elicited by, for example, cytokines, apoptotic
bodies and immune complexes (1, 2). The AAM (or regulatory
macrophage) exerts anti-inflammatory effects and promotes tissue
repair and remodeling, angiogenesis, and wound-healing that
involves interaction with fibroblasts (3, 4). Murine and human
AAMs have the capacity to induce regulatory T-cells (5, 6),
suggesting important roles in regulating adaptive immunity and
the creation of an immunoregulatory environment.

The demonstration of the murine AAM’s ability to promote
tissue repair, notably in the skin, but also the heart, kidney, and
spinal cord, raises the possibility that these cells could be used for
cellular immunotherapy (7–11). Prominent among AAMs is the
IL-4 (± IL-13) treated macrophage M(IL4). We showed that
systemic delivery of in vitro differentiated murine M(IL4)s
significantly reduced the severity of dinitrobenzene sulphonic
acid (DNBS), oxazolone, and dextran sodium sulphate (DSS)
induced colitis in mice: in contrast, the administration of CAMs
differentiated in vitro with IFNg [or control M(0)] did not impact
the outcome of the colitic disease (12–14). This anti-colitic effect
of murine M(IL4)s and other AAM phenotypes was
subsequently supported by other studies (15–19). In
accordance with these findings, it was recently shown that
soluble mediators from human M(IL4)s stimulated epithelial
(i.e. monolayers of the human colon-derived T84 cell line)
wound repair in an in vitro assay and, that these cells inhibited
DNBS-induced colitis in rag1-/- mice (20).

Considerable proof-of-concept data for M(IL4)s as an anti-
colitic therapy are available; however, with any new therapy, there
is the possibility of side-effects. For instance, would the M(IL4)s
pro-healing effect, if uncontrolled, result in fibrosis? While not
identical, the M(IL4) and other AAMs share some similarities with
myeloid-derived suppressor cells (MDSC) and tumor-associated
macrophages (TAMs), raising the possibility that M(IL4)s could
promote or exaggerate tumorigenesis (21). It has also been
suggested that in a TH2-type environment, AAMs could increase
an individual’s susceptibility to microbial infection (22).

Cognizant of these possibilities, the current study was
designed to determine if murine M(IL4)s would affect the
severity of disease in models of inflammation-associated colon
org 2
cancer (CRC), infectious colitis and antigen-driven airways
hypersensitivity. All of these conditions can be comorbidities
in human inflammatory bowel disease (IBD), the target
condition for M(IL4) treatment. The data herein, confirm and
extend the anti-colitic effect of intraperitoneal delivery of
M(IL4)s, and reveal that these cells, under the paradigms
tested, did not boost tumor development in the azoxymethane
(AOM)/DSS model of CRC, or immune cell infiltration and
lung histopathology in the ovalbumin model of airway
hypersensitivity. Intriguingly, inflammation in Citrobacter
rodentium-infected mice was reduced by M(IL4) co-treatment.
These proof-of-principle findings lend support for M(IL4)s as an
anti-colitic therapy, and if translatable to human, suggest that
M(IL4) treatment side-effects may be limited and would not
offset the therapeutic benefit of this cellular immunotherapy.
MATERIALS AND METHODS

Animal experiments were approved by the University of Calgary
Animal Care Committee in compliance with the guidelines of the
Canadian Council on Animal Care and administered under
protocol AC17-0115.

Differentiation of M(IL4)s
Following a published protocol (13), bone marrow cells were
isolated from femurs and tibias of C57BL/6J or BALB/c male
mice (8-10 weeks old; Charles River Laboratories, Quebec,
Canada). Cells were differentiated into macrophages by culture
for 7 days in RPMI-1640 medium (Sigma-Aldrich)
supplemented with 2% Pen/Strep, 1× GlutaMAX™, 20% fetal
bovine serum (FBS) (all Gibco/Thermo Fisher Scientific) and 20
ng/mL recombinant macrophage-colony stimulating factor (M-
CSF) (R&D Systems Inc.), changing medium on day 2 and day 5.
Macrophages were then polarized with murine recombinant IL-4
(20 ng/mL; 48h; Cedarlane Labs, Mississauga, Ontario, Canada).
Conversion to an M(IL4) was tested by qPCR analysis of CD206,
FIZZ1, Ym1, arginase-1 (Arg-1) and CD14 mRNA expression
(See Supplementary Table 1 for PCR primer sequences) (13).
We have previously shown that bone marrow-derived
macrophages from BALB/c and C57BL/6J mice responded
similarly to 20 ng/mL of IL-4 with up-regulation or arginase-1,
FIZZ1 and Ym1 (12–14); only batches of M(IL4)s that showed
this phenotypic response were used in the following studies.

