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Abstract: In 2011, the Nobel Prize in Physiology or Medicine was awarded to three immunologists:
Bruce A. Beutler, Jules A. Hoffmann, and Ralph M. Steinman. While Steinman was honored for his
work on dendritic cells and adaptive immunity, Beutler and Hoffman received the prize for their
contributions to discoveries in innate immunity. In 1996, Hoffmann found the toll gene to be crucial for
mounting antimicrobial responses in fruit flies, first implicating this developmental gene in immune
signaling. Two years later, Beutler built on this observation by describing a Toll-like gene, tlr4, as
the receptor for the bacterial product LPS, representing a crucial step in innate immune activation
and protection from bacterial infections in mammals. These publications spearheaded research in
innate immune sensing and sparked a huge interest regarding innate defense mechanisms in the
following years and decades. Today, Beutler and Hoffmann’s research has not only resulted in the
discovery of the role of multiple TLRs in innate immunity but also in a much broader understanding
of the molecular components of the innate immune system. In this review, we aim to collect the
discoveries leading up to the publications of Beutler and Hoffmann, taking a close look at how early
advances in both developmental biology and immunology converged into the research awarded with
the Nobel Prize. We will also discuss how these discoveries influenced future research and highlight
the importance they hold today.

Keywords: Toll-like receptors (TLRs); innate immunity; immunology; Drosophila; LPS; innate
immune signaling; Nobel Prize; TIR domain

1. Introduction

The 2011 Nobel Prize to Hoffmann, Beutler, and Steinmann was a testament to the
advances in research on innate immunity made in the 1990s and early 2000s. While
concepts of adaptive immunity were already well described at the time, the function of
innate immune cells was mostly thought to be reduced to the activation of the adaptive
immune system, the nonspecific elimination of microbes and materials by phagocytosis,
and inflammation. While Steinmann bridged the gap between the two with his work
on dendritic cells [1–3], it was the work of Hoffmann and Beutler that elevated the field
of innate immune recognition. Hoffmann published on the antimicrobial function of the
developmental gene toll in Drosophila melanogaster in 1996 [4], and Beutler built on these data
by identifying the Toll-like receptor TLR4 as the receptor for bacterial lipopolysaccharide
(LPS) in mammals in 1998 [5], sparking a revolution in the field. These publications gave
rise to the identification of the TLR family of receptors and allowed for the discovery of
many other pattern recognition receptors (PRRs) as well. While ground-breaking, the
findings of Hoffmann and Beutler were built on decades worth of discoveries in the fields
of immunology and developmental biology, the most important of which we will discuss
in this review.

2. Toll and Pathways in Drosophila

The origin of Toll in immunity can be traced to development biology research. The
fruit fly Drosophila melanogaster has been a key model organism in studying developmental
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biology and genetics for over a century, and, besides Hoffmann, four more Nobel Prizes
have been awarded to scientists for their work with this animal. The first experiments
involving Drosophila were conducted as early as 1901 by William Castle at Harvard Univer-
sity [6]; however, it was Thomas Hunt Morgan who achieved the first breakthrough results
with Drosophila, confirming Mendel’s theory of inheritance and establishing the concepts of
genes and chromosomes [7]. This discovery earned him the 1933 Nobel Prize in Physiology
or Medicine. Morgan’s student, Hermann Muller, later found that radiation mutates genes
and that the offspring of irradiated Drosophila have mutated genes too [8], earning him a
Nobel Prize in physiology or medicine as well. Easy to breed and inexpensive to house,
Drosophila quickly became the gold standard animal model in genetic research.

Modern Drosophila research emerged in the 1970s, when new techniques allowed
for the genetic mapping of embryonic development. It emerged that larvae contain pre-
determined groups of cells—so-called imaginal discs—that would give rise to the var-
ious features and body parts of the adult Drosophila yet hold no function in the larvae
themselves [9,10]. These imaginal discs could be transplanted [11,12], allowing for the
investigation of their individual functions. Clonal analysis of these discs and the result-
ing labelling techniques [10,13] helped in understanding the fate of these individual cell
clusters, resulting in the discovery of anterior (A) and posterior (P) compartments within
various structures of the adult fly, being based on different imaginal discs [14–16]. Several
morphogens that organize the development of distinct compartments were discovered
during this time [17]; among them is dorsal, a mutation which caused a fully dorsalized
phenotype [18]. Other mutants displaying similar phenotypes, including pelle, tube, toll,
spätzle, and cactus [19,20], which soon emerged one after the other, revealed the genetic
blueprint of the animal. A key factor in the discovery of these genes was the utilization
of new molecular techniques in DNA cloning [21], and these findings were later awarded
with another Nobel Prize to Edward B. Lewis, Christiane Nüsslein-Volhard, and Eric F.
Wieschaus in 1995 for their discoveries regarding “the genetic control of early embryonic
development” [22].

