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Abstract: Annexin A1 (AnxA1) is a potent anti-inflammatory protein that downregulates
proinflammatory cytokine release. This study evaluated the role of AnxA1 in the regulation of
NLRP3 inflammasome activation and lipid release by starch-elicited murine peritoneal macrophages.
C57bl/6 wild-type (WT) and AnxA1-null (AnxA1-/-) mice received an intraperitoneal injection of
1.5% starch solution for macrophage recruitment. NLRP3 was activated by priming cells with
lipopolysaccharide for 3 h, followed by nigericin (1 h) or ATP (30 min) incubation. As expected,
nigericin and ATP administration decreased elicited peritoneal macrophage viability and induced
IL-1β release, more pronounced in the AnxA1-/- cells than in the control peritoneal macrophages.
In addition, nigericin-activated AnxA1-/- macrophages showed increased levels of NLRP3, while
points of co-localization of the AnxA1 protein and NLRP3 inflammasome were detected in WT cells,
as demonstrated by ultrastructural analysis. The lipidomic analysis showed a pronounced release of
prostaglandins in nigericin-stimulated WT peritoneal macrophages, while ceramides were detected
in AnxA1-/- cell supernatants. Different eicosanoid profiles were detected for both genotypes, and
our results suggest that endogenous AnxA1 regulates the NLRP3-derived IL-1β and lipid mediator
release in macrophages.

Keywords: inflammation; nigericin; pyroptosis; mass spectrometry; lipidomics

1. Introduction

Annexin A1 (AnxA1) is a 37-kDa protein that can mimic the anti-inflammatory action of
glucocorticoids by inhibiting eicosanoid and phospholipase A2 synthesis, affecting components
of inflammatory reaction and arachidonic acid release [1,2]. The ability of AnxA1 to down-modulate
cellular and molecular processes of inflammation contributes to tissue homeostasis and reprogramming
of macrophages [3]. The development of the AnxA1-null mice (AnxA1-/-) strain has allowed for a better
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understanding of the role of endogenous AnxA1 protein in leukocyte biology and the inflammatory
process. In models of inflammation induced by carrageenan or zymosan, AnxA1-/- animals exhibit an
exacerbated response characterized by a prominent leukocyte influx and IL-1β release [4]. In addition,
macrophages from AnxA1-/- mice demonstrate reduced ability to phagocytose non-opsonized zymosan
particles [5], and show higher TLR4 mRNA expression and IL-1β production after lipopolysaccharide
(LPS) stimulation than wild-type cells [6]. These data demonstrate that AnxA1 exerts a negative
inflammatory response through its down-modulation effects on macrophage cells, which are important
leukocytes in an innate response.

In addition, the stimulation of a P2 × 7 receptor (P2X7R) in resting and M2 macrophages, but not
in M1 cells, provokes the rapid release of AnxA1 through its exposure with phosphatidylserine to the
outer plasma membrane leaflet [7]. Also, the release of AnxA1 after P2X7R activation is not affected
in inflammasome knockout macrophages, suggesting that its release is independent of caspase-1
activation. Considering that P2X7R activation is necessary to promote the assembly of the NLRP3
inflammasome and cytokine release [8], the release of AnxA1 represents another P2X7R macrophage
signaling pathway for the resolution of the inflammation.

Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing
3 (NLRP3 or NALP3) is a cytoplasmic sensor that oligomerizes to form a platform known as
inflammasome, a protein complex that controls the release of IL-1β and IL-18 by activating caspase-1 [9].
In macrophages, NLRP3 inflammasome activation can be triggered by the pore-forming ionophore
nigericin, extracellular ATP, and crystalline substances that induce pyroptosis, a type of cell death [10].
In addition, previous research has shown that some fatty acid-derived lipids, such as the prostaglandin
E2 (PGE2), regulates NLRP3 and the maturation of IL-1β. PGE2 can be associated with inhibition of the
NLRP3 activation in human macrophages through the EP4 receptor and by the EP2 receptor in murine
macrophages, decreasing IL-1β maturation [11,12]. NLRP3 activation driven by damage-associated
molecular patterns is also associated with the production and release of several lipidic mediators,
such as eicosanoids derived from arachidonic acids and ceramides, which cause cellular and systemic
damages to the organism [13]. Eicosanoids, such as prostaglandins and leukotrienes, are lipid mediators
that play a crucial role in initiating the acute inflammatory response [14]. Systemic activation of
inflammasomes leads to the production of large amounts of eicosanoids in several minutes, contributing
to rapid initiation of inflammation characterized by increased vascular permeability, culminating in
pathological inflammatory effects [15].