Induction of DNBS-Colitis and Assessment
Male BALB/c mice (8-10 weeks old) received an intraperitoneal
(ip.) injection of M(IL4)s (1×106 in 500 mL PBS), 48h before
October 2021 | Volume 12 | Article 744738
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intra-rectal instillation of DNBS (3 mg in 100 µL 1:1 PBS/ethanol
solution; MP Biomedicals, Santa Ana, CA) (12) [M(0) or M
(IFNg)-treated cells were not used as a comparator cell type in
these studies because, as noted, neither phenotype was anti-
colitic (12–14) and the present study was designed specifically to
address the issue of putative side effects of administration of a
therapeutic macrophage, i.e. M(IL4)]. Animals were monitored
daily, weight recorded, and on humane euthanization, 72h after
DNBS a macroscopic disease activity score was calculated on a 5-
point scale based on weight change, evidence of watery/bloody
diarrhea, colon length and macroscopic ulceration. A portion of
mid-colon was immersion fixed in 10% neutral-buffered
formalin (NFB) for 72h, then paraffin-embedded, and sections
(5 µm) stained with hematoxylin and eosin (H&E) and
histopathology scored in a blinded fashion on a 12-point scale
(12). Additional sections of the colon were de-waxed, rehydrated
and then treated with anti-Ly6G antibodies (1:100, 16-9668-85;
eBioscience) to identify neutrophil infi l tration (see
immunostaining protocol below) (23).

To assess epithelial barrier function, mice were gavaged with
100 µL of 50 mg/mL FITC-dextran solution (FITC-4-kDa
dextran; Sigma-Aldrich) 3h before being euthanized. Serum
was collected prior to necropsy, fluorescence intensity
measured (excitation, 492 nm; emission, 525 nm), and FITC-
dextran concentrations read off a standard curve (24).
Additionally, the spleen and liver were excised under sterile
conditions, weighed, and homogenized in 3 mL of sterile PBS.
Ten and 100 µL of the homogenate were inoculated onto Luria
broth (LB) agar plates and incubated at 37°C for 48h in aerobic
conditions. Subsequently, colony forming units (CFUs) were
counted, corrected for sample dilution and are expressed as
CFU/100 mg tissue (24).

As an indicator of local inflammation, segments of the colon
were weighed, homogenized, and suspended in either
hexadecyltrimethylammonium bromide (HTAB) buffer (50 mg
tissue wet-weight/mL) for myeloperoxidase (MPO) activity or in
sterile-PBS for measurement of cytokines. After homogenization,
supernatants were collected and MPO activity was determined as
before and represented as units U in 100 mg of tissue, where 1 U
equals the amount of MPO required to degrade 1 µM H2O2/min
at room temperature (12). Tissues homogenized in sterile-PBS
were assessed for levels of IL-1b, TNF-a, IL-10 and CXCL1 by
ELISA following the manufactures instructions (PeproTech,
CranBury, NJ) (25).

Citrobacter rodentium Infection
and Assessment
C57BL/6J mice (8-10 weeks old, originally purchased from The
Jackson Laboratory housed for several generations in a
pathogen-free environment at the Univ. Calgary) were injected
with M(IL4)s (1×106 in 500 mL PBS, ip.). Two days later, mice
were orally gavaged with C. rodentium (strain DBS 100; 5×108

CFU in 200 µL PBS) (26, 27). Feces were collected at 3-, 5-, and
7-days post-infection (dpi), homogenized at 0.1g/1 mL of sterile
PBS, then serial dilutions were added to MacConkey agar plates.
After 24h of aerobic culture at 37°C, colonies were counted to
Frontiers in Immunology | www.frontiersin.org 3
obtain bacterial CFU/g (26). Mice were euthanized at 7 dpi, colon
length measured, and segments of mid-colon processed for H&E
staining. Fecal lipocalin-2 was measured as a general marker of
inflammation by ELISA (R&D Systems) and following the
provided manufactures instructions (26, 27).

Total RNA was isolated from colon tissues (Aurum Total
RNA Mini Kit, Bio-Rad Laboratories, Hercules, CA), quantified
(Nanodrop 1000 Spectrophotometer, Thermo Fisher Scientific,
Wilmington, DE), and 0.5 mg of RNA converted to cDNA using
iScript kit (Bio-Rad Lab, Canada). Quantitative real-time
polymerase chain reaction (qPCR) was performed with SYBR
Green Supermix (Bio-Rad, Cat. # 1725274), which consisted of
40 amplification cycles per run (26) using primer sequences
shown in Supplementary Table 1 and normalized to the
housekeeping gene 18S rRNA. Then the relative quantitative
target gene expression of treatment groups was calculated by
using 2-DDCt method using control group as calibrator samples.
Reactions were run in triplicate (the same process was applied to
assess mRNA in bone marrow-derived macrophages).

