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Abstract: The free radical polymerization of styrene (FRPS) is a complex process system with uncer-
tain parameters in its mechanistic model. When the reaction conditions are switched, or the reaction
process generates faults, the parameters will change. Therefore, state and parameter estimation
(SPE) becomes an important part of the process monitoring and process control for free radical
polymerization of styrene. The unscented Kalman filter (UKF) is widely used for nonlinear process
systems, but it rarely considers the problem of model parameter uncertainty. UKF can be used for
SPE, called UKF-based SPE (UKF-SPE), where the parameters are usually estimated simultaneously
as an extension of the state space. However, when the parameters change with system switching,
the traditional UKF-SPE cannot detect and track the parameter changes in time, and inaccurate
parameters generate modeling errors. To deal with the problem, a UKF-based robust SPE method
(UKF-RSPE) for the free radical polymerization of styrene with variable parameters is proposed,
introducing a parameter testing criterion based on hypothesis testing and moving windows to directly
detect whether the parameters have changed. Based on the detection results, a gradient descent
method with adaptive learning rate is used to iteratively update the parameters to speed up the
tracking of the parameters and to obtain more accurate parameters and states. Finally, the proposed
UKF-based robust SPE is applied to free radical polymerization of styrene in a jacketed continuous
stirred tank reactor. The experimental results verify the effectiveness and robustness of the method,
which can track the parameters faster and obtain more accurate states.

Keywords: state and parameter estimation; unscented Kalman filter; RMSProp gradient descent;
polymerization

1. Introduction

The output of the free radical polymerization of styrene is distributed, called distri-
bution output, and the control of the distribution output is critical because it significantly
affects product quality. Therefore, accurate estimation of states and parameters is important
to monitor the process of free radical polymerization of styrene. Models of free radical
polymerization of styrene usually generate modeling errors due to uncertain parameters.
In order to obtain accurate states and parameters, state and parameter estimation (SPE)
plays an important role in the free radical polymerization of styrene.

State estimation, also called filtering, uses the redundancy of a real-time measurement
system to improve data accuracy, automatically eliminates error messages caused by
random disturbances, and can estimate states. Kalman proposed the Kalman filter (KF) in
1960, which was restricted to linear systems [1,2]. Subsequently, Bucy et al. proposed the
extended Kalman filter (EKF) by linearizing the nonlinear equations to first order through
Taylor expansions, but it inevitably introduced approximation errors [3]. In 1999, Julier et al.

Polymers 2022, 14, 973. https://doi.org/10.3390/polym14050973 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14050973
https://doi.org/10.3390/polym14050973
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-4582-5036
https://doi.org/10.3390/polym14050973
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14050973?type=check_update&version=2


Polymers 2022, 14, 973 2 of 24

proposed the unscented Kalman filter (UKF) based on the unscented transformation (UT)
to overcome the problem of EKF, which is widely used for nonlinear systems [4].

The free radical polymerization process of styrene is a large nonlinear dynamic model.
Already in 1981, Schmidt and Ray proposed a mathematical model for the dynamics of
polymerization in a jacketed continuous stirred tank reactor (CSTR). The model contains the
material balance equation for different molecular weight polymer concentrations and de-
rives the differential equation for the heavy mean molecular weight [5]. The state estimation
of the free radical polymerization of styrene allows to accurately grasp the reaction process,
predict the trend of the reaction, and reconcile the measured data. Based on this model,
Zhang and Chen developed two data-processing algorithms, including correntropy-based
nonlinear dynamic data reconciliation (CNDDR) and gross error detection and identifica-
tion (GEDI), which greatly reduced the effect of gross errors on the reconciliation results of
free radical polymerization of styrene [6]. Hu et al. proposed a robust EKF combined with
measurement compensation (MC-REKF), and applied it to this model to compensate for
gross errors in measurements and obtained accurate states [7].

Since the process model of free radical polymerization of styrene is complex, many
modeling approaches are now available. Hu et al. effectively combined Elman neural
network (ENN) with EKF to form a data-driven dynamic data coordination scheme, called
ENN-EKF, which is able to model the free radical polymerization of styrene and effectively
suppress the effect of measurement noise [8]. Al-Harthi et al. developed a comprehensive
mathematical model for atom transfer radical copolymerization reactions in intermittent
reactors [9]. Mohammadi et al. modeled styrene radical polymerization in a stirred tank
reactor-spinning disc reactor (STR-SDR) device using Kinetic Monte Carlo (KMC) algo-
rithm [10]. Maafa et al. developed a dynamic Monte Carlo model capable of simulating
the polymerization of styrene with a bifunctional radical initiator in an intermittent re-
actor [11]. Woloszyn et al. developed a styrene polymerization model with bifunctional
free-radical initiators in a batch reactor and considered the effect of parameters on model
predictions [12]. Meißner et al. used machine learning to identify parameters [13]. Uncer-
tainty of parameters, a problem in modeling, will have a huge impact on the mechanistic
modeling of the free radical polymerization of styrene.

In order to obtain the accurate parameters of the mechanism model, a number of
KF-based parameter estimation methods have been developed and are used in academia
and industry. Kiparissides et al. used EKF to estimate the state variables and time-varying
termination rate constants of the model [14]. Yousefi-Darani et al. used UKF for online esti-
mation of biomass, glucose, and ethanol concentrations, and growth rate parameters [15].
Zhou et al. proposed a state-input-parameter mixed KF (SIPMKF) to deal with the co-
existence of uncertain model parameters and control inputs [16]. Kim et al. proposed a
method in estimating important parameters of gray-box model based on real nonlinear
electroencephalogram (EEG) [17]. Geraldi et al. proposed a new UKF method for estimating
synchronous generator parameters using measurements under unbalanced operating con-
ditions [18]. Peng et al. proposed a battery modeling and online parameter identification
method based on the Davinan equivalent circuit model (ECM) and recursive least squares
(RLS) algorithm with forgetting factor [19]. Kong et al. proposed a new parameter adaptive
method aging for state of charge (SOC) estimation [20]. Nakamura and Kawamura used the
UKF to estimate the heat capacity and solar radiation shadow coefficients [21]. Li et al. used
a joint state parameter UKF estimation method by adding state vectors to include model
parameters to estimate the unknown states and parameters [22]. Chen et al. used UKF to
estimate model parameters of a resistance-capacitance (RC) model [23]. Rodríguez et al.
proposed a dual KF, which is used for state estimation and parameter estimation [24]. Wan
et al. proposed a new UKF algorithm combined with the Huber method [25]. Lee and Song
proposed a dual adaptive UKF to identify parameters of a dynamic system [26]. Ding et al.
proposed a new Bayesian adaptive UKF algorithm for the aerodynamic parameter and
noise estimation for aircraft dynamical systems [27]. Although the above scholars have
studied the application and improvement of KF in parameter estimation, they have not
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been used in free radical polymerization of styrene with variable parameters. Most of the
above studies used the method of state and parameter estimation, which is seen as an ex-
tension of the state by setting the parameters as time-varying parameters, and this method
is called artificial evolution, and this strategy is widely used in SPE techniques [28,29].