Inflammasome activation is vital for the control of infections and the regulation of metabolic
processes and immune responses [16]. However, altered functions of these platforms are implicated
in the pathogenesis of several human diseases. Therefore, investigations that highlight novel
signaling components that regulate inflammasome activation are crucial to prevent or treat human
infections/inflammatory diseases. Considering that AnxA1 is a potent anti-inflammatory protein that
down-regulates proinflammatory mediator release, phospholipase A2 and, consequently, the critical
cascade pathways of eicosanoid production such as that of cyclooxygenase 2 (COX-2) [17,18], this
study evaluated its role in regulating the NLRP3 inflammasome and lipid release by macrophages.

2. Materials and Methods

2.1. Animals

Male C57BL/6 wild-type (WT) and AnxA1-null (AnxA1-/-) mice aged 7–8 weeks and weighing
20–25 g were kept in cages (n = 4) in a temperature-controlled environment (22–25 ◦C) with a 12-h
light-dark cycle. They received water and food ad libitum. All animal procedures were approved by
the Ethics Committee in Animal Experimentation of the Federal University of São Paulo-UNIFESP
(CEUA agreement number: N◦ 6493130318) and by the Internal Biosafety Commission (CIBio).
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2.2. Cell Culture and Treatments

Lipopolysaccharide (LPS), nigericin, and ATP were obtained from InvivoGen (San Diego, CA,
USA). LPS and ATP were reconstituted in endotoxin-free water and nigericin in 100% ethanol. The stock
solutions were diluted in endotoxin-free water to prepare intermediate concentration solutions, stored
at −20 ◦C.

WT and AnxA1-/- peritoneal macrophages were obtained by the intraperitoneal injection of a
1.5% starch solution (Sigma Aldrich, St. Louis, MO, USA) in sterile PBS, and after four days, cells
were collected by peritoneal wash. Differential cell counts were made on Diff–Quick-stained cell
smears prepared by cytocentrifugation. The macrophage population obtained was more than 85%
pure and at least 90% viable, as examined by trypan blue exclusion. Additionally, macrophage
morphology was confirmed by ultrastructural analysis using transmission electron microscopy.
Peritoneal cells (1 × 106 cells/well) were cultured in Opti-MEM (Thermo Fisher Scientific, Waltham,
MA, USA) overnight at 37 ◦C under an atmosphere of 5% CO2. Experiments were performed in
triplicate in 24-well plates. WT and AnxA1-/- cells were primed with LPS (500 ng/mL for 3 h) followed by
stimulation with nigericin (10 µM for 1 h) or ATP (5 mM, 30 min) to activate the NLRP3 inflammasome.

2.3. Analysis of Cell Viability and IL-1β Release

Cell viability was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay. After the treatment process, the supernatants were discarded, and the RPMI medium
(Invitrogen, Gibco, Portland, OR, USA) with 10% MTT solution (5 mg/mL) was added to the cells.
After incubating the cells for 4 h at 37 ◦C under a 5% CO2 atmosphere, 300 µL of dimethyl sulfoxide
(DMSO; Sigma Aldrich, St. Louis, MO, USA) was added to each well (24-well plate), and 100 µL
triplicates of the same sample were transferred to a 96-well plate. The spectrophotometric absorbance
values at 490 nm were determined. The percentage of viable cells was calculated by optical density
normalization for LPS-stimulated cells only.

IL-1β levels were tested in culture supernatants by an enzyme-linked immunosorbent assay
(ELISA) using a commercially available immunoassay kit (BioLegend, San Diego, CA, USA), according
to the manufacturer’s instructions. All experiments were conducted in duplicate, and the data were
expressed as the mean ± standard error of the mean (SEM) of protein (pg/mL).

