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Abstract

Background: A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to
the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer
genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic
studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative
comparison of the abundance of biomolecules in biological samples.
Methods: We investigated topic models to computationally analyze mass spectrometric data considering both
integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative
models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling
helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in
capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS
based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as
well as synthetic data we generated based on the serum proteomic data.
Results: The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and
scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources
with small average error ratios (< 7 %) between estimation and ground truth. By applying the topic model-based
purification to mass spectrometric data, we found more proteins and metabolites with significant changes between
HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful
pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared
to the results found prior to purification.
Conclusions: We investigated topic model-based inference methods to computationally address the heterogeneity
issue in samples analyzed by LC/GC-MS. We observed that incorporation of scan-level features have the potential to
lead to more accurate purification results by alleviating the loss in information as a result of integrating peaks. We
believe cancer biomarker discovery studies that use mass spectrometric analysis of human biospecimens can greatly
benefit from topic model-based purification of the data prior to statistical and pathway analyses.
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Background
Identification of disease-related alterations in molecu-
lar and cellular mechanisms may reveal useful disease
biomarkers. Discovery of clinically relevant biomarkers
has potentially far reaching implications for disease man-
agement and patient treatment [1–4]. High-throughput
omic technologies have facilitated the search for changes
in the levels of various biomolecules (proteins, glycopro-
teins, metabolites, lipids, etc.) in biological samples [5, 6].
In particular, liquid (or gas) chromatography coupled with
mass spectrometry (LC/GC-MS) has become an essential
tool for profiling biomolecules in a variety of large-scale
omic studies. Briefly, biomolecules are separated, frag-
mented, ionized and detected in LC/GC-MS instruments.
Abundances of ions with various retention time and mass
values are recorded for downstream data processing.
While the capability of high-throughput technology to

yield comprehensive profiling and quantification offers
a unique advantage in biomedical research, the hetero-
geneous nature of the biological samples poses a fun-
damental challenge in data analysis and interpretation.
Specimens, such as tumor tissues and human blood, are
typically mixtures of cells with distinct states and types,
and usually only part of the constituent cell populations
is relevant to the biological question of interest [7, 8].
In some cancer studies, heterogeneity is also observed
within the malignant cell population, where multiple can-
cerous subtypes co-exist [9]. Ideally in a biomarker dis-
covery study, one would perform between-group (cancer
versus related disease, cancer versus healthy samples) dif-
ferential expression analysis for type-specific constituents
in samples [10]. However, biospecimens collected from
patients usually exhibit some degree of heterogeneity.
Moreover, the proportion of cancerous, other disease-
related, and healthy components varies across individual
samples pre-selected using pathological estimates. There-
fore, the biomolecular measurements in expression pro-
files are attributed to multiple sites of origins with various
mixture proportions. The cancerous profiles of interest
are typically contaminated by other components, leading
to unreliable results in differential analyses. Purification of
samples is hence highly desired to remove the effects of
heterogeneity.
Experimental methods for cleaning samples and iso-

lating type-specific constituents are costly and time-
consuming. Computational purification methods offer an
attractive alternative that is inexpensive and efficient to
implement, and can be applied to data already generated
without any modifications on experimental procedures.
Multiple approaches have been developed to deconvolute
gene expression profiles in the past years, varying from
linear regression basedmodels [11, 12] to generative prob-
abilistic models [13, 14]. Among these approaches, topic
model based methods, e.g., ISOLATE [15] and ISOpure

[8], showed promising performance in estimating the pro-
portion of mixtures and inferring sample-specific puri-
fied profiles in heterogeneous genomic data. However,
to the best of our knowledge, in omic studies involving
quantitative analysis of proteins or metabolites, no such
purification approaches have been applied to deal with the
sample heterogeneity issue. With the increasing volume
of these data generated by LC/GC-MS, it is necessary to
implement the purification of data before downstream dif-
ferential analyses. In this research, we first apply ISOpure,
a topic model based purification approach to both syn-
thetic and experimental data acquired from human sera
and liver tissues by LC-MS and GC-MS, respectively. The
purpose of this investigation is to test if sample hetero-
geneity issue in various biomolecular expression profiles
can be addressed by adjusting ion intensities through topic
models as in genomic studies. Also, we investigate the use
of scan-level features, i.e. extracted ion chromatograms
(EICs) instead of integrated peak intensities, to alleviate
the information loss during the LC/GC-MS data prepro-
cessing.