The traditional SPE with slow tracking parameters will lead to slow convergence of the
measurement error, making accurate parameter estimation difficult. Wang et al. proposed
a new adaptive law to achieve optimal parameter estimation to maintain simultaneous
convergence of the estimation error and tracking error [30]. To accomplish accurate and
fast parameter estimation, gradient descent methods with adaptive learning rate are used
to optimize filters. Common methods of adaptive learning rate include Delta-bar-delta [31],
AdaGrad [32], RMSProp (Root-Mean-Square-Prop), Adam [33], etc. Long et al. proposed an
adaptive online parameter identification method based on gradient descent optimization
(GDO) and a variable iteration step search method based on the RMSProp gradient descent
optimization (RMSprop-GDO) method to reduce the search time required for the optimal
iteration step [34]. Long et al. proposed an online gradient learning algorithm with adaptive
learning rate for identifying the parameters of a neuro-fuzzy system with a Gaussian fuzzy
set representing the Mamdani fuzzy model [35]. Na et al. proposed an adaptive parameter
estimation framework for the nonlinear systems with time-varying parameters [36].

Although the influence of parameters in the mechanistic model of free radical polymer-
ization of styrene is taken into account, the state of the reaction process will change with
the variation of parameters when the operating conditions of the reaction are changed, or
some failure occurs in the reaction. Therefore, parameters and states need to be estimated
together to obtain an accurate system model and estimated states. Because of the limita-
tions of artificial evolution, these parameters cannot be tracked quickly and accurately by
traditional SPE. In this paper, a UKF-based robust SPE method for free radical polymeriza-
tion of styrene with variable parameters is proposed. A hypothesis test-based parameter
testing criterion is introduced to directly identify whether the parameters change. Based
on the identification results, the learning rate of the gradient descent method is adaptively
modified, and the gradient descent method is used to accelerate the parameter tracking.
Finally, accurate parameters and states are obtained simultaneously.

The remainder of the paper is organized as follows. The foundations of UKF-based
SPE are reviewed in Section 2. Section 2.1 introduces the algorithm of standard UKF for
state estimation, and Section 2.1 introduces UKF-based SPE. In Section 3, the UKF-based
robust SPE scheme is proposed to improve parameter estimation performance, which
combines moving window and adaptive learning rate gradient descent. The proposed
UKF-based robust SPE is applied to free radical polymerization of styrene with variable
parameters, and the results demonstrate the effectiveness the proposed UKF-based robust
SPE in Section 4. Finally, the conclusions are drawn in Section 5.

2. Foundations of UKF-Based SPE
2.1. Review of Standard UKF

KF is a model-based linear minimum variance estimation, which is widely used in
stochastic signal processing, but it is only applicable to linear systems. EKF solves this
problem, but it must do a Taylor expansion of the nonlinear system equations and retain
only the linear term, so EKF is only applicable to weakly nonlinear systems, and the
stronger the nonlinearity, the larger the estimation error. To solve the estimation problem of
nonlinear systems, UKF is proposed. UKF is based on the minimum variance estimation of
the model like KF, while the model of UKF is a nonlinear system. The standard state space
model of nonlinear dynamic system containing state equation and measurement equation
has a discrete form, which can be described as

xk = f(xk−1, uk−1,θ) + wk−1 (1)

zk = h(xk, uk,θ) + vk (2)
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where k denotes the time step of the system operation. xk ∈ RNx×1 is the process state of
system, which is usually unknown during system operation; zk ∈ RNz×1 is the vector of
measurement; and uk−1 is the vector of input. f = [ f1; f2; · · · ; fNx ] and h = [h1; h2; · · · ; hNz ]
are the state equations and measurement equations, respectively. wk−1 and vk are the
vectors of uncorrelated zero-mean white noise, i.e., E

{
wivT

j

}
= 0, ∀i, j. The process

noise wk−1 and the measurement noise vk are assumed to Gaussian distribution, i.e.,
wk−1 ∼ G(wk−1; 0, Q), and vk ∼ G(vk; 0, R), the process noise covariance matrix Q and
measurement noise covariance matrix R depend on the sensor accuracy and the interference
of environmental factors in the system, respectively. Q and R are then set as diagonal
matrices and are assumed to be constant in the present work. θ is the vector of constants
parameters. For traditional state estimation, the parameters are known constants, but as
the system becomes more complex, uncertain parameters may appear in the model. This is
also the focus of this paper’s research.

2.1.1. Unscented Transformation

The major difference between UKF and KF is the finding of the optimal gain array,
which depends on the mean and covariance. The UKF uses the unscented transformation
(UT) to deal with the nonlinear transfer problem of the mean and covariance [4]. In Figure 1,
the UT generates Sigma points in the original state distribution based on certain rules, and
the mean and covariance of these points are equal to the original state distribution, and
then the nonlinear system equations are used for nonlinear transfer to obtain the set of
nonlinear function values, which leads to the transformed mean and covariance. Suppose
the random vector X is nonlinearly transformed by f(·) to obtain the random vector Y,
i.e., Y = f(X). If the mean X and covariance matrix PXX of X is known, the mean Y and
covariance matrix PYY of Y can be calculated by UT. The detailed steps are as follows.

χ(i) =

{
X, i = 0
X + PXX,i, i = 1 ∼ 2Nx√

(Nx + λ)PXX = [p1, p2, · · · , pNx
] (3)

−
√
(Nx + λ)PXX = [pNx+1, pNx+2, · · · , p2Nx

]

The sigma points are transferred through f(·) to obtain the transformed sigma points Y(i).

Y(i) = f(χ(i)), i = 0 ∼ 2Nx (4)

Then, the weights are determined according to the symmetric sampling rule as

W(i)
m =

{
λ

Nx+λ , i = 0
1

2(Nx+λ)
, i = 1 ∼ 2Nx

(5)

W(i)
c =

{
λ

Nx+λ + (1− α2 + β), i = 0
1

2(Nx+λ)
, i = 1 ∼ 2Nx

(6)

λ = α2(Nx + κ)− Nx (7)

where Nx donates Dimension of X. W(i)
m and W(i)

c are the mean weight and covariance
weight of the ith sigma point, respectively. In the above equation, λ is a scaling parameter
used to reduce the total prediction error. α, κ, and β are the parameters to be selected,
α is a small positive constant (10−4 ≤ α ≤ 1); κ = 3− Nx has to ensure that the matrix
(Nx + λ)PXX is semi-positive definite; β is related to the form of the distribution of X, β = 2
is optimal for a Gaussian distribution.
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Finally, the mean and covariance matrix after the nonlinear mapping is calculated as

Y ≈
2Nx

∑
i=0

W(i)
m Y(i) (8)

PYY =
2Nx

∑
i=0

W(i)
c [Y(i) − Y][Y(i) − Y]

T
(9)
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2.1.2. UKF for State Estimation

Standard UKF is based on the UT, which takes the transformed mean and covariance
and is used to calculate the optimal gain array. Generally, UKF performs two UTs, using the
state equation and measurement equation for nonlinear transfer, which correspond to the
time update phase and measurement update phase of UKF, respectively. For the standard
nonlinear system, the steps of UKF are as follows [4,25].