2.4. Western Blot Analysis

After nigericin and ATP stimulation, the supernatant was removed, and cells were washed
three times with sterile PBS, and to each well, 50 µL of lysis buffer was added for cell lysis and
protein extraction. Equal amounts of supernatants and cell extracts were loaded onto a 15% sodium
dodecyl sulphate-polyacrylamide gel with appropriate molecular weight markers (Bio-Rad Life Science,
Hercules, CA, USA) for electrophoresis and transferred to ECL Hybond nitrocellulose membranes.
Reversible protein staining of the membranes with 0.1% Ponceau-S in 5% acetic acid (Santa Cruz
Biotechnology, Dallas, TX, USA) was used to verify protein transfer. Membranes were incubated
30 min in 5% milk in Tris-buffered saline (TBS) prior to incubation with the antibodies. Primary
antibodies were rabbit polyclonal anti-AnxA1 (Invitrogen-Thermo Fisher Scientific, Waltham, MA, USA;
1:1000), goat polyclonal anti-IL-1β (R&E Systems, MN, USA; 1:500), mouse monoclonal anti-caspase-1
(Santa Cruz Biotechnology Dallas, TX, USA; 1:200), and polyclonal rabbit anti-β-actin (Cell Signaling
Technology, Beverly, MA, USA; 1:1000), all diluted in TBS. The membranes were then incubated with
the appropriate peroxidase-conjugated secondary antibodies (Millipore Corporation, Burlington, MA,
USA; 1:2500). Finally, membranes were washed for 15 min with TBS, and immunoreactive proteins
were detected (Clarity™Western ECL Substrate; Bio-Rad, Hercules, CA, USA) using a GeneGnome5
chemiluminescence detection system (SynGene, Cambridge, UK).
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2.5. Ultrastructural Immunocytochemical Analysis

WT and AnxA1-/- nigericin-stimulated macrophages were fixed in 4% paraformaldehyde and
0.5% glutaraldehyde, 0.1% sodium cacodylate buffer (pH 7.4) for 24 h at 4 ◦C. Samples were washed in
sodium cacodylate, dehydrated through a graded methanol series, and embedded in LR Gold (Sigma
Aldrich Corp., St. Louis, MO, USA).

To detect AnxA1 and NLRP3, ultrathin macrophage sections (~90 nm) were submitted for
immunocytochemistry, as previously described [19]. To detect the proteins, the sheep polyclonal
antibody anti-AnxA1 (1:200) and rabbit polyclonal antibody anti-NLRP3 (1:200; Cusabio, Houston, TX,
USA), following a donkey anti-sheep IgG and goat anti-rabbit IgG antibody (1:50) conjugated to 10-nm
and 20-nm colloidal gold (British Biocell, Cardiff, UK), respectively, were used. Ultrathin sections were
stained with uranyl acetate and lead citrate and examined using a ZEISS EM900 electron microscope
(Carl Zeiss, Jena, Germany). Randomly photographed sections of macrophages were analyzed using
Axiovision software. The density of immunogold (number of gold particles/µm2) was calculated and
reported as the mean ± SEM of 20–40 cells per experimental condition.

2.6. Lipidomic Analysis

After treatments, WT and AnxA1-/- cell supernatants (1 × 106 cells/well) were collected and
stored at −80 ◦C until sample processing. For lipid extraction, each sample was randomized and
resuspended in 1 mL of 1:2 CHCl3: MeOH solution (Sigma Aldrich, Basel, Switzerland), followed
by the addition of 0.33 mL CHCl3 and 0.33 mL deionized water. The solution was stirred for 5 min,
then centrifuged at 13,000 rpm for 5 min. Derived-organic fractions with lipids were collected from
the bottom layer of the tubes and transferred to 1.5-mL glass tubes. These fractions were dried in a
SpeedVac Savant SPD131DDA concentrator (Thermo Scientific) for 30 min at 30 ◦C and stored at −80 ◦C.
Mass spectrometric analysis was performed in an ultra-high-performance liquid chromatography
(UHPLC) Agilent 1290 Infinity system (Agilent, Santa Clara, CA, USA) and chromatographic elution
in a Kinetex C18 column (4.6 mm × 50 mm × 2.6 µm) (Phenomenex, Torrance, CA, USA). All samples
were randomized before injection and analyzed by the positive and negative mode in a hybrid mass
spectrometer with QTOF 6550 mass analyzer (Agilent, Santa Clara, CA, USA). The mass spectra were
acquired in centroid mode, and the mass range used for the acquisition was 50–1700 Da. The raw data
were converted by the MassHunter Qualitative software (Agilent, Santa Clara, California, USA) and
then imported to XCMS online software (Version 3.7.1, Scripps Center for Metabolomics, La Jolla, CA,
USA). For the final statistical analysis, the Metaboanalyst 3.0 platform was used (McGill University,
Montreal, Quebec, Canada), as well as the potential lipid biomarkers annotation by the measurement
of their exact mass, retention time, and elution profile in METLIN (Scripps Center for Metabolomics,
La Jolla, CA, USA), Human Metabolome Database (HMDB) (http://www.hmdb.ca/metabolites), and
Lipid Maps databases (http://www.lipidmaps.org/).