Methods
In this section, we introduce topic model-based intensity-
level and scan-level purification methods. Assumptions
and strategies in the topic models are elaborated. Mass
spectrometric datasets from cancer biomarker discovery
studies are described.

Intensity-level purification model
The LC/GC-MS instruments provide ion intensity val-
ues by counting the ions detected at specific m/z and
retention time points. Due to the existence of hetero-
geneity, multiple constituents in the sample contribute
to the observed expression profile. Therefore, we can
model the expression profile of a heterogeneous sample
t as a weighted mixture of expression profiles of mul-
tiple sources, including a cancerous origin γ and non-
cancerous contaminants β . The expression distribution
for every biomolecule in each of the sources plays a role
as a “topic” contributing to the mixed expression profile.
Basically, each ion in the observed profile is associated
with a specific topic, i.e. a multinomial distribution of ion
counts over biomolecules, determined by the correspond-
ing source profile. In this model, expression profiles refer
to integrated peak intensities.
The purification procedure can be realized through a set

of topic models, which are generative probabilistic models
typically applied to text corpora mining. Specifically, each
expression profile is characterized by a probability distri-
bution across topics. Topics are probability distributions
across biomolecules. These distributions can be inferred
based on the analysis of a collection of expression profiles
through topicmodels. These hierarchical Bayesianmodels
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are variants of latent Dirichlet allocation (LDA) [16], a
topic model that can 1) infer the posterior probability of
topics given observed profiles, and 2) estimate the param-
eters that generate the latentmixture proportion and topic
panel. These topic models have been adapted and applied
to gene expression profiles in genomic studies [8, 15].
We use a modified topic model to purify the molecular

expression profiles in cancer. Basically, three assump-
tions are made in developing the model. First, the source
contaminants in each expression profile {td}d=1,··· ,D are
coming from the control group {βm}m=1,··· ,M (i.e., healthy,
non-cancerous profiles, etc.). It is commonly observed
that the cancerous tissues are surrounded by adja-
cent non-cancerous tissues, which are typically used as
controls in differential expression analysis. Second, the
corresponding cancerous origins {γ d}d=1,··· ,D share an
average cancer profile γ ′. Individual cancerous profile can
be treated as a noisy version of the average cancer pro-
file. Third, the average cancer profile γ ′ has similar pat-
terns as non-cancerous profiles {β}, except for some sites
(biomolecules) which are differentially expressed between
case and control groups. Thus, the cancerous profile can
be treated as a similar non-cancerous profile with several
sites altered.
The complete likelihood function in (1) describes how

the profiles {td}(d=1,...,D) are generated. Specifically, we
have two observable variables indicating D expression
profiles in case group: {td}d=1,··· , D, td ∈ R

N , andM non-
cancerous profiles in control group: {βm}m=1,··· ,M, βm ∈
R
L. In our analysis, we normalize all profiles to have iden-

tical total ion counts of N and consider L biomolecules
that are consistently detected in all the samples. For con-
venience, we represent the normalized profiles in two
ways. Each heterogeneous cancer profile td is repre-
sented via N ions, with td,n = {1, 2, · · · , L} denoting
the biomolecule corresponding to the nth ion. Each non-
cancerous profile βm is represented via L biomolecules,
with βm,l denoting the ion counts of the lth biomolecule,
and

∑L
l=1 βm,l = N . The second expression can be further

normalized by N to give a representation of multinomial
distribution as a topic.

