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Abstract: In Cystic Fibrosis (CF), mutations of the CFTR gene result in defective CI secretion and Na* hyperabsorption by

epithelia which leads to airway lumen dehydration and mucus plugging and favours chronic bacterial colonization, persistent

inflammation and progressive lung destruction. Beyond this general description, the pathogenesis of CF Iung disease remains

obscure due to an incomplete understanding of normal innate airway defense. This mini-review aims to highlight the role of the

pro-resolution lipid mediator, Lipoxin A4, which is inadequately produced in CF, on several aspects of innate immunity that are

altered in CF airway disease.
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Cystic Fibrosis aitway disease

Cystic Fibrosis (CF) is a lethal genetic disorder which results from
a mutation of the gene Coding for the Cystic Fibrosis Transmembrane
conductance Regulator (CFTR), a cyclic AMP-dependent CI channel
[1].  Cystic Fibrosis affects various organs in which the CFTR
protein is normally expressed. The major clinical features of CF are
chronic pulmonary disease, exocrine pancreatic insufficiency and male
infertility, however, the lung disease is the main cause of morbidity
and mortality in CF [2-4]. Healthy airways are lined by an epithelial
layer that plays a major role in defense against inhaled pathogens
involving several specialized epithelial functions including; mechanical
barrier, adequate surface hydration due to an intricate regulation of
fons and water transport, mucus secretion, production of
antimicrobial peptides, expression of receptors that recognize
pathogen associated molecular patterns (PAMPs), secretion of
cytokines that control the local immune responses in the airway
lumen. In CF mutations of the CFTR gene results in defective CI
secretion and Na* hyperabsorption by airway epithelia [5,6]. This
contributes to reduction of the periciliary fluid volume, the airway
lumen dehydration, reduction of the periciliary fluid volume and
mucus plugging [7]. This results in an impaired mucociliary clearance
of pathogens from the lung, favouring chronic bacterial colonization,
persistent inflammation and progressive destruction of the lung [8]. In
addition to the abnormality of epithelial ion transport, other epithelial
dysfunctions have been described in chronically inflamed and infected
amplified

inflammatory responses to infections and reduced bacterial clearance.

CF airways, intrinsic pro-inflammatory properties,
However, beyond this general description, the pathogenesis of the CF

lung disease remains obscure.
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Anti-inflammatory therapy in Cystic Fibrosis

Whilst the field continues to celebrate the success, for a minority
of people with CF, in achieving therapeutic benefits via CFTR
modulation strategies, reduction of lung inflammation and restoration
of airway hydration / muco-ciliary clearance remain core goals of CF
therapy for the majority. Several anti-inflammatory approaches have
been examined in CF, however, the ideal anti-inﬂammatory drug is
not yet available [9].
benefits of Inhaled corticosteroids (ICS) in CF, examining evidence

A recent systematic review of the risks and

from 13 trials, concluded that there is insufficient evidence to
establish whether ICS are beneficial in CF, but withdrawal in those
already taking them has been shown to be safe [10]. It is established
that ICS use can have adverse effects on growth. A systematic review
of the efficacy of non-steroidal anti-inflammatory drugs in CF
concluded that treatment with high-dose ibuprofen was associated
with a significantly lower annual rate of decline in lung function
(especially in children), however, the adoption of ibuprofen into
therapy has not been universally accepted [11,12]. Redressing the
CF, by
supplementation of Docosahexaenoic Acid may be helpful, and efforts

imbalance in fatty acid metabolism described in

are ongoing to evaluate the potential therapeutic benefit [13].

The Specialized Pro-resolving Mediatots

New perspectives have emerged in inflammation research with the
discovery of new classes of biologically active lipid mediators playing
specialised roles in the active resolution of inflammation — the
“specialized pro-resolving mediators” (SPM) [14]. Furthermore, the
acute inflammatory response is a protective mechanism that evolved to
eliminate invading organisms and yet be self-limited with an active
resolution phase designed to restore tissue homeostasis. The
resolution phase is carried out by the actions of SPM which are non-
immunosuppressive [ 14]. The temporal evolution of acute
inflammation toward its active resolution is directed by the sequential
expression and activity of characteristic classes of eicosanoid mediator
in a process termed “class switching” [15]. Prostaglandins are
biosynthesised  early, inflammatory  response.
Leukotrienes follow, typified by Leukotriene Bs (LTB4) which plays