Toll was identified as one of the most important genes in embryonic development and
the establishment of embryonic polarity. While most mutations of genes from the dorsal
group retain some residual polarization, toll mutants lack any organization, and dorsoven-
tral polarization by the reintroduction of wildtype (WT) cytoplasm is fully dependent on
where the cytoplasm is injected [23]. It was suggested that the toll protein product is con-
stantly expressed but would exist in an activated or an inactivated state and that members
of the dorsal group, including toll, might be part of a signaling pathway [24], hypotheses
that should later be confirmed on a biochemical level. The toll gene product Toll was soon
identified as a membrane-bound receptor [25], capable of signal transduction through an
extracellular stimulus [26]. This ligand was then identified as Spätzle, another member
of the dorsal group [27], and Dorsal itself was shown to be a transcription factor recruited
to the nucleus upon Spätzle binding to Toll. As stated above, Toll was then shown to be
homologous to the mammalian type 1 IL-1 receptor (IL1R1) [28], while Dorsal was closely
related to the IL-1-induced transcription factor NF-κB [29]. More similarities between
the Toll pathway and the inflammation-inducing anti-microbial IL-1 receptor-induced
signaling cascades soon became apparent, laying the groundwork for the discoveries of
Hoffmann. Most notably, cactus was shown to be a homologue of the inhibitor of NF-κB
(I-κB) in its function to retain Dorsal or NF-κB, respectively, in the cytoplasm [30,31], and
both pathways involve structurally related protein kinases, such as the pelle gene product
(pll) in the Toll pathway [32] and the interleukin-receptor associated kinase (IRAK) in the
IL-1 pathway, respectively [33]. In addition, both dorsal itself as well as the closely related
Dorsal-related immunity factor (dif ) had been shown to exert antimicrobial functions in fat
body cells from Drosophila [34,35].

Interestingly, a protein structurally related to both Toll and IL1R1 was discovered in
a different kingdom of life. The N protein from the tobacco plant shared a cytoplasmic
domain with Toll and IL1R1, a domain termed the Toll-IL-1 receptor resistance (TIR) domain
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by Barbara Baker, who uncovered the role of the N protein in the antiviral responses against
Tobacco mosaic virus [36]. The developmental role of Toll and its homology to both IL1R1
and the N protein were therefore important precursors to the discovery of the role of Toll
in Drosophila innate immunity.

3. Toll Has Antimicrobial Functions

In 1996, Jules Hoffmann published on the antimicrobial function of three different
genes, spätzle, cactus, and toll (tl), in the fruit fly Drosophila melanogaster [4]. Jules Hoffmann
was born in Luxembourg on 2 August 1942. From an early age, he had a fascination for
insects, an interest that would carry over into his research career. He obtained his doctoral
degree in biology in 1969 from the University of Strasbourg, becoming a research associate
in the same year. He went on to pursue postdoctoral training at the Philipps University
of Marburg, Germany in the area of biochemistry before returning to Strasburg in 1974
to set up his own lab and establish a research unit on the immune response in insects
in 1978. Here, he laid the groundwork for the research that would result in him being
awarded the Nobel Prize decades later. After initial success working on grasshoppers [37],
he turned towards Drosophila melanogaster later, identifying antimicrobial polypeptides
such as diptericin [38] or defensin [39] as being part of the immune system of these insects.
His groundbreaking and Nobel Prize-awarded work, however, was for the 1996 paper on
Toll in Drosophila immunity, where he and Bruno Lemaitre were the first to describe the Toll
pathway as being responsible for the production of the antifungal peptide dorsomycin [4],
a discovery sparking a huge interest in similar proteins in mammals and ultimately leading
to the discovery of the role of TLRs in innate immunity.