L(t, z, θ ,γ , γ ′|α,β , η, κ , κ ′)

= p
(
γ ′|β , η, κ ′) ·

D∏
d=1

p (θd|α) · p (
γ d|γ ′, κd

)

×
N∏

n=1

[
p

(
zd,n|θd

) · p (
td,n|zd,n, θd,β , γ d

)]
(1)

The model also incorporates the following latent vari-
ables: the average cancer profile γ ′ ∈ R

L, sample-specific
pure cancer profiles {γ d}d=1,··· ,D, γ d ∈ R

L, sample-
specific mixture proportions of topics {θd}d=1,··· ,D, θd ∈
R
M+1, and sample-specific topic indicators {zd}d=1,··· ,D,

zd ∈ R
N , zd,n = {1, · · · ,M,M + 1}. Their relationships

with observations and parameters are given as below.

p (θd|α) = Dirichlet (θd|α, 1) (2)

p
(
γ ′|β , η, κ ′) = Dirichlet

(
γ ′|ηTβ , κ ′) (3)

p
(
γ d|γ ′, κd

) = Dirichlet
(
γ d|γ ′, κd

)
(4)

p
(
zd,n|θd

) = Multinomial
(
zd,n|θd

)
(5)

p
(
td,n|zd,n ≤ M, θd,β , γ d

) = Multinomial
(
td,n|βzd,n

)
(6)

p
(
td,n|zd,n = M + 1, θd,β , γ d

) = Multinomial
(
td,n|γ d

)
(7)

The average cancer profile γ ′ is sampled from a Dirich-
let distribution parameterized by a weighted mixture
of non-cancerous profiles. Each pure cancer profile γ d
together with M contaminants {βm} forms a sample-
specific topic panel. The mixture proportion of topics
determines zd,n, indicating which source (i.e., γd or {βm})
each ion originates from. We infer the latent variables
γ ′, {γ d}d=1,··· ,D, {θd}d=1,··· ,D, and estimate the parameters
using the two-step learning approach developed based
on variational EM algorithm (ISOpure package [8], ver-
sion 1.4). The graphical model representing the above
topic model is shown in Fig. 1. This three-level model

Fig. 1 Graphical representation of the generative probabilistic model.
Hyperparameters η, κ ′ together with sources of contaminants {βm}
determine an average cancer profile γ ′ . Each of the D profiles is
associated with a mixture proportion θd (regularized by
hyperparameter α) and a topic panel consisting of {βm} and γ ′
(generated from the average cancer profile). Each of the N ions in a
profile tn,d is sampled from a topic indicated by zn,d
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allows a single profile to be associated withmultiple topics
(i.e., cancerous and non-cancerous origins). Such property
of the LDA-framed models enable more flexible repre-
sentation in data structure than that by other unigram
models or mixture of unigrams [16]. Also in contrast to
linear regression models, these methods use a multino-
mial noise model that is a better fit to noise measurement
in biomolecular expression data [13].

Scan-level purification model
Here, we extend the topic model to utilize the scan-level
measurements instead of the integrated peak intensities.
During LC/GC-MS data preprocessing, ion intensity is
obtained by integrating the scan-level measurements of a
detected chromatographic peakl within a specified reten-
tion time (RT) interval. This integration or truncation,
however, inevitably brings in variances which interfere
with original sample heterogeneity. Therefore, we propose
to investigate LC/GC-MS data purification with scan-level
measurements based on extracted ion chromatogram
(EIC), which preserves scan-level peak shape information.
We hypothesize that purification at the scan level leads to
more accurate results and offers the opportunity to extend
the model to characterize both ion abundance and peak
shape.
After ion tracing and missing value interpolation, we

can obtain a list of EICs for each sample. EIC is charac-
terized by its retention time (corresponding to multiple
scans), mass value, and ion abundance. In this scenario,
the observed data {td} (same for {βm}) consists of multiple
EIC peaks. Each peak is represented by ion abundances
across S scans with a certain elution profile shape F(·) as
shown in Fig. 2. Using these scan-level features, we model
each EIC peak as shown in Eq. (8):

Fig. 2 Extracted ion chromatography and peak shape function.
Example of Gaussian (red) and exponentially modified Gaussian (green)
peak shapes fitted to an experimental EIC involving 13 scans (blue)

td,n(s) = xd,n ·δd,n(s) ·F
(
s,φd,n

)+ed,n(s), s = 1, · · · , S
(8)

where, xd,n is the ion abundance for nth compound of dth
sample; δd,n(s) is a latent indicator to model the missing
scans; the chromatographic peak shape is characterized by
the exponentially modified Gaussian (EMG) function [17]
parameterized by φ, as described in Eq. (9), and ed,n(s) is
the random noise.