2.7. Statistical Analyses

The data were analyzed using GraphPad Prism 5.0 software. Results were confirmed to follow a
normal distribution using the Kolmogorov–Smirnov test of normality with Dallal–Wilkinson–Lillie for
corrected P-value. Data that passed the normality assumption were analyzed using analysis of variance
(ANOVA) with a Bonferroni post hoc test. Data failing the normality assumption were analyzed using
the non-parametric Kruskal–Wallis test followed by Dunn’s post-test, and differences were considered
statistically significant at a value of p < 0.05.

http://www.hmdb.ca/metabolites
http://www.lipidmaps.org/
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3. Results

3.1. The Lack of Endogenous AnxA1 Exacerbates the IL-1β Release and Increases NLRP3 Levels after
Inflammasome Activation

First, we verified the endogenous effect of AnxA1 on the activation and regulation of NLRP3
inflammasome in macrophages. As expected, the administration of nigericin caused a significant
reduction in cell viability (Figure 1A) without a difference between the two genotypes. Both nigericin
and ATP induced IL-1β release by macrophages, which was more pronounced in nigericin-stimulated
AnxA1-/- cells than in their respective controls (Figure 1B,C). This latter result was corroborated by the
presence of mature IL-1β observed in AnxA1-/- cells (Figure 1C), and pro caspase 1 (Figure 1D) in the
same experimental condition. ATP-stimulated WT macrophages presented decreased levels of AnxA1
compared with nigericin-stimulated cells (Figure 1D). In addition, pro caspase 1 levels were similar
between only primed and ATP-stimulated AnxA1-/- cells (Figure 1D).
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Figure 1. Lack of endogenous Annexin A1 (AnxA1) produced a marked release of IL-1β in macrophages.
(A) 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Macrophages of
both genotypes showed a marked decrease in cell viability under nigericin and ATP exposure.
The percentage of viable cells was calculated by optical density normalization for only lipopolysaccharide
(LPS)-stimulated cells. Data are shown as mean ± S.E.M. of cell ratio (%). ** p < 0.01; *** p < 0.001 vs.
LPS-stimulated cells of corresponding genotype (ANOVA, Bonferroni post-test). (B,C) IL-1β levels.
Treatment with nigericin produced a marked release of IL-1β in AnxA1-null (AnxA1-/-) macrophages
compared with the other groups. Increased levels of pro-IL-1β were detected in the LPS-stimulated
wild-type (WT) and AnxA1-/- cell extracts. Values are expressed as mean ± SEM of IL-1β levels
(pg/mL). *** p < 0.001, ** p < 0.01 vs. LPS-stimulated cells of respective genotype; ### p < 0.001 vs.
WT nigericin-treated cells (ANOVA, Bonferroni post-test). (D) Pro caspase 1 and AnxA1 levels in
the cell extracts under different experimental conditions. β-actin was used as an endogenous control
(representative image of three experiments performed).

After detecting that nigericin-stimulated AnxA1-/- cells exhibited exacerbated IL-1β production,
the AnxA1 and NLRP3 levels were analyzed using ultrastructural immunocytochemistry. The lack of
endogenous AnxA1 was associated with increased levels of NLRP3 in nigericin-stimulated macrophages
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compared with the primed AnxA1-/- cells and WT cells (Figure 2). In contrast, WT nigericin-stimulated
macrophages showed a marked increase of AnxA1 levels compared with the only primed cells (LPS)
(Figure 3A,B,E). In addition, points of co-localization between AnxA1 and NLRP3 were detected in
the cytoplasm of nigericin-stimulated cells (Figure 3C). No immunogold labelling was detected in the
negative control of the reaction (Figure 3D).Cells 2020, 9, x  15 of 16 
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Figure 2. Lack of endogenous AnxA1 increased NLRP3 levels in nigericin-stimulated macrophages.
(A) NLRP3 expression detected in the cytoplasm (arrows) of cells. Insets: details of cytoplasmic gold
labelling of NLRP3. (B) Density of NLRP3 immunogold particles in macrophages. Data are mean
± SEM of distinct cells analyzed for each condition. * p < 0.05 vs. LPS of corresponding genotype
(ANOVA, Bonferroni post-test).
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Figure 3. Nigericin-stimulated WT macrophages increase AnxA1 endogenous levels. (A,B) AnxA1
expression detected in the cytoplasm (arrows) and plasma membrane (white arrow) of cells. (C) Points
of co-localization of AnxA1 (arrowheads) and NLRP3 (arrow) were detected in the cytoplasm of
nigericin-stimulated cells. (D) Negative control. (E) Density of AnxA1 immunogold particles in
macrophages. Data are mean ± SEM of distinct cells analyzed for each condition (t-test). *** p < 0.001
vs. LPS.