To assess cellular composition of the colon, the distal 50% of
the colon was opened longitudinally and incubated thrice for
15 min each in Hanks’ Balanced Salt Solution (HBSS) with 10%
FBS and 2 mM EDTA at 37°C to remove epithelial cells. After
each incubation step, tubes were shaken for 10 seconds and
medium containing epithelial cells was discarded. The lamina
propria cells were centrifuged at 400xg for 10 min at 4°C, and the
pellet re-suspended in PBS (26). The cells were stained with
antibodies against CD45 (563891; BD Biosciences), CD3e
(557984; BD Biosciences), CD4 (561104; BD Biosciences),
Ly6G (561104; BD Biosciences) and CD17a (506915;
BioLegend) for 30 min at 4°C at the concentrations shown in
Supplementary Table 2. The cells were washed twice with PBS/
BSA/2mM EDTA and analyzed on a FACS CANTO-II
(BD BioSciences).

Colorectal Cancer Induction
and Assessment
Azoxymethane (AOM: Sigma, MO) + dextran sulphate sodium
(DSS; MW 40,000, Alfa Aesar, Tewksbury, MA) is a common
model of CRC (23, 28). Male C57BL/6J mice (8-10 weeks old)
received AOM (12.5 mg/Kg, ip.) and five days later, 2% DSS in
drinking water for 7 days ad libitum followed by 14 days of regular
water. This 7-day DSS-water + 14-day regular water regimen was
repeated for two more cycles and mice were euthanized on day
113. One group of mice received M(IL4)s (1×106, ip. in 500 mL
PBS) 33 days after AOM (i.e. early) or 54 days after AOM
injection. Upon euthanization, the colon was removed and
opened longitudinally, polyps counted and measured, and
tissues collected for H&E staining (assessed in a blinded fashion
by K. Koro), immunodetection of vimentin and E-cadherin, qPCR
and for tissue levels of cytokines by ELISA.

Paraffin-embedded sections (5 µm) of the colon were de-waxed,
rehydrated and then treated with anti-vimentin (1:100, 3932S; Cell
Signaling) or anti-E-cadherin (1:300, 610181; BD eBioscience)
antibodies overnight at 4°C. Following washing, matched
secondary antibodies were applied. For immunohistochemistry,
October 2021 | Volume 12 | Article 744738
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the goat anti-rat-HRP conjugated was incubated for 30 min at
room temperature (RT) (1;500, 405405, Biolegend). To visualize
positive staining cells, tissue sections were stained with
diaminobenzidine (DAB) (ab64238; Abcam) and counterstained
with hematoxylin. For immunofluorescence goat anti-mouse Alexa
fluor 488 (1:500, A11029; Invitrogen) and goat anti-rabbit Alexa
fluor 594 (1:1000, A11005; Invitrogen) were incubated for 2h at RT
and after incubation, the nuclei were stained with DAPI at 1:1000
for 5 min (23). Representative images were captured on an
Olympus BX41 microscope fitted with a U-TMAD T mount
adapter, using cell Sens software (Olympus).

Ovalbumin Sensitization and
Airway Assessment
Male BALB/c mice (8-10 weeks old) were immunized with
ovalbumin 50 µg (A5503; Sigma) and 1.5 mg aluminum
hydroxide (AC219130250; Fisher) dissolved in 100 µL PBS
(ip.) on days 1, 2 and 3. On days 15-18 (inclusive) mice were
exposed to 20 min of 5% nebulized OVA dissolved in PBS in an
airtight chamber (29). Mice received 1x106 M(IL4) (ip.) 2 days
prior to the first dose of aerosolized OVA, and airway
inflammation was assessed on day 19.

Bronchoalveolar lavage fluid (BALF) was collected from all
mice. With the upper trachea cannulated, lungs were lavaged
(1 mL per lavage x 3) with 0.9% NaCl. Cells in the
bronchoalveolar fluid were sedimented by centrifugation
(20 min at 4500xg, 4°C) and re-suspended in PBS. A 100 µL
sample of BALF was centrifuged (Shandon Cytospin 4
cytocentrifuge, Thermo Scientific, Waltham, MA, 6 min at
4500xg) and cells collected on non-coated glass slides, fixed in
95% ethanol and H&E stained. Total leukocytes were determined
by hemacytometer counting and identification of 200 cells was
completed according to standard morphologic criteria (30).