Firstly, in order to make the state estimation value always unbiased in the filtering
process, i.e., E[x̂k] = E[xk], the initial condition of the UKF can be given by

x̂0 = E[x0] (10)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (11)

where x̂0 is the initial state vector of UKF; P0 is the initial covariance matrix; and x0 is the
initial true state vector.

In the time update stage, according to the initial condition, the 2Nx + 1 sigma points
x(i)k−1|k−1 can be obtained as

χ
(i)
k−1|k−1 =

{
x̂k−1, i = 0
x̂k−1 + pk−1,i, i = 1 ∼ 2Nx√

(Nx + λ)Pk−1 = [p1,k−1, p2,k−1, · · · , pNx ,k−1] (12)

−
√
(Nx + λ)Pk−1 = [pNx+1,k−1, pNx+2,k−1, · · · , p2Nx ,k−1]

where χ
(i)
k−1|k−1 is the ith sigma point of x̂k−1 at time step k, pk−1,i is the ith column of√

(Nx + λ)Pk−1 or −
√
(Nx + λ)Pk−1, which donate the ith column of the square root of

the lower triangular decomposition of (Nx + λ)Pk−1.
Next, the nonlinear transfer is performed on the sigma points and the priori estimation

is calculated as
χ
(i)
k|k−1 = f(χ(i)k−1|k−1, uk−1,θ) (13)

x̂k|k−1 =
2Nx

∑
i=0

W
(i)

m χ
(i)
k|k−1 (14)

Pk|k−1 =
2Nx

∑
i=0

W(i)
c [x̂k|k−1 − χ

(i)
k|k−1][x̂k|k−1 − χ

(i)
k|k−1]

T
+ Q (15)
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where χ
(i)
k|k−1 is the one-step prediction of sigma points, x̂k|k−1 is the priori estimation of the

state vector, and Pk|k−1 is the priori estimation of the covariance matrix.
In the measurement update stage, a new set of sigma points is generated as

χ
∗(i)
k|k−1 =

{
x̂k|k−1, i = 0
x̂k|k−1 + pk|k−1,i, i = 1 ∼ 2Nx

(16)√
(Nx + λ)Pk|k−1 = [p1,k|k−1, p2,k|k−1, · · · , pNx ,k|k−1] (1)

−
√
(Nx + λ)Pk|k−1 = [pNx+1,k|k−1, pNx+2,k|k−1, · · · , p2Nx ,k|k−1]

where χ
∗(i)
k|k−1 is the ith new sigma point of x̂k−1 at time step k, pk|k−1,i is the ith column of√

(Nx + λ)Pk|k−1 or −
√
(Nx + λ)Pk|k−1, which donate the ith column of the square root of

the lower triangular decomposition of (Nx + λ)Pk|k−1.
As in the time update stage, a nonlinear transfer of measurement equation is performed

on the new sigma points and the priori estimation of measurement is calculated as

z(i)k|k−1 = h(χ∗(i)k|k−1, uk,θ) (17)

ẑk|k−1 =
2Nx

∑
i=0

W
(i)

m z(i)k|k−1 (18)

where z(i)k|k−1 is the one-step prediction of measurements of sigma points, ẑk|k−1 is the priori
estimation of the measurement.

The covariance Pzz,k and Pxz,k can be obtained by the weighted summation of the
sigma point set as

Pzz,k =
2Nx

∑
i=0

W
(i)

c [z(i)k|k−1 − ẑk|k−1][z
(i)
k|k−1 − ẑk|k−1]

T
+ R (19)

Pxz,k =
2Nx

∑
i=0

W
(i)

c [χ
(i)
k|k−1 − x̂k|k−1][z

(i)
k|k−1 − ẑk|k−1]

T
(20)

Then, the Kalman gain matrix Kk calculation is obtained as

Kk = Pxz,kP−1
zz,k (21)

Finally, the estimated state and the covariance can be calculated as

x̂k = x̂k|k−1 + Kk[zk − ẑk|k−1] (22)

Pk = Pk|k−1 −KkPzz,kKT
k (23)

According to the estimated state and measurement equation, measurement is recon-
ciled as

ẑk = h(x̂k, uk,θ) (24)

The above process is the standard UKF for state estimation, which does not take
into account the time-varying parameters in the system and is only applicable when the
parameters are known.

2.2. UKF-Based SPE

Considering the problem of system parameter estimation, the complex system will
contain several uncertain parameters, and assuming that the parameters are time-varying,
define the time-varying parameter vector θk at time step k, which is a random vector with
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zero mean. Therefore, SPE can be achieved by considering θk as an extension of the state
space, which is estimated together with the state vector [29].

x
′
k =

[
xk
θk

]
(25)

where x
′
k is augmented state vector, which considers the parameters as part of the state.

The nonlinear dynamic system model can be rewritten with the augmented state x
′

as

x
′
k = f

′
(x
′
k−1, uk−1) + w

′
k−1

=

[
f(xk−1, uk−1,θk−1)
fθ(θk−1)

]
+

[
wk−1
ςk−1

]
(26)

zk = h(x
′
k, uk) + vk

= h(xk, uk,θk) + vk
(27)

where f
′
(·) =

[
f
fθ

]
is augmented state equation and w

′
k−1 =

[
wk−1
ςk−1

]
is augmented

process noise vector with covariance matrix Q
′
.

The state equation fθ for parameter vector can be expressed as

θk = fθ(θk−1) + ςk−1 = θk−1 + ςk−1 (28)

where ςk−1 ∼ G(0, S) is the white noise with zero mean satisfying Gaussian distribution, S
is covariance matrix of parameters, the value of which is assumed to be small. Q combined
with S yields the augmented covariance matrix Q

′
.

Q
′
=

[
Q 0
0 S

]
(29)

Therefore, standard UKF can also be extended for the application of SPE. The process
of UKF-based SPE is shown in Figure 2 and its algorithm is derived as follows.

χ
′ (i)
k−1|k−1 =

{
x̂
′

k−1, i = 0
x̂
′

k−1 + p
′
k−1,i, i = 1 ∼ 2(Nx + Nθ)√

(Nx + λ)P
′
k−1 = [p

′

1,k−1, · · · , p
′

Nx ,k−1, p
′

Nx+1,k−1, · · · , p
′

Nx+Nθ ,k−1] (30)

−
√
(Nx + λ)P

′
k−1 = [p

′

Nx+Nθ+1,k−1, · · · , p
′

2Nx+Nθ ,k−1, p
′

2Nx+Nθ+1,k−1, · · · , p
′

2(Nx+Nθ),k−1]

χ
′ (i)
k|k−1 = f

′
(χ
′ (i)
k−1|k−1, uk−1) (31)

x̂
′

k|k−1 =
2(Nx+Nθ)

∑
i=0

W
(i)

m χ
′ (i)
k|k−1 (32)

P
′
k|k−1 =

2(Nx+Nθ)

∑
i=0

W(i)
c [x̂

′

k|k−1 − χ
′ (i)
k|k−1][x̂

′

k|k−1 − χ
′ (i)
k|k−1]

T
+ Q

′
(33)