Spätzle, cactus, and toll are part of the dorsoventral signaling pathway and, curiously,
the activation of the pathway had first been shown to lead to the activation of the dorsoven-
tral morphogen dorsal, which is key to the establishment of dorsoventral polarity in the
developing Drosophila embryo [40]. Hoffmann found that all three of these genes are
involved in mounting an antifungal response, showing a decreased induction of the anti-
fungal peptide gene drosomycin in animals with mutations in spätzle, cactus, or toll. Dorsal,
however, was not involved. Drawing parallels to the components of the NF-κB pathway,
Hoffmann described how the activation of the Toll receptor by its ligand spätzle leads to a
similar signaling cascade as the activation of IL1R1 by IL-1 [41]. As stated above, IL1R1
had been shown to be a homologue to Toll, as well as the N protein in tobacco [36], which
led to the concept of the ‘TIR’ domain. The N protein had been shown to be required for
resistance to Tobacco mosaic virus. That Toll had been shown to be involved in host defense
made biological sense, since IL1R1 and the N protein were already known to be similarly
involved in immunity in mammals and plants, respectively. The TIR domain was therefore
a very ancient signaling domain for innate immunity stretching back billions of years to
the common ancestor of plants and animals.

Toll drove an antifungal response but not antibacterial response. Antibacterial re-
sponses are facilitated by the immune deficiency (imd) gene [42], with the antibacterial
peptides cecropin, attacin, and defensin being partly dependent on Toll and diptericin
and drosocin being independent of Toll. These results were achieved by the mutation
of components of either the imd or tl pathways and the subsequent investigation of the
downstream activation of components of these antimicrobial pathways or the challenge of
the mutated flies with bacterial or fungal infections. This paper was therefore the first to
describe the Toll pathway as a component of the innate immune system, a finding that will
later be expanded to mammals and lead to the discovery of a multitude of receptors and
pathways in innate immunity common to plants and animals.

4. Innate Immune Signaling and LPS

The idea of innate immune sensing by so-called pattern recognition receptors was
proposed by Charles Janeway in 1989 [43]. TLR4 emerged as a prototypical PRR. It is worth
going back a bit further in time to fully understand the motivations that drove Beutler
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in his pursuit of the LPS receptor. LPS was first described as an “endotoxin” derived
from Vibrio cholerae, the bacterium responsible for cholera, by Richard Pfeiffer in 1892,
inducing fever and death even when the bacterium was killed [44]. Soon after, Eugenio
Centanni isolated the substance and proposed it to be non-proteinous due to its remarkable
heat stability [45]. Around the same time, physician William B. Coley started treating
his cancer patients at the Memorial Hospital in New York with heat-inactivated bacteria,
observing tumor remission in some cases [46], which, today, we know was due to the strong
activation of the immune system by the bacterial LPS [47]. The endotoxin was identified as
lipopolysaccharide in 1943 [48] but was not fully structurally identified until the 1980s [49],
and while the detailed composition and the strength of the response may vary depending
on the bacteria in question, they all induced the same inflammatory symptoms [50]—that
is, until the 1960s. Suddenly a mouse strain was mentioned that was resistant to LPS-
induced inflammation [51], indicating how this susceptibility to endotoxin may be down
to very distinct cellular processes. It was later discovered that the resistance stemmed
from a mutation in a distinct locus, appropriately named lps [52,53]. These mice, as well
as another resistant strain identified in 1977 [54], termed C57BL/10ScCr, were important
pillars for Beutler’s work, as the genetic analysis of the lps locus would provide the key for
the discovery of the LPS receptor.

With emerging knowledge about the individual cells acting within inflammation and
the immune system, it became clear that macrophages were the main cell type responsible
for LPS-induced inflammation [55], raising the question of whether such an intense reaction
to LPS was a good thing or a bad thing. As a strong inducer of sepsis, it might be viewed
as a purely toxic substance; however, Coley’s work showed how LPS responses could
keep malignancies at bay. In addition, by the end of the 1960s, it was clear that LPS could
be beneficial in pathogen clearance, acting as an adjuvant [56–58]. In the 1980s, it was
also shown that mice of the above-mentioned strains that lack an LPS response are more
susceptible to infection with gram-negative bacteria [59,60], the very organisms that carry
LPS on their surface. It was therefore clear that a sensing mechanism for LPS must exist to
detect and respond to LPS-bearing bacteria. One of these responses included the production
of cytokines such as tumor necrosis factor (TNF) [61], the induction of which was found to
be at least partly responsible for LPS-induced toxicity [62], and TNF seemed to be beneficial
in resolving the same type of microbial infections as LPS [63,64].