To assess lung pathology, the left lung was inflated with 10%
NBF and fixed for 72h, processed to paraffin and 5 µm sections
were collected on coded slides, stained with H&E and scored in a
blinded fashion (M. Kelly) using a published scale (31). The right
lung was used to evaluate collagen levels by analysis of
hydroxyproline using a commercial assay according to the
manufacturer’s instructions (K218, BioVision). Briefly, lungs
were dried, weighed, and homogenized in 100 mL ddH2O for
every 10 mg of tissue; 100 mL of concentrated 6N HCl were
added to homogenized sample. Hydrolyzed samples were
incubated at 120°C for 3 hours and then 30 mL of each
hydrolyzed sample transferred to a 96-well plate and 100 mL of
the Chloramine T reagent added to each sample and standard
and incubated at room temperature for 10 min. Finally, 100 mL of
the DMAB reagent was added to each well and incubated for
90 min at 60°C. The amount of collagen generated was
determined from a collagen calibration curve. The absorbance
measured at 560 nm of each hydrolyzed sample (13).

Statistical Analysis
Data are presented as the mean ± standard error of the mean
(SEM). Data were analyzed and graphed using GraphPad Prism
6 (GraphPad Software). Unless otherwise stated, data were
Frontiers in Immunology | www.frontiersin.org 4
analyzed using a one-way analysis of variance (ANOVA) and
when p<0.05, pairwise comparisons of the means were examined
with Tukey’s test for parametric data. The Kruskal-Wallis test
followed by Dunn’s multiple comparison test was applied to
nonparametric data.
RESULTS

M(IL4) Transfer Protects Against
Experimental Colitis
To test the anti-colitic effect of M(IL4) transfer, macrophages
from BALB/c mice were differentiated in vitro with IL-4 and
injected (ip.) into mice two days before induction of colitis with
DNBS (Figure 1A). qPCR-analysis revealed increased CD206,
FIZZ1, Ym1, arginase-1, and decreased CD14 mRNA expression
confirming the identity of the murine M(IL4) (14) (Figure 1B).
Mice treated with DNBS displayed a drop in body weight, a
shorter colon, increased macroscopic disease scores (based on
ulceration, lack of consistency in feces, and bleeding) and
significant histopathology (Figures 1C–E). Consistent with
previous findings in this model (13), mice treated with M(IL4)s
had significantly less severe DNBS-induced col i t is
(Figures 1C–E), a range of benefit consistent with prior
investigations (12–14), and these observations are supported by
significantly reduced infiltration of Ly6G+ cells and colonic MPO
levels in tissues from M(IL4)+DNBS treated mice compared to
tissue from DNBS-only treated mice (Figures 1F, G). qPCR
analysis revealed increased expression of arginase-1, FIZZ1 and
Ym1 in colon extracts from mice administered M(IL4)s
(Figure 1H). While these data suggest localization of the
transferred M(IL4)s to the colon, and are consistent with our
prior immunodetection studies (14), they do not negate the
possibilities that host resident macrophages up-regulated the
expression of these genes or that other cells in the colon are
responsible for, or contribute to, the increased arginase-1, FIZZ1
and Ym1.

To characterize the protective effects of M(IL4) on the
epithelial layer in DNBS-treated mice, gut permeability was
evaluated by orally administering FITC-dextran to mice.
Measurement of FITC-dextran in the serum of DNBS-treated
mice revealed a decrease in epithelial barrier function, that was
not observed in DNBS+M(IL4)-treated animals (Figure 1I).
Furthermore, the increased translocation of gut bacteria to the
spleen and liver that occurred in DNBS-treated mice was
significantly reduced in mice co-treated with M(IL4)+DNBS
(Figure 1J). Collectively, these results confirm the protective
role of M(IL4) in the DNBS-model of acute colitis.

M(IL4) Reduces C. rodentium-
Induced Colitis
It has been suggested that M(IL4)s might predispose to bacterial
infection (22). To assess this, and for comparison with chemical-
induced colitis, the effect of M(IL4) transfer (C57/BL6 mice) in
the C. rodentium model of infectious colitis was examined (27)
(Figure 2A). As an index of infection, fecal shedding of C.
October 2021 | Volume 12 | Article 744738
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rodentium was lesser in M(IL4)-treated mice compared with
untreated mice at 3, 5 and 7 days dpi (~100-fold reduction)
(Figure 2B). While the shortening of the colon was not affected
by M(IL4)-treatment (Figure 2C), this treatment did result in a
mild, but statistically significant reduction in colonic
histopathological damage and reduced neutrophils (Ly6G+)
Frontiers in Immunology | www.frontiersin.org 5
and Th17 cell infiltrations in the colon (Figures 2D, E). The
M(IL4)-treatment also reduced fecal levels of lipocalin-2
(Figure 2F) and colonic expression of IL-22, IL-17, IFN-g and
Reg3g mRNA (Figure 2G) in C. rodentium-challenged mice.
Overall, these findings indicate that M(IL4) transfer protects
against colitis induced by C. rodentium-infection.
A B C