χ
′∗(i)
k|k−1 =

{
x̂
′

k|k−1, i = 0

x̂
′

k|k−1 + p
′
k|k−1,i, i = 1 ∼ 2(Nx + Nθ)√

(Nx + λ)P
′
k|k−1 = [p

′
1,k|k−1, · · · , p

′
Nx ,k|k−1, p

′
Nx+1,k|k−1, · · · , p

′
Nx+Nθ ,k|k−1] (34)

−
√
(Nx + λ)P

′
k|k−1 = [p

′
Nx+Nθ+1,k|k−1, · · · , p

′
2Nx+Nθ ,k|k−1, p

′
2Nx+Nθ+1,k|k−1, · · · , p

′
2(Nx+Nθ),k|k−1]
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z(i)k|k−1 = h(χ
′∗(i)
k|k−1, uk) (35)

ẑk|k−1 =
2(Nx+Nθ)

∑
i=0

W
(i)

m z(i)k|k−1 (36)

Pzz,k =
2(Nx+Nθ)

∑
i=0

W
(i)

c [z(i)k|k−1 − ẑk|k−1][z
(i)
k|k−1 − ẑk|k−1]

T
+ R (37)

P
′
xz,k =

2(Nx+Nθ)

∑
i=0

W
(i)

c [χ
′ (i)
k|k−1 − x̂

′

k|k−1][z
(i)
k|k−1 − ẑk|k−1]

T
(38)

K
′
k = P

′
xz,kP−1

zz,k (39)

P
′
k = P

′
k|k−1 −K

′
kPzz,kK

′T
k (40)

The estimated states and parameters are calculated as[
x̂k
θ̂k

]
= x̂

′

k|k−1 + K
′
k[zk − ẑk|k−1] (41)

Finally, the measurements are reconciled as[
x̂k
θ̂k

]
= x̂

′

k|k−1 + K
′
k[zk − ẑk|k−1] (42)Polymers 2022, 14, x FOR PEER REVIEW 9 of 28 
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This strategy is known as artificial evolution, which treats fixed model parameters θ as
stochastic time-varying model parameters θk [29]. The ability of SPE to track the variation
of parameters depends heavily on the covariance matrix S. In the practical case, the
parameters are fixed and S should be zero, but then UKF will lose the ability of parameter
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estimation and the estimated parameters will remain time-invariant. If S is large, the
stochastic wander implies an increase in covariance as the number of iterations increases,
which will cause the parameters θk to gradually deviate from the fixed parameters θ.
Therefore, S is usually set to a matrix of small values.

3. UKF-Based Robust SPE for System with Variable Parameters

UKF-SPE fixes the variance of each system parameter to a small value, and when the
parameters are fixed, UKF-SPE gives good estimates. However, the values of parameters
can change when the operating conditions switch or when certain faults occur. Due to the
limitations of traditional UKF-SPE, changes in the parameters cannot be tracked quickly.
Since the covariance matrix S in UKF-SPE is small and fixed, the parameters change slowly
during the UKF-SPE tracking iterations, which will produce large estimation errors. This
section proposes a reliable method to solve the problem.

At the time step k, the parameters of the process model change, which will result
in a corresponding change in the estimated parameters. If the parameters are fixed, the
estimated parameters will not change accordingly and converge to a fixed value. Parameter
testing based on the trend of parameter changes can be used to identify parameter changes.
Once changes in parameters are detected, a gradient descent method is used to speed up
the tracking of the parameter, and the learning rate is adaptively adjusted to stabilize the
estimated parameters.

3.1. Parameters Test

Assuming that UKF-SPE correctly estimates the augmented state, the parameters and
states estimated by Equation (41) can be split from this vector. If the parameters do not
change, the values of estimated parameters satisfy normal distribution in the vicinity of the
correct parameters. Once the system has switched and the parameters have changed, the
estimated parameters will deviate from their original values with certain rules. Therefore,
based on the corresponding characteristics of parameters, for diagnosing whether the
estimated parameters are true or not, a moving window containing information about the
estimated parameters in the time series is used to calculate the mean θn,k and variance s2

n,k
of each parameter in the window, as shown in Figure 3.

θn,k =
1

W

W−1

∑
i=0

θ̂n,k−i (43)

s2
n,k =

1
W − 1

W−1

∑
i=0

(θ̂n,k−i − θn,k)
2

(44)

where W is the size of the move window. Regarding the choice of W, W is a hyperparameter,
which is usually obtained according to the empirical method. W needs to be set to an
appropriate size. If W is too small, the parameters within the window will have a certain
size of variance due to random noise. Conversely, if W is too large, the window contains too
much historical information, which can lead to misclassification of the correct parameters.

In order to distinguish whether the parameters are true or not based on their means
and variances, statistical methods based on hypothesis testing are used. Firstly, the null
hypothesis (H0) and the alternative hypothesis (H1) can be defined as

H0 : θ̂i,k = θi
H1 : θ̂i,k 6= θi

(45)

where θ̂i,k and θi is the ith estimated parameter and true parameter, respectively.
Due to the parameter noise ςk is related to S, the test statistic for the χ2 distribution

can be established as

χ2(W − 1) =
(W − 1)

Sn,n
s2

n,k (46)
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Based on the quantified variance set for parameters, statistics determined χ2
α(W − 1)

by the significance level α can be set and the probability event can be described as

P
{

s2
n,k ≥

χ2
α(W − 1)
W − 1

Sn,n

}
= P

{
s2

n,k ≥ s2
th

}
= α (47)

Based on the threshold s2
th, s2

n,k can be tested with the equivalent null hypothesis (H0)
and alternative hypothesis (H1):

H0 : θ̂i,k = θi ∝ s2
n,k ≤ s2

th
H1 : θ̂i,k 6= θi ∝ s2

n,k > s2
th

(48)

Since the parameters estimated by UKF-SPE fluctuate within a small range of the
correct parameters, the variance of the latest correct parameters is much smaller than the
variance of the incorrect parameters, which is close to zero. If the variance of the estimated
parameters in the moving window is below the defined threshold (s2

th), then the estimated
parameters θ̂k is identified as the true parameters; otherwise, they are the false parameters.
Once an estimated parameter is judged to be false, then the RMSProp gradient descent
method is used to modify the parameters.
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3.2. RMSProp Gradient Descent

Once the system has switched, the parameter test results will judge that the parameters
have changed and the estimated parameters will deviate from their original values, showing
a trend towards the true parameters, which can be defined as gradient. With the gradient
descent method, the information of the loss function Ek is used to calculate the gradient [8],
and the parameters are corrected along the direction of the gradient. The gradient descent
method is to modify the parameters by iterations to minimize the loss. Assuming that the
measurement is desired, the loss function is set to squared error, expressed as

Ek =
1
2
(zk − ẑk)

T(zk − ẑk) (49)

According to the rule of back propagation, the gradient can be calculated as

Γk−1 =
∂Ek

∂θk−1
= −(zk − ẑk)

∂h
∂θk−1

(50)

The observation error rk can be obtained by Equation (27).

rk = zk − ẑk = h(xk, uk,θ) + vk − h(x̂k, uk, θ̂k) (51)
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Equation (51) can be approximated as a first-order Taylor expansion as follows

rk = zk − ẑk ≈
∂h
∂θk

(θ̂k − θ̂k−1) (52)