F (s,φ) = 1
2
ζ exp

(
1
2
ζ

(
2μ + ζσ 2 − 2s

))

× (1 − erf
(

μ + ζσ 2 − s√
2σ

)
, φ

.= {μ, ζ , σ }
(9)

We hypothesize that the data heterogeneity in td,n cor-
responds to the shape of the EIC (characterized by φ) as
well as ion abundance xd,n.
We extend the purification model we used for inte-

grated peaks by adding a lower layer to characterize the
scan-level information as illustrated in Fig. 3. The three
assumptions are maintained in this model in terms of
the dependancy of ion abundance variables. That is, Eqs.
(2)–(7) still hold for ion abundances xt , xβ , x′

γ , and xγ .
We assume error terms in intensity measurements in
Eq. (8) are independent random variables generated by
a normal distribution with conjugate prior following an
inverse-Gamma distribution:

ed,n(s)|σ 2
ed ∼ N

(
0, σ 2

ed

)
, σ 2

ed ∼ IG (ae, be) . (10)

Fig. 3 Graphical representation of the scan-level topic model. A lower
layer to characterize the scan-level information is added. Ion
abundances xt , xβ , x′

γ , and xγ together with peak shape
(parameterized in φ) determined the observed feature list t, β
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The missing scan indicator variable δd,n(s) follows a
Bernoulli distribution, parameterized by qd with a prior of
Beta distribution:

p
(
δd,n(s)|qd

) = Bernoulli
(
δd,n(s)|qd

)
, p

(
qd|aq, bq

)
= Beta

(
qd|aq, bq

)
.

(11)

The observed data point therefore follows the distribu-
tion:

td,n(s)|xtd,n, qd,φd,n, σ 2
ed ∼ qdN

(
xtd,nF(s,φd,n), σ 2

ed

)

+ (1 − qd)N
(
0, σ 2

ed

)
.

(12)

The peak shape parameters φ are considered to have a
normal distribution and its detailed priors are described
in [17]. The extended model contains variables that are
mutually coupled, providing no analytical form for the
posterior distribution in calculation. As a variational
approximation, we can split the model into two compo-
nents: 1) mixture model of underlying ion abundances,
and 2) scan-level feature generation. We adopt a two-
phase approach to iteratively update the latent variables
and estimate the parameters between the two parts.
Specifically, we use aMarkov chainMonte Carlo (MCMC)
sampling method [17] to infer the peak shape model
parameters of the second part (i.e., ion abundance xt , xβ ,
and shape function parameters φ). We then treat xt , xβ

as observed variables to implement the inference on the
first part using the same algorithm [8] employed in the
intensity-level purification. Once converged, the model
outputs the sample-specific mixture proportion θ , pure
ion abundance xγ , shape function parameters φ and
related parameters. After purification is performed, ion
intensity may be calculated by applying peak detection
algorithms [18, 19] to the pure EIC peaks {γ d,n} recovered
using Eq. (8).

Mass spectrometric datasets
The experimental data were acquired by analyses of tis-
sue and blood samples from patients with hepatocellular
carcinoma (i.e., HCC, case group) and liver cirrhosis (con-
trol group) [1–4]. HCC is a highly heterogeneous disease
both at the molecular and clinical levels [20]. Whereas all
patients in this study were diagnosed with liver cirrho-
sis, about half of them were also diagnosed with HCC.
Contamination occurs due to the influence from cirrhotic
constituents in HCC samples. In this study, we used GC-
MS data acquired by analysis of metabolites in 15 tissues
and LC-MS data acquired by analysis of proteins in sera
from 116 subjects.