The work on cytokines such as IL-1 and TNF, which overlap in many of their pro-
inflammatory effects, in turn provided the first ideas as to how the signal transduction from
LPS to the nucleus might work. In the years before the discovery of TLR4, it had already
been established that IL-1 binds IL1R1, resulting in the activation of the transcription
factor NF-κB, as does LPS [65]. Two LPS-binding proteins could be identified prior to the
discovery of TLR4. The LPS-binding protein (LBP) was first described in 1986 [66] and
was found to enhance LPS-induced signaling events [67,68]. This protein, however, was
not membrane-bound and could thus not act as a signal transducer. The second receptor,
CD14, is a membrane-bound protein [69,70], but it lacks cytoplasmic domains [71]. Then,
in 1996, Hoffmann published his work on the antimicrobial role of Toll in Drosophila [4],
and, suddenly, the relevance of this receptor family in immunity became apparent and gave
Beutler a reason to pursue TLR4 once it came up as a candidate in the unravelling of the lps
locus. Importantly, Charles Janeway and Ruslan Medzhitov had shown in 1997 that TLR4,
described as human Toll in their paper, could activate immune cells [72]. While other TLR
members had been described before TLR4, their function and ligands remained unknown
until after the identification of TLR4 as the LPS receptor [73,74], further highlighting the
significance of Beutler’s discovery. The most important milestones leading up to Beutler
and Hoffmann’s discoveries are listed in a timeline in Figure 1.
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significantly to today’s knowledge on TLRs and innate immunity.

5. TLR4 Is the Receptor for Bacterial LPS

The search for the LPS receptor started with a thorough investigation of the so-called
lps locus after it was reported decades previously that C3H/HeJ mice, a strain with mu-
tated lps, are unresponsive to LPS [75,76]. LPS resistance was also shown in mice of the
C57BL/10ScCr strain [54,77]. While an LPS-binding protein termed cluster of differentia-
tion 14 (CD14) had already been identified on the surface of macrophages, this protein is
not able to transduce a signal due to a lack of a cytoplasmic domain, as described above [70].
CD14 augments LPS-induced signaling [71]; however, it was likely to act as a co-receptor
for the then-unknown TLR4. Utilizing genetic and physical mapping data, Beutler charac-
terized the lps locus and identified tlr4 in the area mapped. Bruce A. Beutler was born on
29 December 1957 in Chicago, Illinois. Growing up in California, he graduated from the
University of California, San Diego in 1976 at only 18 years old with a degree in biology.
Beutler then pursued an M.D. degree at the University of Chicago, which he obtained in
1981. After postdoctoral training at Rockefeller University in New York, he became Assis-
tant Professor in 1985 before moving to Dallas a year later. It was in New York where he
made one of his first important discoveries: isolating tumor necrosis factor-alpha (TNF-α)
in mice [61]. At the University of Texas (UT) Southwestern Medical Center in Dallas, he
obtained an associate professorship in 1990 and, finally, a full professorship in 1996. Here,
he continued working on TNF, generating Immunoglobulin G (IgG) heavy chain-based
TNF antagonists [78], eventually leading him to become interested in one particular TNF-
inducing agent, LPS. Setting out to explain the induction of TNF and other cytokines by
LPS, together with Alexander Poltorak, he was able to identify Toll-like receptor 4 (TLR4)
as the receptor for LPS in 1998 [5], earning him his Nobel Prize.

Tlr4 was a promising target, as it was by then known to be part of the IL1R/TLR
family. Comparing the macrophage mRNA and genomic DNA from an LPS-responsive
vs. C3H/HeJ mouse strain, Beutler and collogues identified a mutation in the tlr4 gene,
resulting in a proline to histidine substitution in the tlr4 gene from the LPS-unresponsive
mice. In the C57BL/10ScCr strain, tlr4 mRNA was entirely absent, further supporting the
importance of this gene in LPS-induced signaling. Finally, TLR4 was shown to be downreg-
ulated in response to LPS treatment, possibly to facilitate tolerance to LPS, a well-known
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phenomenon. In the context of the discoveries made by Hoffmann two years prior [37],
Beutler therefore concluded that TLR4, like the Drosophila homologue Toll, launched a
response to microbial infection. In the case of TLR4, however, this pathway has evolved to
detect gram-negative bacteria, with developmental aspects that had been described for Toll
in insects being lost. The homologies between Toll and TLR4 are highlighted in Figure 2.
In this work, Beutler expands the discovery made by Hoffmann in insects to mammals,
revealing one of the most important antimicrobial receptors in mammals in the process.
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The Nobel Prize was awarded to Hoffmann and Beutler in recognition of their contri-
bution to the discovery of Toll and TLRs in innate immunity. While years of research are
represented in this award, these two papers are particularly important.