The gradient Γk−1 is approximated as

Γk−1 ≈ −
∂h
∂θk

(θ̂k − θ̂k−1)
∂h

∂θk−1
= −Dk

(θ̂k − θ̂k−1)

T
(53)

where Dk = T ∂h
∂θk

∂h
∂θk−1

, T is the interval time between two samples. It can be found that
the gradient is related to the trend of the parameters. The gradient is also a modification
quantity for the parameters, assuming that the learning rate is η, and the parameters can be
modified as

θ̂
∗
k−1 = θ̂k−1 − ηΓk−1 (54)

where θ̂
∗
k−1 is the vector of modified parameters, η is a fixed constant which will lead to

large fluctuations of parameter estimation results. The ideal learning rate is set large at the
beginning, with a fast convergence rate, and then decays slowly to ensure stable arrival
at the optimal point, as shown in Figure 4. η can be turned into a time-varying learning
rate vector ηk−1. The learning rate adaptive algorithm often uses RMSProp, which uses
exponentially decaying averaged gradients to discard past historical information, allowing
it to converge quickly after finding the gradient minimum, solving the problem of large
oscillations in optimization.

RMSProp needs to calculate the cumulative squared gradient as

λk−1 = ρλk−2 + (1− ρ)Γk−1 � Γk−1 (55)

where ρ ∈ [0, 1) is the rate of reduction. The learning rate of each parameter is then
updated to

ηi,k−1 =
ε√

δ + λi,k−1
(56)

where ε is the global learning rate, δ is a small constant that makes the value stable when
divided by a decimal, usually set to 10−6. ηi,k−1 A is the learning rate of the ith parameter,
RMSProp chooses a different learning rate for each parameter. Equation (54) can be
rewritten as

θ̂
∗
k−1 = θ̂k−1 − ηk−1 � Γk−1 (57)

Finally, with the modified parameter vector θ̂
∗
k−1, the UKF-SPE is re-conducted to

obtain new x̂k and θ̂k, the measurements are also reconciled to new ẑk.
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The proposed UKF-based robust SPE considers the effect of parameter changes and
is applicable to nonlinear dynamic systems with variable parameters. When the system
is switched, or a failure occurs, the system parameters change, and the parameter testing
based on hypothesis testing and moving windows is introduced to detect whether the
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system parameters have changed. Based on the detection results, the RMSProp gradi-
ent descent method that adaptively modifies the learning rate is used to fast track the
changed parameters. The proposed UKF-based robust SPE algorithm is shown as follows
(Algorithm 1).

Algorithm 1: UKF-based robust SPE

Input: x̂k−1; θ̂k−1; zk
Begin:
Step 1. Extend the state vector to obtain x

′
k−1.

Step 2. Conduct UKF-SPE based on x
′
k−1 to estimate x̂k, θ̂k, and reconcile ẑk.

Step 3. Conduct parameters test:
1. Calculate the mean θn,k and variance s2

n,k of each estimated parameter in the window using
Equations (43) and (44);
2. Performing hypothesis testing;

For n = 1: Nθ

If null hypothesis H0 is accepted, θ̂i,k = θi, skip the following steps to output
Else θ̂i,k 6= θi, proceed to the next step

Step 4. Conduct RMSProp gradient descent:
1. Calculate loss Ek using Equation (49);
2. Calculate the approximate gradient Γk−1 using Equation (53);

3. Calculate the learning rate ηi,k−1 for each parameter using Equation (56);
4. Modify parameters using Equation (57);
Step 5. Re-conduct UKF-SPE based on the modified parameters to estimate x̂k, θ̂k, and reconcile
ẑk.
End
Output: x̂k; θ̂k; ẑk

4. Case Studies

To verify the effectiveness of the proposed UKF-RSPE, the UKF-RSPE was applied to
a typical nonlinear dynamic process system and the free radical polymerization of styrene.
All case studies were performed by using MATLAB 2016a.

4.1. Case Study 1: Typical Nonlinear Dynamic System

In order to simply show the effect of the proposed UKF-RSPE, the proposed UKF-RSPE
is applied to a typical nonlinear dynamic process system, which is commonly used in filter
testing [29,37]. Its mathematical model can be expressed as

xk =
xk−1

2
+

θxk−1

1 + x2
k−1

+ 8 cos(1.2k) + wx,k−1 (58)

zk =
1

20
x2

k + vz,k−1 (59)

where vk−1 and vz,k−1 are the process noise and the measurement noise with standard
deviations of 0.1, respectively. θ is the model parameter. Under normal conditions, the
value of the parameter θ is set to be 25. If a fault occurs, the parameter changes to be
12.5. To keep track of the changed parameter, the state vector and the state equations are
expanded to be

xk =

[
xk
θk

]
=

[ xk−1
2 +

θk−1xk−1
1+x2

k−1
+ 8 cos(1.2k)

θk−1

]
+

[
wx,k−1
ςθ,k−1

]
(60)

where ςθ,k−1 is the parameter noise with the standard deviation of 0.01.
In this simulation, W is set to be 5, α is set to be 0.05. The simulation time step is set

to be 500 and the value of parameter changes at time step 200. The initial state is set to be
x(0) = [0, 25]. The comparison results of SPE are shown in Figures 5–7. The comparison
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of the estimated results of the state in Figure 5 shows that the distribution of system state
changes at time step 200. Since the random noise in the simulation is small, it can be
clearly seen that the state error of the traditional UKF-SPE estimation increases significantly
after the fault occurs in Figure 5b. Compared with the traditional UKF-SPE, the proposed
UKF-RSPE can achieve more accurate state estimation. In Figure 6, the comparison of the
estimated results of parameter directly shows that the parameter changes from 25 to 12.5.
The traditional UKF-SPE cannot track the true parameter quickly, while UKF-RSPE can
track the parameters quickly and accurately and reduce the error of parameter estimation.
Due to the presence of the learning rate in UKF-RSPE, there is a small fluctuation after the
estimated parameter reaches the true value. With the learning rate continuously updating,
the parameter is finally stabilized around the true value. Finally, the measurements are
reconciled according to the estimated states and parameters. The comparison of the
reconciled results of measurements shows that the UKF-RSPE can reconcile measurements,
and the measurement error of the UKF-RSPE is smaller than that of UKF-SPE, as shown in
Figure 7.
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To further quantify the effect of UKF-RSPE, the statistical information of estimated
results is listed in Table 1. Compared with the traditional UKF-SPE, the MSE of state
estimation is reduced from 20.4359 to 0.8509; and the MSE of parameter estimation is
reduced from 26.4655 to 1.3346. The MSE of the measurement data is 0.0106; due to the
failure, the traditional UKF-SPE cannot accurately estimate the status, resulting in the MSE
of measurements increasing to be 4.3588, but the UKF-RSPE can reduce the MSE to be
0.3375. Therefore, the proposed UKF-RSPE can be applied to the general nonlinear dynamic
system with variable parameter and achieve more accurate state and parameter estimation.

Table 1. Statistical information of estimated results in Case Study 1.