GC-MS basedmetabolomic dataset
Fifteen liver tissues were collected from 10 participants
recruited at MedStar Georgetown University Hospital.
As shown in Fig. 4, the tissues were collected from 5
HCC cases (5 tumor and 5 adjacent cirrhotic tissues)
and 5 patients with liver cirrhosis. Samples were pro-
filed through Agilent 7890A gas chromatography cou-
pled with LECO’s time-of-flight mass spectrometer to
characterize the metabolome alterations associated with
HCC development in cirrhotic patients. We identified 559
metabolites after preprocessing the GC-MS raw data by
ChromaTOF GC software with True Signal Deconvolu-
tion package (Leco Corporation). Two types of purifica-
tion are investigated on the data. One is to purify HCC
profiles by removing contaminants from cirrhotic pro-
files. The other is to purify adjacent cirrhotic profiles by
reducing the impact of the profiles attributed to HCC.

LC-MS based proteomic dataset
We acquired 116 proteomic data by analysis of sera
from 57 HCC cases and 59 patients with liver cirrhosis
recruited from the hepatology clinics at MedStar George-
town University Hospital. Following depletion and diges-
tion, proteins extracted from sera were injected into a
3000 Ultimate nano-LC system interfaced to LTQ Orbi-
trap Velos and TSQ Vantage mass spectrometers in untar-
geted and targeted analyses, respectively. Proteins were

Fig. 4 Fifteen tissue samples collected from 10 subjects (5 HCC cases and 5 cirrhotic controls). Five tumor and five adjacent cirrhotic tissues were
obtained from the 5 HCC cases. Additional 5 cirrhotic tissues were obtained from the 5 independent subjects with liver cirrhosis
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identified and quantified by MaxQuant [21] and Sky-
line [22] in preprocessing untargeted and targeted LC-MS
data, respectively. Finally, 101 proteins that were con-
sistently identified across 116 samples were selected as
intensity-level features in expression profiles (i.e., L =
101). All profiles were normalized to the mean total-ion-
counts atN = 1.68×108. It is still not clear how the devel-
opment of tumor in liver directly affect the alterations in
blood. We hypothesize that there are some impacts from
cirrhotic constituents contributing to the HCC profile in
serum. The contamination may occur in an indirect way
through, for example, secreted biomolecules instead of
adjacent tissue cells. We apply the purification to remove
the influence from cirrhotic contaminants.

Synthetic datasets
Before applying the models to experimental data, we gen-
erated synthetic datasets by artificially mixing real LC-MS
data on both intensity and scan levels, and evaluated
the model based on its performance of deconvolving the
mixed data. We generated synthetic data based on the

116 LC-MS profiled serum proteomic dataset. We assume
here that human sera are homogeneous specimens. Hence
we can mix them to simulate heterogeneous cancer pro-
files. Figure 5 shows the generative process of 30 synthetic
cancer profiles with contamination, following the steps
below:

(i) Average the profiles of HCC group, {λs}s=1,··· ,57, to
obtain an average cancer profile γ ′, which is close to
the real cancerous profile for HCC.

(ii) Sample 30 individual pure cancer profiles
{γ d}d=1,··· ,30 from a Dirichlet distribution, as in (4),
parameterized by γ ′ and κd = 1

minl(γ ′
l )
.

(iii) Randomly select a subset of cirrhotic profiles
{βm}m=1,··· ,M (M = 9 in this simulation) as sources
of contamination. Normalize them into form of
multinomial distribution.

(iv) Combine M cirrhotic profiles with each of the pure
cancer profiles to create 30 topic panels, each con-
sisting ofM + 1 = 10 profiles.

Fig. 5 Generative process of heterogeneous cancer profiles. (i) average cancer profiles in case group; (ii) generate sample-specific pure cancer
profile; (iii) select sources of contaminants in control group; (iv) form topic panels; (v) generate sample-specific mixture proportions; (vi) generate
synthetic cancer profiles
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(v) Sample 30 mixture proportions {θd}d=1,··· ,30 from
a Dirichlet distribution, as in (2), parameterized by
α =[ 1, · · · , 1, 5], which is uniform for the first nine
constituents (contaminants) and with a larger value
assigned to last constituent (cancer origin). This
ensures a larger proportion of cancerous component
in final cancer profile.

(vi) Sample a topic indicator zd,n from θd using (5), and
sample a td,n from βz if z ≤ M or γ ′

d otherwise, as
in (6), (7). Repeat the sampling for N = 1.68 × 108
times to generate a synthetic cancer profile td.