D H

I J

E

F

G

FIGURE 1 | M(IL4)s protect against murine colitis. Male BALB/c mice were injected with M(IL4)s (1×106, ip.) 48h prior to intra-rectal delivery of DNBS (3 mg in 100 µL
50% ethanol) (A). Murine bone marrow-derived macrophages were treated with IL-4 (20 ng/mL per 2.5×105 cells/mL) for 48h and conversion to an M(IL4) tested by
expression of CD206, FIZZ1, Arg-1, Ym-1 and CD14 mRNA (B). During induction of colitis, weight was recorded daily (C). On necropsy at 72h post-DNBS, colon length
was recorded, and a macroscopic disease activity score calculated (D). Panel (E) shows representative H&E images (original magnitude, x20) and histopathology scores.
Panel (F) shows representative images of Ly6G staining (original magnitude, x40) and enumeration of Ly6G+ cells/high power field of view (n = 3-4 mice).
Myeloperoxidase (MPO) activity in colonic extracts as a measure of predominantly neutrophil infiltration is shown in panel (G). Panel (H) depicts qPCR data of arginase -1
(Arg1), FIZZ1 and Ym1 in colon extracts. Epithelial barrier function, as assessed by lumen-to-blood movement of 4kDa FITC-dextran and bacterial translocation to the
spleen and liver is shown in panels (I, J) (data are means ± SEM; n=5 mice; one-way ANOVA followed by Tukey’s test for parametric data and Dunn multiple comparison
test for nonparametric data; *p < 0.05, **p < 0.01, ***p < 0.001, ****p ≤ 0.0001; M, outer layers of muscle; L, gut lumen; * inflammatory infiltrate).
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M(IL4) Transfer Does Not Influence the
Progression of Colorectal Cancer
Since macrophages activated by TH2-type cytokines share some
characteristics of tumor-associated macrophages (TAMs) (32)
we evaluated the putative tumorigenic property of M(IL4)
transfer in a model of colitis-associated CRC. Two
experimental paradigms were assessed: mice received M(IL4)s
from C57/BL6 mice 33 days after the azoxymethane (AOM) or
later in the progression of the CRC at 54 days after AOM
treatment, and mice were humanely euthanized at day
113 (Figure 3A).

Systemic delivery of M(IL4)s at an early (day 33) or later (day
54) time-point in the progression of AOM/DSS-evoked CRC did
not affect the number of macroscopically observable tumors, but
did significantly reduce the number of tumors of >2 mm diameter
by ~50% (Figures 3B, C). Blinded histological examination of
colon demonstrated features of inflammation and neoplastic
transformation (i.e. adenomas and adenocarcinoma).
Background colonic mucosa inflammation was characterized by
ulceration, neutrophilic cryptitis, hyperplastic/regenerativemucosa
changes, and mixed lymphoplasmacytic inflammatory infiltrate.
Neoplastic lesions showed altered cytology, including mucin
depletion, nuclear stratification, increased nuclear/cytoplasmic
ratio, and nuclear hyperchromasia. However, there were no
significant microscopically identifiable differences between the
degree of inflammation or types and configuration of adenomas
between AOM/DSS-treated mice ± M(IL4) at day 33 or day 54
groups (Figure 3D). In initial studies, M(0)s were used as a control
group but the course of the CRC was not affected (total number of
tumors; AOM/DSS = 13 ± 1 versus AOM/DSS+M(0) d33 = 13 ± 2
and AOM/DSS+M(0) d54 = 12 ± 3: number of tumors >2mm
diameter, AOM/DSS = 9 ± 1, AOM/DSS+M(0) d33 = 11 ± 1,
AOM/DSS+M(0) d54 = 11 ± 1, mean ± SEM, n=3-4).

Analysis of TNF-a, CXCL1, IL-1b, IL-10 protein and TGF-b
mRNA levels in colonic tissue segments devoid of obvious
adenomas revealed the expected increases in these cytokines in
the AOM/DSS mice were not affected by M(IL4) treatment
(Figure 3E). On necropsy, qPCR of colonic extracts revealed
increased mRNA for arginase-1, FIZZ1 and Ym1 in mice treated
with AOM/DSS ± M(IL4); however, while different from
controls, expression in tissue from mice receiving M(IL4)s was
not different from that from the AOM/DSS only group
(Figure 3E). Similarly, immunodetection of the distribution of
vimentin and E-cadherin, as markers of epithelial-mesenchymal
transition (EMT), revealed no clear differences between tissue
sections from AOM/DSS ± M(IL4)-treated mice (Figure 3F).
These data indicate that the transfer of M(IL4) in the early or
later stages in this chemical model of CRC does not promote
tumor progression.