3.2. NLRP3 Activation Induces Different Lipid Release by WT and AnxA1-/- Macrophages

To investigate whether the lack of endogenous AnxA1 also alters lipidomic profiling of
macrophages under NLRP3 activation, lipidomic analysis of cell supernatants was performed. Figure 4
shows the score plots of principal component analysis (PCA) and partial least squares discriminant
analysis (PLS-DA) obtained in positive and negative ion modes. As expected, the lipid profiles from
the WT and AnxA1-/- control groups (LPS-stimulated cells) were different from each other, as shown
by the separated dark blue and red ellipses in PCA and PLS-DA, either in the positive and negative ion
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modes. In the positive mode of the PCA analysis, the first two components of the score plot described
63.6% of explained variation in which the WT LPS separation from the WT treated with nigericin
is more pronounced (Figure 4A) in PCA, whereas PLS-DA shows overlapped ellipses (Figure 4B).
The negative mode in PCA and PLS-DA analysis showed similar results between groups, as evidenced
by the overlapping of ellipses (Figure 4C,D).Cells 2020, 9, x  15 of 16 
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Figure 4. Principal component analysis (PCA) and partial least squares discriminant analysis
(PLS-DA) score plots of the lipid fraction. Each spot represents one supernatant sample from
control (LPS-stimulated cells - WT: dark blue; AnxA1-/-: red) and nigericin-stimulated cells (WT: light
blue; AnxA1-/-: green). The ellipses show the differences and similarities between groups. (A,C),
PCA in positive and negative ion mode, respectively. (B,D), PLS-DA in positive and negative ion
mode, respectively.

Heatmaps and dendrograms highlight the normalized concentrations of different
lipids in the supernatants of WT and AnxA1-/- macrophages. In the positive mode
(Figure 5A), the majority of potential lipid biomarkers were produced by nigericin-stimulated
AnxA1-/- cells, if compared with the other experimental conditions. These cells showed
increased production of sphingolipids, especially ceramides Cer(t18:0/18:O(2OH)), Cer(d14:1/26:0),
PE-Cer(d14:2(4E,6E)/16:0), and PE-Cer(d14:2(4E,6E)/19:0) (Figure 5A). In addition, supernatants
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from nigericin-stimulated AnxA1-/- exhibited a higher concentration of the eicosanoid
11S-15S-dihydroxy-14R-(S-glutathionyl)-5Z,8Z,12E-eicosatrienoic acid and the neutral lipid
PI(P-18:0/00). In contrast, heptanoic acid was identified as a potential lipid biomarker in the
supernatants of nigericin-stimulated WT cells, with a higher concentration than control WT cells (LPS),
while arachidonoyl ethanolamide and the plasma membrane compound phosphatidylglycerol PG
(16:1(9Z)/17:2(9Z,12Z)) were lower. PS (15:1(9Z)/16:1(9Z)) is a phosphatidylserine which only appeared
in the supernatants of AnxA1-/- control cells and those treated with nigericin (Figure 5A).
Cells 2020, 9, x  15 of 16 

 

 

Figure  5.  Lipidomic  analysis  of  WT  and  AnxA1‐/‐  macrophage  supernatants.  Heatmaps  and 

dendrograms show the hierarchical clustering of potential lipid biomarkers of the control (WT: dark 

blue; AnxA1‐/‐: red) and nigericin‐stimulated cells (WT: light blue; AnxA1‐/‐: green). (A) Positive mode. 

(B) Negative mode. Lipidomic analysis demonstrated a completely different lipid profile between WT 

and AnxA1‐/‐ supernatant cells. In WT cells, nigericin induced a pronounced release of eicosanoids 

and prostaglandins, while AnxA1‐/‐ cells showed precursors of prostaglandin and some ceramides. 

The  right  bar  in  Figure  B  represents  the  blue–red  code  (−1.5  to  1.5)  of  the  lipid  concentrations. 

Unknown: noncharacterized lipids. 

4. Discussion 

Monocytes  and macrophages  express NOD‐like  receptors, which  are very  important  for  the 

immune response during inflammation [20]. By NLRP3 inflammasome activation in these cells, pro‐

IL‐1β and pro‐IL‐18 are cleaved and released, increasing the pro‐inflammatory response [21]. Once 

macrophages are activated by the NLRP3 inflammasome agonists, such as nigericin and ATP, there 

is  an  IL‐1β  production  and  release,  and  the  K+  concentration  is  reduced  [22].  IL‐1β  is  a 

proinflammatory  cytokine,  and  once  it  is  released  by macrophages,  IL‐6, TNF,  nitric  oxide,  and 

prostaglandin E2 (PGE2) are produced [23]. Our data provide previously unknown details regarding 

the interplay between AnxA1 and NLRP3‐derived IL‐1β in macrophages and its relationship with 

lipid‐mediator release.   