Each of these 30 heterogeneous cancer profiles is a
mixture of a pure cancer profile and multiple contami-
nants. The intensity-level purification procedure will help
retrieve the pure cancer profile and estimate the sam-
ple purity as well as proportions of contaminants. Similar
to intensity-level simulation, we generated heterogeneous
dataset using scan-level features, i.e. EICs, exported from
Skyline [22]. Corresponding to 101 proteins, 187 peptides
with 561 scan-level features were extracted in each of the
116 samples. Each feature contains 60 scans representing a
chromatographic peak as illustrated in Fig. 6. We followed
the same steps (i-vi) except that we average and blend EIC
peaks instead of protein intensities. Finally, 30 heteroge-
neous cancerous samples, each characterized by a list of
561 EICs, are generated.

Evaluation methods
We evaluated the performances of our proposed mod-
els on both synthetic and real experimental LC/GC-MS
datasets in consideration of the following three goals: 1) to
test on intensity level if the model can reasonably estimate

Fig. 6 Extracted ion chromatograms from LC-MS based serum
proteomic data. Extracted ion chromatogram is characterized bym/z,
retention time, and ion abundance

the proportion of mixtures in each of the synthetic pro-
files and recover the pure cancer profiles underneath; 2)
to demonstrate if the scan-level purification model gives
more accurate estimation on synthetic data; 3) to investi-
gate the benefits of using these models to purify samples
from cancer patients collected in our previous differential
analysis studies.
Outputs of intensity-level model include the sample-

specific mixture proportions {θ∗
d}, pure cancer profiles

{γ ∗
d}, and the estimated average cancer profile γ ′∗.

Whereas, we expect outputs of sample-specific mixture
proportion {θ∗

d}, pure ion abundance {x∗
γ }, peak shape

function parameters φ∗ from extended model. For syn-
thetic datasets, we compare the estimated proportions of
mixtures {θ∗

d} with the true ones ({θd}) used to gener-
ate the synthetic data. Estimation error ratio for a single
sample is defined in Eq. (13).

ξd
(
θ∗, θ

) = ‖θ∗
d − θd‖1
‖θd‖1 × 100 %, d = 1, · · · , 30 (13)

Different from point-wise intensities, the scan-level esti-
mation error ratio for a single sample is defined in Eq. (14)

ξd
(
γ ∗, γ

) =
∥∥∥∑S

s=1
[
γ ∗
d(s) − γ d(s)

]∥∥∥
1∥∥∥∑S

s=1 γ d(s)
∥∥∥
1

× 100 %, d = 1, · · · , 30
(14)

For experimental datasets, we evaluated the
performances in multiple aspects including statistical
significance of the candidate biomarkers, ROC curves in
distinguishing the biological groups, and pathway analysis
results.

Results and discussions
Synthetic datasets
We applied current model and the extended model to the
synthetic intensity-level and scan-level LC-MS datasets,
respectively. By incorporating peak detection algorithms,
we can further compare the purification performances
between the two topic models.

Intensity-level purification
We obtained an average error ratio of mixture propor-
tion ξ̄d(θ

∗, θ) at 2.33 %, indicating a good characterization
of original proportions. The comparison of proportion
parameters for the first six profiles is depicted in Fig. 7
using radar charts and scatter plots. As shown in the
figure, the estimation in each profile has captured con-
sistent patterns as the ground truth in each of the 10
components. We achieved an average correlation coeffi-
cient between θd and θ∗

d at 0.975. The model accurately
recognized those non-cancerous constituents contributed
as small as 5 % in each sample. The proportion of can-
cerous origin is overestimated in some samples due to the
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Fig. 7 Similarity evaluation on θ . Comparison between estimated θ∗ and true mixture proportions θ for the first six profiles. Top: radar charts with 10
spokes, each representing a source in topic panel. The proportion of each source is depicted by the length of lines with color (orange for estimation
θ∗ and blue for ground truth θ ). Bottom: scatter plots of corresponding proportions in ground truth θ and estimation θ∗ . The correlation coefficients
ρ are given on the left-top

smaller contributions from the contaminants. The differ-
ences between θd and θ∗

d are also related to the recovered
pure cancer profiles {γ ∗

d}. Similarly, we have the average
estimation error ratio for sample-specific pure cancer pro-
files ξ̄d(γ