M(IL4) Transfer Does Not Exacerbate
Airway Inflammation
M2-macrophages have been presented as a concern in allergic
asthma (33). In order to determine if M(IL4) transfer aggravates
airways hypersensitivity, the OVA-sensitization model was
employed. M(IL4)s from BALB/c mice were injected ip. 2-days
Frontiers in Immunology | www.frontiersin.org 6
before OVA challenge treatment (Figure 4A). In this classical
model, OVA challenge of the sensitized mouse results in
histopathology, remodeling of the lungs, and a substantial
polymorphonuclear infiltration (mostly eosinophils but also
some neutrophils): co-treatment with M(IL4)s had no
appreciable effect on these aspects of the lung (Figures 4B, C).
Analysis of lung collagen content revealed no significant increase
in the OVA-challenged sensitized mice over controls and this
was not affected by an M(IL4) treatment (Figure 4D). Thus, we
have no evidence of M(IL4) aggravation of airway inflammation
induced by OVA in sensitized and challenged mice.
DISCUSSION

The burden of IBD is increasing worldwide and despite the
availability of new therapeutics, many patients receive minimal
or no relief from these, and others become refractory to an
effective treatment over time. Cellular therapy is an approach to
auto-inflammatory disease in which, typically, mesenchymal
stem cells or regulatory immune cells are used to blunt
inflammation (34, 35). Expanding on the ability of
macrophages to promote wound healing (3), we showed that
murine M(IL4)s reduced disease in three models of chemical-
induced colitis (12–14); a finding confirmed by others using
M(IL4)s or other phenotypes of regulatory macrophage (15–19).
All medications have side effects, and this provided the impetus
to determine if the anti-colitic M(IL4) would exacerbate other
conditions that can occur in IBD.

M(IL4)s in infectious colitis, inflammation-associated CRC
and airways inflammation was assessed for two main reasons.
First, macrophages are important in combating microbes, are
linked to cancer progression (i.e. TAMs), and a type-2
macrophage can be pro-fibrotic in the lung (36). Second, some
patients with IBD have airway inflammation, increased incidence
of CRC, and altered susceptibility to infection such as the
increased presence of pathobiont E. coli associated with
Crohn’s disease (37–39). Systemic delivery of M(IL4)s via
intraperitoneal injection did not aggravate the outcome in any
of the models of disease, adding support for macrophages as a
therapeutic target in IBD (20, 40).

Within the context of helminth-therapy for colitis, we noted
increased expression of colonic FIZZ1 and arginase-1 mRNA,
markers indicative of an M(IL4) (12); however, these markers are
not exclusive to M(IL4)s. To negate any ambiguity, bone
marrow-derived macrophages treated with IL-4 were shown to
block colitis (13). Complementing this finding, the current study
shows that M(IL4)-treated mice following challenge with DNBS
had lesser accumulation of neutrophils in the colon and
increased enteric barrier function compared to DNBS-only
treated mice.

C. rodentium is a natural Gram-negative attaching/effacing
pathogen in mice, with pathogenesis in the colon similar to
enteropathogenic Escherichia coli (EPEC) in humans (27).
Postulating that M(IL4)s might counter classically activated
macrophages’ anti-microbial responses, mice were injected
October 2021 | Volume 12 | Article 744738
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FIGURE 2 | M(IL4)s reduce colonic inflammation in mice infected with C rodentium. Male C57BL/6J mice were injected with M(IL4)s (1×106, ip.) and 48h later received
5×108 CFU of C rodentium (CR) by oral gavage (A). Shedding of C rodentium was monitored in the feces at 3, 5, and 7 day post-infection (dpi) (B) and on necropsy,
colon length was measured (C) and tissue processed for histopathology scoring (D); representative H&E sections shown (original mag., x2). Panel (E) shows colonic
levels of Ly6G+ and IL17+ cells as determined by flow cytometry. Lipocalin-2 levels in feces collected at 7 dpi are shown in Panel (F). Real-time qPCR analysis of
colonic IL-22, IL17, IFN-g, and Reg3g mRNA (G) (data are means ± SEM; n = 4-5 mice; one-way ANOVA followed by Tukey’s test for parametric data and Dunn
multiple comparison test for nonparametric data; *p < 0.05, **p < 0.01, ***p < 0.001, ****p ≤ 0.0001; M, outer layers of muscle; L, gut lumen; * inflammatory infiltrate).
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in panel (A) (azoxymethane (AOM) 12.5 mg/Kg ip. and 2% (wt./vol.) dextran sodium sulphate
were photographed and tumors counted and measured (B, C), and tissue processed for