its role in amplification and propagation of inflammation [15] acting

initiating  the

in concert with the cytokine Interleukin 8 (IL-8) as a potent

OPEN aACCESS

CSBJ



neutrophil chemo-attractant [16,17].  Lipoxin As (LXAu4) is the first
eicosanoid of the SPM family to be expressed in the active resolution
phase of inflammation. LXAs+ production is followed by the
biosynthesis of Resolvins and Protectins at the inﬂammatory site.
These SPM are biosynthesized inn vivo in inflammatory exudates from
essential fatty acids; Lipoxins (LX) from arachidonic acid; E-series
resolvins (Rv) from Omega-3 Eicosapentaenoic acid (EPA); D-series
resolvins and protectins (PD) from Docosahexaenoic acid (DHA)
[14].

Anti-inflammatory properties of Lipoxin A+

The anti-inflammatory properties of LXA4 have been reported in
LXA4 inhibits nuclear factor-kappaB

activation, which results in inhibition of pro-inflammatory cytokine

a wide variety of tissues.

release and inhibition of inflammatory responses in microglial cells,
astrocytoma cells, macrophages, peripheral blood mononuclear cells
(PBMC), polymorphonuclear leukocytes (PMN) and intestinal
[18-20]. LXA4 inhibits neutrophil functions, most

notably inhibiting LTBs+ induced neutrophil chemotaxis, neutrophil

epithelial cells

adherence and transmigration across intestinal epithelium and
endothelium and inhibiting superoxide anion and peroxynitrite
generation [14] [21-23]. LXAu4 facilitate neutrophil apoptosis [24]
and stimulates phagocytosis of apoptotic neutrophils by macrophages
[25][26]. This is a critical point since delayed neutrophil apoptosis
appears to be a component of the pathophysiology in patients with
inflammatory diseases, including cystic fibrosis [27,28] and frequently
correlates with disease severity and outcome. In the airways, n vitro
and 12 vivo studies also report that LXA4 displays diverse and potent
anti-inflammatory actions [19,29,30]. In human airways, LXAs
suppresses IL-8 production by leukocytes and bronchial epithelial
cells [30,31]. LXAs was shown to arrest neutrophilic inflammation
and decrease infection in a mouse model of chronic airway
inflammation and infection [32]. LXAs has been proposed as a novel
regulators of adaptive immunity and may have therapeutic potential in
chronic immune disorders [33]. The pro-resolution properties of
LXAs are mediated by the ALX/FPR2 receptor. The ALX/FPR2 is
a G protein-coupled receptor of seven-transmembrane domains that is
expressed mainly by mammalian phagocytic leukocytes. The known
effect of ALX/FPR2 receptor in  the
inflammation is not only triggered by LXAs since other pro-

in host defense and

resolution mediators such as resolving D1 also mediate their effects

through this receptor [34] [35] .

Abnormal eicosanoid class switching in Cystic Fibrosis

LXAs is produced by lipoxygenase (LO) interactions resulting
from trans-cellular cooperations [36] of neutrophils [37], eosinophils
[38], alveolar macrophages [39], platelets [40] or airway epithelial
cells [41], each expressing different Lipoxygenase (LO) enzymes
which act in sequence in LXA4 biosynthesis [16,42]. The 5-LO
expressed by neutrophils can utilise the 15(S)-hydroxyeicosatetranoic
acid released by epithelial cells as substrate to synthesize lipoxins [37].
The platelet 12-LO [40], the macrophages or epithelial 15-LO [39]
[19] are each able to transform Leukotriene A4, released by
neutrophils, into LXAs. Up-regulation of 15-LO activity generates an
inverse relationship between LTBs and LXAs biosynthesis. The
activity of 15-LO  promotes LXAs biosynthesis and blocks
leukotriene biosynthesis, both as a result of 15-LO products
competing for flux at the 5-LO level, and by diversion of the
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intermediate Leukotriene As: away from LTBs towards LXAs
biosynthesis [15,41,42].  The levels of LXA4 have been reported to
be decreased in chronic airway inflammatory disease such as asthma,
chronic obstructive pulmonary disease and CF [29,32/43,44]. A
decreased proportion of pro-resolving compounds (LXA4) compared
to pro-inflammatory (LTB4) is associated with decrease of lung
function [45]. The absolute content of LXA4 concentration in CF
BAL fluid from patients with CF is not significantly different from
controls [46]. However, a significant suppression in LXA4/ neutrophil
ratios in BAL fluid of patients with CF compared with pulmonary
inflammatory controls was reported [32,46]. More specifically, in
vitro studies support a role for CFTR in LXA4 production. CFTR
inhibition reduced LXA+ synthesis by 50% during platelets/ PMN
co-incubation by inhibiting the lipoxin synthase activity of platelets
12-LO. Platelets from patients with CF generated 40% less LXA4
compared to healthy subject [47]. The decreased LXA4 production in
CF provides a mechanistic explanation of the failure to actively
resolve acute airway inflammation seen in these patients.