Results
MSE

UKF-SPE UKF-RSPE

States 20.4359 0.8509
Parameters 26.4655 1.3346

Measurements
(MSE = 0.0106) 4.3588 0.3375

4.2. Case Study 2: Free Radical Polymerization of Styrene

To verify the effectiveness of the proposed UKF-RSPE, the UKF-RSPE was applied to
the free radical polymerization of styrene. This paper uses the mathematical model of dy-
namics of polymerization in a jacketed continuous stirred tank reactor proposed by Schmidt
and Ray [5]. The reaction mechanism of free radical polymerization of styrene is divided
into decomposition reaction of initiator, initiator reaction to form monomer radical, chain
propagation reaction, and termination reaction. First of all, the reaction mechanisms start
with the decomposition reaction of an initiator such as azodiisobutyronitrile (AIBN) [38]
which can be represented as

I
kd,0,Ed−−−→ 2R∗ (Decomposition reaction) (61)

where I is the initiator involved in the decomposition reaction that produces the radical
R∗. kd,0 and Ed are the specific reaction rate constant and energy of activation of the
decomposition reaction.
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Hereafter, the radical R∗ reacts with the monomer M in the initiation reaction to
produce P1 which is a live polymer of the unit chain length.

R∗ + M
ki,0,Ei−−−→ P1 (Initiator reaction) (62)

where ki,0 and Ei are the specific reaction rate constant and energy of activation of the
initiation reaction.

The propagation reaction for Pn, alive polymer of n units of monomer to produce Pn+1,
starting with P1 is given by

Pn + M
kp,0,Ep−−−→ Pn+1 (Propagation reaction) (63)

where kp,0 and Ep are the corresponding specific reaction rate constant and energy of
activation of the propagation reaction

Afterwards, the polymer product is obtained from the dead polymer product Mn+m
with chain lengths of n + m units of monomer formed by the termination reaction.

Pn + Pm
kt,0,Et−−−→ Mn+m (Termination reaction) (64)

where kt,0 and Et are the corresponding specific reaction rate constant and energy of
activation of the termination reaction. The above reaction conditions are listed in Table 2.

The feed and output flow rates and the feed solvent concentration do not change with
time throughout the reaction. It is assumed that the feed is equal to the output and there is
no solvent build-up in the reactor.

Table 2. Information of the reaction conditions in Case Study 2.

Process Parameters Value

The reaction rate constant of the decomposition reaction kd,0 5.95× 1013 kmol·m−3·s−1

The reaction rate constant of the propagation reaction kp,0 1.00× 107 kmol·m−3·s−1

The reaction rate constant of the termination reaction kt,0 1.25× 107 kmol·m−3·s−1

The energy of activation of the decomposition reaction Ed 14, 897 kJ·kmol−3

The energy of activation of the propagation reaction Ep 3557 kJ·kmol−3

The energy of activation of the termination reaction Et 8.44× 102 kJ·kmol−3

The mechanistic model describes the actual dynamic process of free radical poly-
merization of styrene, in which the products have distributional properties, such as the
concentrations of the polymers. The estimation of the distribution output is critical as it
significantly affects the product quality and process efficiency. The polymer concentration
is considered as the process state, and the output of this process is the distribution of
polystyrene concentration as a function of polystyrene chain length at the reactor outlet.
Simulations of real scenarios revealed that the estimated error in polystyrene concentration
for chain lengths longer than 1000 units of monomer is 10−4 or less; therefore, the maximum
chain length estimated for this process was set to 1000.

The concentration of the initiator C̃I,k , concentration of the monomer C̃M,k and the
temperature of reactor T̃k are taken as the process states. The equations of states in the
nonlinear dynamic model are given by

xk =

 C̃I,k
C̃M,k
T̃k

 =

 f1(C̃I,k−1 , T̃k−1)

f2(C̃I,k−1 , C̃M,k−1 , T̃k−1)

f3(C̃I,k−1 , C̃M,k−1 , T̃k−1)

+

 w1,k−1
w2,k−1
w3,k−1

 (65)

where f1, f2, and f3 are state equations of C̃I,k , C̃M,k , and T̃k, respectively. w1,k−1, w2,k−1,
and w3,k−1 are process noise of C̃I,k , C̃M,k , and T̃k, respectively. The information of C̃I,k ,
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C̃M,k , and T̃k is listed in Table 3. At a steady state set-point reactor temperature Tss of 310
K, the following values are obtained.

CI,ss = 0.0691 kmol·mol−3

CM,ss = 3.393 kmol·mol−3 (66)

where ss represents the steady state. At set-point conditions, the steady-state concentration
range of the polymer is zero. The magnitudes of changes in the states C̃I,k, C̃M,k , and T̃k
are large, therefore, the states must be redefined in terms of dimensionless variables so that
when the system reaches the set-point condition, they are scaled to one.

C̃I =
CI

CI,ss
(67)

C̃M =
CM

CM,ss
(68)

T̃ =
T

Tss
(69)

The state equations f1, f2, and f3 can be obtained from the differential equations,
which, rewritten in terms of scaled dimensionless variables, are listed as follows.

dC̃I
dt

= − C̃I
τ
− kd,0 exp


(
− Ed

RTss

)
T̃

C̃I +

(
Fi
V

)
C̃I,i (70)

dC̃M
dt

= − C̃M
τ
− kp,0 exp


(
− Ep

RTss

)
T̃

CPC̃M +

(
Fm

V

)
C̃M,m (71)

dT̃
dt

=
T̃i − T̃

τ
+

γCm,sskp.0

Tss
exp


(
− Ep

RTss

)
T̃

C̃MCP +

(
Qss

ρcpVTss

)
Q̃ (72)

where the information of parameters in the above equations is listed in Tables 2 and 4. The
total concentration of live polymers CP is expressed in terms of dimensionless variables C̃I
and T̃ by

CP =
√

2CI f kd
kt

=

√√√√√√√√
2C̃I · CI,ss f kd,0 exp


( −Ed

RTss

)
( T

Tss )


kt,0 exp


(
−Et
RTss

)
( T

Tss )


=

√
2CI,ss f kd,0

kt,0
·

√√√√C̃I exp

[ ( Et−Ed
RTss

)
T̃

] (73)

where f = 0.6 is an initiator efficiency factor which accounts for the fraction of initiator
participating in the chain initiation reaction.

Considering the state vector and CP, the measurement vector is set to
zk = [y1,k; y2,k; y3,k; y4,k] =

[
C̃I,k; C̃M,k ; T̃k ; CP

]
, the measurement equations can be ex-

pressed as

zk =


y1,k
y2,k
y3,k
y4,k

 =


C̃I,k
C̃M,k
T̃k
CP

+


v1,k
v2,k
v3,k
v4,k

 (74)

where v1,k, v2,k, v2,k, and v3,k are the measurement noise with standard deviations of 0.001,
0.001, 0.001, and 1, respectively
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Table 3. Information of the states in Case Study 2.

Process States Initial
Value

Standard
Deviation
of Noise

Final Value at
Steady State

Dimensionless concentration of initiator C̃I,k 0.91 0.01 1
Dimensionless concentration of monomer C̃M,k 0.91 0.01 1

Dimensionless temperature of reactor T̃k 0.91 0.01 1

Table 4. Information of the parameters in Case Study 2.