Under normal conditions, the AnxA1 protein is present in high levels in the cytoplasm of human 

and rodent leukocytes, such as neutrophils, monocytes, and macrophages, and once these cells are 

activated, the AnxA1 moves to the cell membrane to be released and act as an autocrine or paracrine 

mediator  [24,25].  The  ATP‐binding  cassette  transporter  is  responsible  for  AnxA1  secretion  in 

macrophages [26], and under conditions of cellular stress, AnxA1 is rapidly released [27].   

Figure 5. Lipidomic analysis of WT and AnxA1-/- macrophage supernatants. Heatmaps and
dendrograms show the hierarchical clustering of potential lipid biomarkers of the control (WT:
dark blue; AnxA1-/-: red) and nigericin-stimulated cells (WT: light blue; AnxA1-/-: green). (A) Positive
mode. (B) Negative mode. Lipidomic analysis demonstrated a completely different lipid profile
between WT and AnxA1-/- supernatant cells. In WT cells, nigericin induced a pronounced release of
eicosanoids and prostaglandins, while AnxA1-/- cells showed precursors of prostaglandin and some
ceramides. The right bar in Figure B represents the blue–red code (−1.5 to 1.5) of the lipid concentrations.
Unknown: noncharacterized lipids.

Figure 5B shows the potential lipid biomarkers in the negative mode. In the supernatants of
nigericin-stimulated WT cells, the more concentrated lipids were associated with the arachidonic acid
metabolism, such as the 10-hydroxyeicosatetraenoic acid (10-HETE), prostaglandins D1 and E1 (PGD1,
PGE1), as well as palmitic acid, S-acetyldihydrolipoamide, N-palmitoyl serine, and PE(P-16:0/0:0).
Curiously, there are different lipid profiles in the supernatants of WT and AnxA1-/- control cells,
as characterized by a higher concentration of the eicosanoid 20-hydroxy-leukotriene E4 and fatty acid
amides (13Z-docosenamide and 9,12Z-octadecadienamide) in the WT cells.
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4. Discussion

Monocytes and macrophages express NOD-like receptors, which are very important for the
immune response during inflammation [20]. By NLRP3 inflammasome activation in these cells,
pro-IL-1β and pro-IL-18 are cleaved and released, increasing the pro-inflammatory response [21]. Once
macrophages are activated by the NLRP3 inflammasome agonists, such as nigericin and ATP, there is
an IL-1β production and release, and the K+ concentration is reduced [22]. IL-1β is a proinflammatory
cytokine, and once it is released by macrophages, IL-6, TNF, nitric oxide, and prostaglandin E2 (PGE2)
are produced [23]. Our data provide previously unknown details regarding the interplay between
AnxA1 and NLRP3-derived IL-1β in macrophages and its relationship with lipid-mediator release.

Under normal conditions, the AnxA1 protein is present in high levels in the cytoplasm of human
and rodent leukocytes, such as neutrophils, monocytes, and macrophages, and once these cells
are activated, the AnxA1 moves to the cell membrane to be released and act as an autocrine or
paracrine mediator [24,25]. The ATP-binding cassette transporter is responsible for AnxA1 secretion in
macrophages [26], and under conditions of cellular stress, AnxA1 is rapidly released [27].

Our results show that the lack of AnxA1 exacerbates the IL-1β production after NLRP3 activation.
These findings were supported by increased levels of NLRP3 in AnxA1-/- macrophages, as observed by
ultrastructural immunocytochemistry. Considering that peritoneal AnxA1-/- macrophages presented
increased levels of TLR4 [6], the lack of AnxA1 could favor LPS “over-priming” and consequent
increase in NLRP3 inflammasome-derived IL-1β secretion. In addition, nigericin stimulation increased
endogenous AnxA1 that presents points of co-localization with NLRP3 in WT macrophages, supporting
a role of AnxA1 in the activation and regulation of the NLRP3 inflammasome. Regarding ATP
stimulation, western blotting detected more decreased levels of AnxA1 in WT macrophages than in the
priming LPS and nigericin-stimulated cells. In fact, activation of the P2 × 7 receptor by extracellular
ATP in macrophages has been widely studied as a trigger of the NLRP3 inflammasome and is associated
with the release of AnxA1 [7]. However, this study also demonstrated that nigericin did not induce
AnxA1 release, suggesting pathways within P2 × 7R signaling in addition to K+ efflux in macrophages
for the release of this protein.