∗, γ ) = 6.51 %, which is smaller than ξ̄d(t, γ ) =
16.57 %, i.e., the error ratio between unpurified cancer
profile and true cancer profile. Figure 8 shows scatter plots
of 101 proteins in unpurified cancer profile {td}d=1,··· ,6
versus true cancer profile (blue) and in purified cancer
profile versus true cancer profile (orange). The average
correlation coefficient increases from 0.986 to 0.999 after
purification. The effects of purification are illustrated in
Fig. 9 by projecting the high-dimensional (dim = 101)
profiles onto their top three principal components. We
observe that the purified cancer profiles weremore distant
from non-cancerous profiles, and regularized towards an
average cancer profile.

Scan-level purification
We first evaluated the purification power in the case
of scan-level features. The average estimation error ratio
of mixture proportions is 3.57 % by Eq. (13). In terms of
recovering the underneath pure feature list, we achieved
the average estimation error ratio for sample-specific
pure cancerous feature list ξ̄d(γ

∗, γ ) = 3.12 %, which
is smaller than ξ̄d(t, γ ) = 9.61 %, i.e., the error ratio
between unpurified cancerous feature list and ground
truth. The purification with scan-level features works to
some extent but it is also interesting to prove the extended
model works in a more accurate way than intensity-level
topic model. To allow intensity-level purification model
to handle scan-level synthetic dataset, we employed peak
detection algorithms (i.e., through successive convolution
with a 4th order Savitzky-Golay smoothing filter and a

first-order derivative of a Gaussian kernel with window
width of 25 scans, standard deviation of 3) to transfer EIC
peaks into intensities using area under curve. The same
algorithm is applied for transferring purified peak list
resulted from the extended model. We obtained a greater
distance of mixture proportion with ¯ξI

d (θ∗, θ) at 7.23 %
if using intensity-level purification model, compared to
half ( ¯ξS

d (θ∗, θ) = 3.57 %) achieved by extended scan-level
purification model.

LC-MS based proteomic dataset
We treated all 59 cirrhotic profiles as origins of contami-
nants to purify 57 HCC profiles. We plotted these profiles
using their first three principal components in Fig. 10.
Similar to the simulation result, we observed a clearer

distinction between HCC and cirrhotic profiles after
purification. To further understand the improvements, we
carried out the following analyses on both purified and
unpurified profiles.
Firstly, in statistical analysis, the most relevant pro-

teins with differential intensities between HCC cases and
cirrhotic controls were selected using t-test, and the asso-
ciated p-values were adjusted based on multiple testing
correction (FDR ≤ 0.05). We found 43 proteins with sig-
nificant change in expression between the two groups.
The number of reported significant proteins under the
same testing method increased from 43 to 75 after purifi-
cation. The majority of the proteins identified in original
profiles (40 out of 43) remained significant after purifi-
cation. If purified based on scan-level features, the num-
ber of significant proteins also increased to 69, among
which 38 and 61 are overlapped with unpurification and
intensity-level purification results, respectively.
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Fig. 8 Similarity evaluation on γ . The first six out of 30 scatter plots of unpurified cancer profiles versus true cancer profiles (blue) and corresponding
scatter plots of purified cancer profiles versus true cancer profiles (orange). The correlation coefficients ρ between each pair of profiles are given on
the left-top

Fig. 9 PCA analysis on simulated dataset. Thirty cancer profiles {td} (red square), 30 purified cancer profiles {γ ∗
d} (yellow circle), and 9 sources of

cirrhotic contaminants {βm} (blue triangle)
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Fig. 10 PCA analysis on proteomic dataset. Fifty seven HCC profiles {td} (red square), 57 purified HCC profiles {γ ∗
d} (yellow circle), and 59 sources of

cirrhotic contaminants {βm} (blue triangle)