w, neoplastic lesions; *, mixed lymphocyte, plasma cell, and neutrophil infiltrate). Panel (E) shows
Panel (F) shows representative images of mid-colonic tissue immunostained for vimentin or E-
0.01, ***p < 0.001, **** p ≤ 0.0001).
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FIGURE 3 | M(IL4)s do not exaggerate colitis-associated colon cancer. Male C57BL/6J mice were treated as shown
(DSS) in drinking water for 7 days), with M(IL4)s (1×106, ip.) given in two paradigms. On necropsy at day 113, colons
histological assessment, with representative H&E images shown in (D) (original mag., x20; M, muscle; L, lumen; arro
colonic levels of cytokines (mRNA for TGFb) and qPCR data of arginase -1 (Arg1), FIZZ1 and Ym1 in colon extracts.
cadherin (DAPI as nuclear stain) (data are means ± SEM; one-way ANOVA followed by Tukey’s test, *p < 0.05, **p <
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with M(IL4s) then challenged with C. rodentium. Rather than
rendering the mice vulnerable to C. rodentium, mice treated with
M(IL4)s showed enhanced protection against infection and less
colonic histopathology that correlated with reduced mRNA
expression of IL-22, IL-17 and IFNg, hallmarks of C.
rodentium-colitis. These data appear to contradict Weng et al.
who reported that AAMs mediated the exacerbation of C.
rodentium infection in mice infected with the parasitic
helminth, Heligmosomoides polygyrus (22). However, while
evidence of accumulation of AAMs in the co-infected mice was
presented (IL-4 increases following H. polygyrus-infection),
numerous factors in this in vivo setting could have affected
AAM activity. Indeed, the bactericidal capacity of AAMs is not
clear, with increased and decreased phagocytosis and killing of
bacteria being reported (41–43). We speculate that this reflects
the plasticity of the macrophage and potentially the confusion
Frontiers in Immunology | www.frontiersin.org 9
created by considering AAMs as a single group. Nevertheless,
having confirmed the anti-colitic effect of the M(IL4)s used here,
the murine M(IL4) was found to reduce the severity of
inflammation induced by C. rodentium, suggesting that
susceptibility to bacterial infection need not be a significant
side effect of M(IL4) therapy.

Chronic inflammation is a hallmark of cancer and patients
who suffer from ulcerative colitis are at higher risk of developing
CRC (38). Macrophage association with tumors is well
documented, and whether described as TAMs, AAM or M2-
cells, the immunosuppressive nature of these cells via cognate
ligands or the release of soluble signals has been linked to tumor
progression by suppression of anti-tumor immunity (44). For
example, the number of M2-macrophages, identified as
CD68+CD163+ cells on tissue sections, correlated with the
progression and invasion of CRC (45). So while the link with
A

B

C D

FIGURE 4 | M(IL4)s do not exacerbate airway inflammation in OVA-induced asthma. Male BALB/c mice were treated as shown in panel (A). Formalin-fixed lungs
were assessed for histopathology using H&E sections (arrows, eosinophils infiltration) (B). Percentage of immune cells was performed on H&E-stained cytospin of
bronchoalveolar lavage fluid (BALF) (C), and total lung collagen levels were measured by commercial colorimetric assay (D) (data are means ± SEM; n = 5; one-way
analysis of variance followed by Tukey’s test; *p < 0.05, **p < 0.01, ***p < 0.001).
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immunosuppressive macrophages and CRC is not disputed,
these cells are not identical to in vitro differentiated M(IL4)s;
yet, the similarity between M(IL4)s and TAMs [e.g. both make
TGFb (46)], raises the possibility that M(IL4)s could promote
CRC. Exploring this with the AOM/DSS model of CRC, we find
that M(IL4)s delivered early or later in the development of CRC
did not increase the progression or severity of disease. While
there was a reduction in the number of tumors >2mm diameter
in M(IL4)+AOM/DSS treated mice, the general pattern was that
systemic delivery of M(IL4)s had negligible impact on the
outcome of CRC in this model system. However, the reduction
in the number of >2 mm tumors is intriguing and may suggest
less invasiveness (i.e. malignancy), or that transient suppression
of inflammation following M(IL4) administration slowed polyp
growth. Preliminary studies transferring M(0)s, revealed that this
group of macrophages affected neither the progression of the
CRC nor tumor size, implying specificity in the M(IL4) affect.

We have noted that a portion of ip.-delivered M(IL4)s
migrate to the colon (14), but their longevity there is
unknown. Examination of arginase-1, FIZZ1, and Ym1 mRNA
revealed increased expression in tissues from AOM/DSS-treated
mice, which also occurred, but not to a greater extent, in colon
from the M(IL4) co-treated mice. The significance of these
findings are not clear, and, as mentioned, arginase-1, FIZZ1
and Ym1 expression is not restricted to M(IL4)s. The data herein
suggest that their expression alone does not blunt the
development of CRC, indicating that the reduction in average
tumor size seen in M(IL4)-treated mice is likely not dependent
on arginase-1, FIZZ1 or Ym1. We speculate, if M(IL4)s suppress
inflammation-associated CRC (i.e. fewer larger tumors) this may
require the presence of the cells and could be accomplished with
repeated M(IL4) administrations: a possibility worthy of testing
in future analyses.