Despite our findings, recent analyses show that bone-marrow-derived AnxA1-/- macrophages
produced significantly lower secretion of IL-1β when activated with monosodium urate (MSU) crystals
and ATP, but not NLRC4 or AIM2 activators (Legionella pneumophila or poly(dA:dT)) [28]. Notably,
during the setting of MSU crystal-induced inflammation, the peak of the neutrophil influx was
greater, and the resolution was slower in AnxA1-/- mice than in WT animals [29]. These findings are
consistent with many studies that have shown an exacerbated inflammatory response in AnxA1-/-

mice characterized by a marked leukocyte influx and production of proinflammatory mediators, such
as IL-1β and IL-6 [4,6,30–32]. Additionally, the administration of the AnxA1 peptide (Ac2–26) 1 h
before and 12 h after challenge with MSU crystals induced decreased levels of IL-1β in periarticular
tissue, showing the important anti-inflammatory and proresolving activity of this protein on the course
of MSU crystal-induced inflammation in mice [29]. Thus, the opposite effects described for the role
of AnxA1 on NLRP3 inflammasome-derived IL-1β secretion could be a result of testing different
macrophage populations, bone-marrow versus peritoneal-derived, and different strains, BALB/c versus
C57BL/6, an important factor in the mouse immunology response [33,34].

The NLRP3 inflammasome is a cytosolic platform formed by a multi-protein complex containing
a nucleotide-binding oligomerization domain-like receptor and the adaptor apoptosis-associated
spec-like protein (ASC) containing an amino-terminal caspase-recruitment domain (CARD) [9].
The interaction of the NLRP3 with ASC promotes the recruitment of the procaspase-1 and its
autoproteolysis, driving IL-1β and IL-18 maturation, membrane pore formation by the gasdermin D
action, and then cytokine secretion and pyroptosis [35,36]. Besides the cleavage and release of the IL-1β,
the activation of the NLRP3 inflammasome is directly related to the production of lipid mediators,
including eicosanoids and ceramides. These lipids can be involved in metabolic and immunological
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pathways, and the deregulation of NLRP3 activation causes an increase of the lipidic mediators released
after pyroptosis, and it is possible to conduct metabolic damage on a systemic level [13].

The current lipidomics approach is a great tool to understand biological systems and many
diseases. The major lipid classes can be categorized as fatty acyls, glycerolipids, glycerophospholipids,
sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides [37]. In addition, cells
can synthesize lipids, such as the eicosanoids, which are derived by the arachidonic acid oxidation
and represented by prostaglandins, leukotrienes, thromboxanes, lipoxins, and epoxyeicosatrienoic
acids [38]. By providing the exact mass, retention time, and elution profile, our study presents new
data about the lipidomic profile of the supernatant of macrophages after NLRP3 activation by nigericin.

In our study, we showed the ceramides PE-Cer(d14:2(4E,6E)/16:0), Cer(t18:0/18:O(2OH)),
PE-Cer(d14:2(4E,6E)/19:0), and Cer(d14:1/26:0) as potential lipid biomarkers released by AnxA1-/-

macrophages after nigericin stimulation. Ceramides are bioactive sphingolipids present in the plasma
membrane and they mediate cell signaling, with a close relationship to many pathophysiological
processes associated with inflammation [39]. Previous studies showed that the exposure of macrophages
to ceramides causes activation of caspase-1, and this effect is prevented by the absence of NLRP3 [40].
Ceramides have also been related to the activation of TLR4, augmenting LPS-induced pro-inflammatory
response [41]. In this regard, it is reasonable to infer that increased levels of TLR4 in AnxA1-/-

macrophages [6] contribute to the more pronounced ceramide concentration in their supernatants and
also in NLRP3 activation.