Process Parameters Value

The volumetric flow rates of inlet solvent Fs 6.3750× 10−5 kmol·mol−3

The volumetric flow rates of inlet monomer Fm 5.250× 10−5 kmol·mol−3

The volumetric flow rates of inlet initiator Fi 1.55× 10−5 kmol·mol−3

The volumetric flow rates outlet streams Ft Ft = Fs + Fm + Fi
The reactor volume V 3 m3

The residence time τ τ = V
Ft

The measured density ρ
Obtained from simultaneous

online measurements
The volumetric heat capacity of reacting mixture ρcp 1506.24 kJ·K−1·m−3

The heat of reaction due to the propagation reaction −∆Hp 69, 872 kJ·kmol−3

The amount of reaction mixture γ −∆Hp
ρcp

The heating rate at the steady state Qss −0.6659 kJ·s−2

The inlet feed temperature Ti 330 K

To verify the performance of the proposed UKF-based robust SPE, it was applied to the
simulations of free radical polymerization of styrene and compared with traditional UKF-
SPE. Two independent cases were considered, in which there are different combinations of
uncertain parameters that change when failure occurs. Case Study 2.1 has only a single
uncertain parameter, while Case Study 2.2 contains multiple uncertain parameters. The
other parameters are the same in the two cases. W is set to be 5, α is set to be 0.05. The
simulation time step is set to be 800 and the parameters are changed at time step 300.

4.2.1. Case Study 2.1: Robust SPE with Single Parameter

The initiator efficiency factor f is a constant which is assumed to be an uncertain
parameter. With this parameter included, the state vector and the state equations are
expanded to

xk =


C̃I,k
C̃M,k
T̃k
f

 =


f1(C̃I,k−1 , T̃k−1)

f2(C̃I,k−1 , C̃M,k−1 , T̃k−1)

f3(C̃I,k−1 , C̃M,k−1 , T̃k−1)
fθ( f )

+


w1,k−1
w2,k−1
w3,k−1
ς f ,k−1

 (75)

where ς f ,k−1 is the parameter noise with the standard deviation of 10−6, f is 0.6 under
normal conditions. When a fault occurs, the parameter f changes to 0.3 at time step 300.

The comparison results of SPE are shown in Figures 8–11. The effect of parameter
f change on states C̃I,k and C̃M,k is not significant, the parameter f mainly affects the
temperature of reactor T̃k. Figure 8 shows the comparison of the estimated results of
the state T̃k, it can be clearly seen that starting from time step 300, estimated state T̃k of
the traditional UKF-SPE deviates from the theoretical true state. The UKF-SPE can only
slowly track the true state, while the proposed UKF-RSPE can maintain accurate state
estimation. In Figure 9, from the comparison of the estimated results of parameter f , it
is clear that the traditional UKF-SPE tracks the parameter slowly, while the UKF-RSPE
can track the true parameter much faster. Due to the presence of the learning rate in UKF-
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RSPE, there is a certain fluctuation when the true parameter is first tracked, which leads
to misdetection as a false parameter, but with iteration, the learning rate is continuously
updated, accompanied by past information being forgotten until the parameter f is finally
stabilized as the true parameter through parameter testing. It can also be observed in
Figure 9 that the fluctuations appear at the beginning of the parameter estimation due to
the adjustment of the covariance Pk from the initial unit matrix with iterations. Finally,
the measurements are reconciled according to the estimated states and parameter. The
comparison of the reconciled results of measurement T̃k is the same as the estimated results
of the state T̃k as shown in Figure 10. The proposed UKF-RSPE can reconcile measurements,
and the errors of the measurements are smaller than the measurements, indicating that the
UKF-RSPE still has the ability to reconcile the data in the event of a fault. The change of f
not only affects T̃k, but also the measurement of the total concentration of live polymers
Cp. The comparison of the reconciled results of measurement Cp is shown in Figure 11; Cp
undergoes a direct change when s fault occurs indicating that f has a large effect on Cp.
The UKF-RSPE can reconcile the measurements quickly, while the traditional UKF-SPE can
only track the measurements slowly. The measurement error of the UKF-RSPE is smaller
than the measurement and the measurement of UKF-SPE, as shown in Figure 11b.
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(b) state error.

Polymers 2022, 14, x FOR PEER REVIEW 21 of 28 
 

 

  
(a) (b) 

Figure 9. The comparison of the estimated results of parameter f  in Case Study 2.1: (a) estimated 
parameter; (b) parameter error. 

  
(a) (b) 

Figure 10. The comparison of the reconciled results of measurement kT  in Case Study 2.1: (a) rec-
onciled measurement; (b) measurement error. 

  

Figure 9. The comparison of the estimated results of parameter f in Case Study 2.1: (a) estimated
parameter; (b) parameter error.



Polymers 2022, 14, 973 19 of 24

Polymers 2022, 14, x FOR PEER REVIEW 21 of 28 
 

 

  
(a) (b) 

Figure 9. The comparison of the estimated results of parameter f  in Case Study 2.1: (a) estimated 
parameter; (b) parameter error. 

  
(a) (b) 

Figure 10. The comparison of the reconciled results of measurement kT  in Case Study 2.1: (a) rec-
onciled measurement; (b) measurement error. 

  

Figure 10. The comparison of the reconciled results of measurement T̃k in Case Study 2.1: (a) recon-
ciled measurement; (b) measurement error.

Polymers 2022, 14, x FOR PEER REVIEW 22 of 28 
 

 

  
(a) (b) 

Figure 11. The comparison of the reconciled results of measurement pC  in Case Study 2.1: (a) rec-
onciled measurement; (b) measurement error. 

Table 5. Statistical information of the estimated results in Case Study 2.1. 

Results 
MSE 

UKF-SPE UKF-RSPE 
States 1.51 × 10−6 8.67 × 10−7 

Parameters 7.09 × 10−3 2.08 × 10−4 
Measurements 

(MSE = 2.49 × 10−1) 1.03 8.58 × 10−2 

4.2.2. Case Study 2.2: Robust SPE with Multiple Parameters 
The reaction rate constant of the propagation reaction ,0pk  and the termination reac-

tion ,0tk  are assumed to be uncertain parameters. With the parameters included, the state 
vector and the state equations are expanded to 

1 , 1 1, 1, 1

2 , 1 , 1 1, 2, 1

3 , 1 , 1 1 3, 1

,0 ,0 , 1

,0 ,0 , 1

( , )

( , , )

= ( , , ) +
( )
( )

I k kI k k

I k M k kM k k

k k I k M k k k

p p p k

t t t k

f C TC w
f C C TC w

T f C C T w
k f k
k f k

− − −

− − − −

− − − −

−

−

                =                      

 

  

  

θ

θ

x
ς
ς

 (76)

where , 1p k −ς  and , 1t k −ς  are the parameter noises with the standard deviation of 10−6. Un-
der normal conditions, the parameter values are set to be 7 3 -1

,0 10  s1.00 mk ol mpk
−= ×   ,

7 3 -1
,0 10  s1.25 mk ol mtk

−= ×   . When a fault occurs, the parameters change to be 
7 3 -1

,0 10  s1.50 mk ol mpk
−= ×   , 7 3 -1

,0 10  s0.6 molk mtk
−= ×    at time step 300. 