Figure 11a, b, and c show ROC curves for each of the 43,
75, and 69 significant proteins, respectively. A bootstrap
method (1000 bootstrap replicates) was used to com-
pute the 95 % confidence interval (CI) of the area under
each ROC curve. After intensity-level and scan-level
purification we respectively achieved an average AUC of
0.793 (with 95 % CI at [0.700, 0.863]) and 0.811(with
95 % CI at [0.719, 0.890]), both higher than 0.706
(with 95 % CI at [0.606, 0.795]) for original biomarkers.
More powerful biomarkers were selected after scan-level
purification.
Finally, we used DAVID [23] (version 6.7) to identify

significant signaling pathways, where the UniProt IDs
of the significant proteins were mapped to the KEGG
[24] database. As shown in Table 1, three pathways were
reported from the original list of significant proteins.

Following intensity-level and scan-level purifications, we
found peroxisome proliferator-activated receptor (PPAR)
signaling pathway with five and six significant proteins
involved in addition to the three pathways (complement
and coagulation casades, systemic lupus erythematosus,
and prion disease) identified without purification. This is
interesting in light of previous reports linking cancer and
PPARs expressed in human liver [25].

GC-MS basedmetabolomic dataset
Heterogeneity issue is more intuitive in tissue samples,
where the contaminations originate from the neighbor-
ing non-homogeneous cells. We first purified the HCC
profiles {td}d=1,··· ,5 using independent cirrhotic profiles
{βm}m=1,··· ,5 as the sources of contamination. Without

Fig. 11 ROC curves of significant proteins. a ROC curves for each of 43 significant proteins before purification (AUC = 0.706, 95 % CI [ 0.606, 0.795]).
b ROC curves for each of 75 significant proteins after intensity-level purification (AUC = 0.793, 95 %CI [ 0.700, 0.863]). c ROC curves for each of 69
significant proteins after scan-level purification (AUC = 0.811, 95 % CI [ 0.719, 0.890])
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Table 1 Signaling Pathways (number of significant proteins involved in the pathway)

Without purification Intensity-level purification Scan-level purification

Complement and coagulation cascades (13) Complement and coagulation cascades (18) Complement and coagulation cascades (19)

Systemic lupus erythematosus (5) Systemic lupus erythematosus (6) PPAR signaling pathway (6)

Prion diseases (4) PPAR signaling pathway (5) Systemic lupus erythematosus (4)

- Prion diseases (4) Prion diseases (4)

purification, none of the 559 metabolites passed the sta-
tistical test as significant (FDR adjusted p-value ≤ 0.05).
However, seven metabolites were identified as significant
after the profiles were purified. For the adjacent cirrhotic
profiles {ψd}d=1,··· ,5, we applied the model to remove con-
taminations from any neighboring cancerous cells. We
expected to observe that the purified adjacent cirrhotic
profiles became close to independent cirrhotic profiles.
The dissimilarity, defined in (8), between independent
and adjacent cirrhotic profiles is ξ̄ (ψ ,β) = 28.3 %, and
goes down to ξ̄ (ψ∗,β) = 24.9 % after purification. The
improvements are less substantial compared to the previ-
ous datasets, presumably due to the limited sample size
and potential overfitting issue.

Conclusions
In this paper, we investigate topic model-based inference
methods to computationally address heterogeneity issue
in samples analyzed by LC/GC-MS. The topic model gives
a probabilistic explanation on the corpus of LC/GC-MS
based profiles on both integrated peak and scan-level ion
intensity levels. The performances of our models in esti-
mating mixture proportion and retrieving underlying true
cancer profile are evaluated through well-designed syn-
thetic data. We observed that incorporation of scan-level
features gives more accurate purification results by allevi-
ating the loss in information caused as a result of integrat-
ing peak intensity values. Through GC-MS metabolomic
and LC-MS proteomic datasets we acquired from tissues
and blood samples, respectively, we showed the bene-
fit of applying topic-model based purification of the data
prior to statistical and pathway analyses. Specifically, we
observed improved discrimination between case and con-
trol groups and biologically meaningful pathway analysis
results. Future studies will focus on cross-validation of
the findings either computationally throughmass spectro-
metric data from large-scale cancer biomarker discovery
studies or by using ground-truth information from pathol-
ogy reports and literature survey.
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