Supernatants from nigericin-stimulated AnxA1-/- macrophages also exhibited a higher
concentration of the 11S-15S-dihydroxy-14R-(S-glutathionyl)-5Z,8Z,12E-eicosatrienoic acid, a type of
eicosanoid, and PI(P-18:0/0:0). Some studies have shown that 12-hydroxyeicosatrienoic acid (12-HETE)
plays an important role as a paracrine mediator of inflammation, as well as in the regulation of
neutrophil infiltration in damaged tissue [42,43]. PI(P-18:0/0:0) is an important phosphatidylinositol in
cell membranes and for metabolic processes, such as being the primary source of arachidonic acid
metabolism for eicosanoid synthesis and intracellular signals in animal tissues [44]. The lack of AnxA1
in macrophages increased the arachidonic acid metabolism and eicosanoid production, as evidenced
by the high concentration of 11S-15S-dihydroxy-14R-(S-glutathionyl)-5Z,8Z,12E-eicosatrienoic
acid and PI(P-18:0/0:0) after NLRP3 activation and pyroptosis induction.
The 11S-15S-dihydroxy-14R-(S-glutathionyl)-5Z,8Z,12E-eicosatrienoic acid is present in leukocytes
and red blood cells, and earlier studies have demonstrated that this fatty acid can be converted by
arachidonic acid by the lipoxygenase pathway [45,46], which is basically synthesized during the
inflammatory process [47].

In the supernatants of nigericin-stimulated WT macrophages, more concentrated lipids are also
associated with the arachidonic acid metabolism, such as the 10-HETE, PGD1, PGE1, as well as palmitic
acid, S-acetyldihydrolipoamide, N-palmitoyl serine, PE(P-16:0/0:0), and heptanoic acid, indicating
a completely different lipid profile of AnxA1-/- supernatants; 10-HETE is a hydroxyeicosatrienoic
acid with proinflammatory action, increasing TNF-α and IL-6 production in macrophages [48].
In contrast, PGE1 and PGD1 are anti-inflammatory lipid mediators that inhibit leukocyte migration
and adhesion and mast cell activation [49–51]. Palmitic acid (PA), also called hexadecanoic acid,
is one of the most common saturated fatty acids in animals. PA acts as a lipid mediator in
inflammation and its derived-metabolic products accumulate in the endoplasmic reticulum (ER)
and increase reactive oxygen species (ROS) generation, leading to cell death [52]. Additionally,
the inflammatory response caused by ER stress and ROS generation from high concentrations of
PA drives NF-κB and NLRP3 activation and, consequently, proinflammatory cytokine release by
monocytes/macrophages [53–56]. S-Acetyldihydrolipoamide, N-palmitoyl serine and PE(P-16:0/00)
(2-Hexadecanoyl-1-(1Z-hexadecenyl)-sn-glycero-3-phosphoethanolamine) are associated with cell
metabolism [57], membrane receptor [58], and cell membrane compounds [59], respectively. However,
there is little information about heptanoic acid in biological systems. Metabolomic studies have shown
a high concentration of heptanoic acid in the faeces of autistic children [60], while in patients with
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Crohn’s disease, ulcerative colitis, and pouchitis, lower levels of this lipid were found [61]. Altogether,
our data show that macrophages can release potential lipid biomarkers after NLRP3 activation that
can regulate the inflammatory responses in the damaged tissue.

This study also detected a different lipid profile in supernatants from WT and AnxA1-/-

LPS-stimulated macrophages. Higher concentrations of the eicosanoid 20-hydroxy-leukotriene E4 and
fatty acid amides (13Z-docosenamide and 9,12Z-octadecadienamide) were found in the WT samples,
while PS(15:1(9Z)/16:1(9Z)) was found in AnxA1-/- samples. In addition, 20-hydroxy-leukotriene E4 is an
eicosanoid metabolite originating from the lipid oxidation of leukotriene E4 that plays an essential role in
cell proliferation, differentiation, and immunoregulation [62]. Moreover, the leukotriene E4 contributes
to prolonged intracellular signaling, increasing intracellular Ca2+ and ERK phosphorylation [63],
confirming signal pathway triggering by LPS on WT macrophages. Biological functions for both fatty
acid amides detected in this study still need to be addressed.

Finally, PS(15:1(9Z)/16:1(9Z)) is a phosphatidylserine (PS) involved in cell signaling, including
an important role in cell death, either by apoptosis, necroptosis, or pyroptosis, by its exposure
on the outer plasma membrane layer [64]. The detection of this potential lipid biomarker in both
AnxA1-/- supernatants (LPS and nigerin) can be related to the release of extracellular vesicles by
macrophages. Macrophages can release extracellular vesicles after Mycobacterium tuberculosis infection,
or spontaneously with a high concentration of phosphatidylserine [65].

5. Conclusions

The lack of AnxA1 favors LPS “over-priming” and the release of lipid mediators (e.g., ceramides)
that produce exacerbated NLRP3 activation under nigericin stimulation. Although more detailed
investigations are warranted, this study identifies AnxA1 as a novel signaling component of
inflammasome activation and a potential therapeutic target to treat inflammatory diseases.
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