The comparison results of SPE are shown in Figures 12–16. In this case, the simulta-
neous change of both parameters has a dramatic effect on the state estimation. In Figure 
12, the temperature of the reactor kT  estimated by traditional UKF-SPE changes abruptly 
and UKF-SPE takes longer time to track the true state. The proposed UKF-RSPE can rap-
idly estimate the true state and improve the accuracy of state estimation. Figure 13 and 
Figure 14 compare the estimated results of parameters ,0pk  and ,0tk , respectively. For 

,0tk , UKF-RSPE maintains its excellent performance in the case with single parameter, as 
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To further quantify the effect of UKF-RSPE, the statistical information of estimated
results is listed in Table 5. Compared with the traditional UKF-SPE, the mean square
error (MSE) of state estimation is reduced from 1.51 × 10−6 to 8.67 × 10−7; and the MSE
of parameter estimation is reduced from 7.09 × 10−3 to 2.08 × 10−4. The MSE of the
measurement data is 2.49 × 10−1, and the traditional UKF-SPE not only fails to correct
the measurements, but also increases the MSE to 1.03. The UKF-RSPE can reconcile the
measurements and reduce the MSE to 8.58 × 10−2. Therefore, the proposed UKF-RSPE
tracks the parameter change faster and can achieve more accurate state and parameter
estimation.
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Table 5. Statistical information of the estimated results in Case Study 2.1.

Results
MSE

UKF-SPE UKF-RSPE

States 1.51 × 10−6 8.67 × 10−7

Parameters 7.09 × 10−3 2.08 × 10−4

Measurements
(MSE = 2.49 × 10−1) 1.03 8.58 × 10−2

4.2.2. Case Study 2.2: Robust SPE with Multiple Parameters

The reaction rate constant of the propagation reaction kp,0 and the termination reaction
kt,0 are assumed to be uncertain parameters. With the parameters included, the state vector
and the state equations are expanded to

xk =


C̃I,k
C̃M,k
T̃k
kp,0
kt,0

 =


f1(C̃I,k−1 , T̃k−1)

f2(C̃I,k−1 , C̃M,k−1 , T̃k−1)

f3(C̃I,k−1 , C̃M,k−1 , T̃k−1)
fθ(kp,0)

fθ(kt,0)

+


w1,k−1
w2,k−1
w3,k−1
ςp,k−1

ςt,k−1

 (76)

where ςp,k−1 and ςt,k−1 are the parameter noises with the standard deviation of 10−6. Under
normal conditions, the parameter values are set to be kp,0 = 1.00× 107 kmol·m−3·s−1,
kt,0 = 1.25 × 107 kmol·m−3·s−1. When a fault occurs, the parameters change to be
kp,0 = 1.50× 107 kmol·m−3·s−1, kt,0 = 0.6× 107 kmol·m−3·s−1 at time step 300.

The comparison results of SPE are shown in Figures 12–16. In this case, the simultane-
ous change of both parameters has a dramatic effect on the state estimation. In Figure 12, the
temperature of the reactor T̃k estimated by traditional UKF-SPE changes abruptly and UKF-
SPE takes longer time to track the true state. The proposed UKF-RSPE can rapidly estimate
the true state and improve the accuracy of state estimation. Figures 13 and 14 compare the
estimated results of parameters kp,0 and kt,0, respectively. For kt,0, UKF-RSPE maintains its
excellent performance in the case with single parameter, as shown in Figure 14a. However,
for kp,0, although UKF-RSPE tracks the true parameter faster compared to UKF-SPE, it still
takes more than 150 time steps due to the interplay between multiple parameters when
they are estimated simultaneously. There is also some fluctuation after tracking the true
parameters until the parameter detection is judged to be true. Fluctuations in the vicinity
of the true parameters have small effects on the state estimation and measurement recon-
ciliation, so they can be ignored and the estimated parameters can be considered as true
parameters. Figure 15 shows the comparison of the reconciled results of measurement T̃k;
UKF-RSPE can reconcile the measurements and reduce the errors of measurements, which
greatly improves on the accuracy of traditional UKF-SPE. Figure 16 shows the comparison
of the reconciled results of measurement Cp, a sudden change occurred at the time of the
fault, both the traditional UKF-SPE and UKF-RSPE are able to reconcile the measurements,
the errors of UKF-RSPE are smaller.

To further quantify the effect of UKF-RSPE, the statistical information of estimated
results is listed in Table 6. Compared with the traditional UKF-SPE, the MSEs of state
estimation and parameter estimation are reduced from 7.17 × 10−6 and 4.53 × 10−2, respec-
tively, to 9.20 × 10−7 and 6.04 × 10−3. The MSE of the measurement data is 2.59 × 10−1

and the MSE of the measurements reconciled by UKF-RSPE is reduced to 2.35 × 10−1. In
summary, the proposed UKF-RSPE can track all the parameters changes faster not only
in the case with single parameter but also in the case with different combinations of mul-
tiple parameters changes. The proposed UKF-RSPE can achieve more accurate state and
parameter estimates and has stronger robustness.
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Table 6. Statistical information of the estimated results in Case Study 2.2.

Results
MSE

UKF-SPE UKF-RSPE

States 7.17 × 10−6 9.20 × 10−7

Parameters 4.53 × 10−2 6.04 × 10−3

Measurements
(MSE = 2.59 × 10−1) 1.22 2.35 × 10−1

The proposed UKF-based robust SPE is not limited to free radical polymerization
of styrene, it can be applied to other radical polymerization processes. The free radical
polymerization of styrene described in this section is just one case of the application of
UKF-based robust SPE. UKF is a model-based approach, and by changing the mathematical
model, it can be applied in the case of other radical polymerization processes. However,
when the UKF-based robust SPE is applied to other radical polymerization processes,
the mathematical models of other radical polymerization processes need to be obtained
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firstly. In general, the chemical reaction is complicated, and it may be difficult to derive the
accurate mathematical model of the chemical reaction. Therefore, a characteristic of UKF is
model-driven. Based on being model-driven, it can be used in other radical polymerization
processes.

5. Conclusions

In this work, the SPE problem of the free radical polymerization of styrene with vari-
able parameters was studied, given that there are uncertain parameters in the mechanistic
model. When the reaction conditions are switched, or the reaction process generates faults,
the parameters will change. Due to the limitation of traditional UKF-SPE in detecting
and fast-tracking changes in model parameters, this paper proposed a UKF-based robust
SPE method, which establishes a moving window and introduces a hypothesis-test-based
parameter testing criterion within the window to detect whether the parameters have
changed. Based on the detection results, the gradient descent method which adaptively
modifies the learning rate is used to modify the parameters to accelerate the tracking of the
parameters, and to obtain more accurate parameters and states. The proposed UKF-based
robust SPE is applied to the simulation study of the free radical polymerization of styrene
using the mathematical model of dynamics of polymerization in a jacketed continuous
stirred tank reactor. The model is based on the reaction mechanism and describes the
dynamics of the actual free radical polymerization of styrene. The experimental results
show that the proposed UKF-based robust SPE can quickly track the parameter changes
and achieve more accurate state and parameter estimation with stronger robustness.
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