6. Scientific Impact

After the function of TLR4 was determined, the field of innate immune recognition
exploded. Suddenly, the innate immune system was no longer seen as a crude, unspecific
system with the simple task of activating adaptive immunity. It proved to be a sophisticated
detection system capable of responding to and selecting between distinct microbial threats.

Soon after TLR4, the functions of many other TLRs were defined, each with another
specific microbial ligand. Shizuo Akira found that TLR2 and TLR6 recognize gram-positive
bacteria by binding to lipid structures [79,80], and TLR9 was shown to bind to bacterial
DNA [81]. TLR3 was found to bind to double-stranded RNA (dsRNA), as found after
viral infection [82], TLR5 was found to bind bacterial flagellin [83], and TLR7 and 8 were
found to recognize viral single-stranded RNA (ssRNA) [84]. TLR10 binds triacylated
lipopeptides [85] and is expressed in humans but not in mice. Conversely, mice express
TLR11, which binds bacterial profilin and flagellin [86,87], TLR12, which binds profilin [86],
and TLR13, which binds bacterial ribosomal RNA [88], which are all missing in humans.
In addition, TLR2 was found to heterodimerize with TLR1 or TLR6 [89], while TLR11
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dimerizes with TLR12 [90]. In Figure 3, all currently known TLRs are displayed, with their
ligands and primary adaptors.
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Besides TLRs, other PRRs were also discovered in the following years—most notably,
NOD-like receptors (NLRs) [91], the first of which was discovered in 1999 [92], RIG-like
receptors (RLRs) [93], first described in 2004 [94], and C-type lectin receptors (CLRs) [95],
which, although being considered part of the immune system for a long time, were shown
to bind microbial products in 2000 [96].

There were also remarkable advances in determining the signaling pathways initiated
by TLRs. Adaptor proteins involved in signaling were shown to have TIR domains. The
first to be described was Myeloid differentiation primary-response protein 88 (MYD88).
Discovered before the TLRs, it was found to bind to IL1R1, facilitating downstream sig-
naling events [97], and, subsequently, it was found to mediate TLR signaling in TLRs as
well [98]. Signaling was therefore initiated by TIR–TIR interactions from the receptor to
adaptors. An exception was TLR3, which signals through TIR domain-containing adaptor
protein inducing IFNβ (TRIF) [99,100]. TLR4 is also able to signal independently of MYD88
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through TRIF when endocytosed [101,102]. TRIF-related adaptor molecule (TRAM) recruits
TRIF to the TLR signaling complex [103,104], while MYD88-adaptor-like protein (MAL)
recruits MYD88 to TLR4 and all other TLRs that use MYD88 [105]. From here on, TLR
signaling gets more complex (described in more depth elsewhere) [106,107]. Even today,
new aspects of TLR signaling are still being uncovered, especially revolving around the
functionality of TIR domains. The TIR domain containing protein sterile alpha and the
TIR motif containing 1 (SARM1), for example, were found to have enzymatic activity,
depleting nicotinamide adenine dinucleotide (NAD+) [108]. Indeed, several TIR domains
have been found to have NADase activities, across various species as well [109]. While TIR
domains from TLR signaling components other than SARM1 in animals do not seem to
have NADase activity, the discovery of the enzymatic activity of this domain gives this
aspect of TLR-signaling molecules a whole new angle and contributes to the burgeoning
field of immunometabolism.

7. Concluding Remarks

Overall, it cannot be denied that the discoveries that resulted in the Nobel Prize
being awarded to Hoffmann and Beutler are among the most important immunological
milestones of the outgoing 20th century and are a testament to the tenacity of both scientists,
along with the members of their research groups. They reshaped the way innate immunity
was perceived and our understanding of how the first line of defense in our body actually
works. While the Nobel Prize was well deserved, other pioneers in the field deserve
recognition too. Without the groundbreaking discoveries of Nüsslein-Volhard in the field
of Toll signaling or the emphasis placed on the innate immune system by Charles Janeway,
these discoveries would not have been possible. Additionally, other brilliant scientists, such
as Ruslan Medzhitov and Shizuo Akira, should be mentioned alongside Hoffmann and
Beutler for their many contributions. The two key publications described here truly elevated
the field, the consequences of which are still being extensively explored by many scientists.
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