From the perspective of developing M(IL4) as a therapy, the
lack of an effect of M(IL4) transfer in the AOM/DSS model is
encouraging. In fact, in some types of cancer, pro-inflammatory
mediators such as IL-22, TNF-a, MIP-3a, CXCL2, CXCL3 and
other CXCR2 ligands indirectly contribute to tumor growth
through the proliferation of epithelial cells (e.g. STAT3, NF-
kB) (47–49). In the current study, the reduction of tumor size
could be due to the regulation of proliferation through some
inflammatory mediators not assessed/identified in the current
study. Yet, we would be remiss if we failed to mention some
caveats (1): AOM/DSS is only one model of CRC and other time-
points of delivery in the regime were not considered although
one would hypothesis that early delivery of M(IL4)s could be
beneficial because of their anti-colitic ability (2); it is possible that
in other models or in humans that in vivo factors [e.g. IgG4 (50)]
could promote an oncogenic phenotype in the M(IL4)s; and (3),
while functionally equivalent in some aspects, human and
murine M(IL4)s are not identical and findings with murine
cells do not dismiss the possibility that human M(IL4)s could
promote CRC, metastasis or cancer in other organs.

The macrophages’ ability to promote collagen deposition is
cause for concern in airways inflammation (51). Macrophage
accumulation in the lung is characteristic of murine models of
Frontiers in Immunology | www.frontiersin.org 10
allergic asthma (33) (Figure 4) and the cells often bear the
hallmarks of AAM/M(IL4)s (e.g. arginase-1+, FIZZ1+, Ym1+).
Treatment with agents that block AAM activity can reduce the
severity of disease in models of airway hypersensitivity/asthma
(52, 53), although such studies cannot rule out non-macrophage
effects of the drugs. In contrast, others suggest that arginase-1+

AAMs can be anti-fibrotic (54) and repeated treatments of
M(IL4)s over a three-week period did not elicit increased
collagen deposition in the lungs (liver, spleen or colon) of mice
co-treated with DNBS (13). Intravenous delivery of helminth-
evoked AAMs reduced airways inflammation (55), while intra-
nasal administration of an arginase-1+/FIZZ1+ AAM obtained
from antibiotic-treated mice increased inflammation in the
airway (56): this study also showed that intra-nasal M(IL4)
delivery evoked lung eosinophilia, while intraperitoneal
injection of AAMs reduced eosinophilia in allergic asthma
(52). Intermediate between studies indicating that AAMs can
promote airways inflammation (53) and others suggesting a
benefit of AAMs in allergic conditions, the present study
showed in vitro differentiated M(IL4)s given prior to allergen
challenge had no effect in an OVA-model of airways
hypersensitivity. M(IL4)-treated mice did not display an
increase in collagen indicating no propensity towards fibrosis
in this acute model setting. A variety of chemical and allergen
models of airways inflammation are available, and it will be
important to determine if M(IL4)s affect the inflammation,
fibrosis or lung function in these models (57).

We speculate that the lack of consensus on the role of AAMs
in airways inflammation indicates the spectrum of activity within
this cell population, and that clarity may arise by adherence to
descriptive nomenclature as presented by Murray and colleagues
(58). It seems that the route of AAM or M(IL4) delivery affects
the pro-inflammatory versus anti-inflammatory outcome in the
airways, and in this context, it is noteworthy that intraperitoneal
injected M(IL4)s did not accumulate in mouse lungs over a 5 day
time-course (13). Also, the role of the microbiota in modifying
the outcome of macrophage transfer should not be overlooked
(44). Thus, it will be important to monitor lung function in any
adoptive macrophage treatment strategy (59).

Having demonstrated the anti-colitic effect of M(IL4)s and
the preservation of gut barrier function, the current study yielded
no data to suggest that M(IL4) therapy would exaggerate or leave
an individual more vulnerable to concomitant infection, CRC or
airways inflammation. These observational data are presented in
support of M(IL4) cellular therapy and could be augmented by
mechanistic studies to elucidate, for example, how the
administration of M(IL4)s resulted in reduced polyp size in the
AOM/DSS model of CRC. We recognize that the range of
potential side effects of any new therapy is large and we have
considered but three of these, and that further testing of M(IL4)s
in variations of the models presented herein and other disease
model systems is important to garner a more holistic view of the
M(IL4) in disease. Given that sex-differences have been noted in
disease, it will be important to broaden the assessment of
putative M(IL4) side effects by performing experiments with
female mice (and also young and old animals) in models of
October 2021 | Volume 12 | Article 744738
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disease. Thus, continued research efforts are required to precisely
elucidate the anti-colitic mechanism of M(IL4)s and to test
M(IL4)s in other models of infection, cancer and inflammatory
disease (e.g. cirrhosis) (60), and to complement such studies it
will be essential to assess putative side effects of human M(IL4)s
in suitable model systems (20).
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