+LXA, 1nM

Airway Surface Liquid
(texas red)

Epithelial cells
(calcein green)

Figure 1. LXA, restores the Airway Surface Liquid (ASL) layer in CF
bronchial epithelium. Live cell imaging using confocal microscopy of
bronchial epithelium in primary culture from a child with CF before and
after treatment with LXA,. The bronchial epithelial cells are stained in
green using calcein green and the ASL in red using dextran coupled to
texas-red.

Lipoxin As regulates ion transport and the airway surface liquid
height

LXAs stimulates a rapid and transient intracellular Ca** increase
and induces CI secretion through human bronchial epithelial cells by
Ca**-activated CI channel and not CFTR [48]. Furthermore, LXA4
effects on ion transport lead into an increase of the airway surface
liquid (ASL) layer height in models of fully differentiated bronchial
epithelia derived from primary culture of bronchial brushings from
patients with CF (Figure 1). LXA4 exerts this effect on the ASL
dynamics via the ALX/FPR2 receptor which is expressed in the
apical membrane of airway epithelial cells. The sustained increase in
ASL height induced by LXA4 in non-CF and CF bronchial epithelial
results from stimulation of an intracellular calcium signal and Ca®*-
activated CI secretion via NPPB sensitive CI- channels [49]. LXAs
thus restores Cl secretion and adequate ASL height which are affected
in CF airways, highlighting a role for LXA4 in the control of innate
immune defence. The inadequate endogenous LXA4 biosynthesis in
CF contributes to the reduce ASL volume and impaired mucociliary
clearance in addition to alter resolution of inflammation in the airway,
thus amplifying the vicious circle of airway dehydration, chronic
infection and inflammation.

Lipoxin A4 regulates airway epithelial integrity

Epithelial repair is a key process required to maintain epithelial
barrier integrity and respiratory function, however in CF, repeated
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infections and inflammatory insults result in damage to the airways,
triggering the repair process [S0]. Epithelial repair initially involves
cell spreading and migration, followed by proliferation to repopulate
the denuded area that has been created by injury [S1-53]. This is then
followed by differentiation of the epithelium [54]. Recent research
suggests that epithelial repair and differentiation of the CF airway
epithelium is down-regulated or delayed [55-59]. More specifically,
cell migration and proliferation appear to both be reduced during
repair in CF bronchial epithelial cells compared to non-CF [60]. This
delay in repair of the CF epithelium renders the lung more susceptible
to ongoing bacterial infection and thus may lead to more epithelial
damage [61]. It was recently reported that LXA4 can trigger epithelial
cell migration and proliferation and thus play a role in repair of
corneal and bronchial epithelia [62-64] [65-67]. LXAs triggers an
increase in migration, proliferation, and wound repair of non-CF and
CF bronchial epithelia. These responses to LXA4 are mediated by the
ALX/FPR2 receptor via the downstream activation of Karp channels
and ERK MAP kinase phosphorylation [60]. This effect of LXA4
both ion transport and repair are consistent with the role of ion
channels in two key processes of repair, migration and proliferation
[68]. In particular potassium channels have been shown in numerous
cell types to be involved in cell migration and proliferation [57,58,69-
72). Furthermore, LXAs enhances airway epithelial tight junction
formation. LXA4 stimulates ZO-1, claudin-1 and occludin expression
and trafficking at the apical membrane resulting in enhanced
transepithelial electrical resistance in human airway epithelia [73].
Therefore the reduced levels of LXA4 in the CF airways [74] may
account for the reduced capacity for epithelial repair in the CF
epithelium.
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Figure 2. Pleiotropic effects of LXA,;. LXA; which is abnormally produced in
Cystic Fibrosis controls various airway physiological functions. LXA,;
regulates bronchial epithelium ion transport, enhances the airway surface
liquid (ASL) height, protects epithelial barrier integrity and reduces
inflammation.

Therapeutic potential for LXA4 in cystic fibrosis treatment

Clearance of airway secretions has been a first line therapy for
patients with CF and a variety of airway clearance therapies have been
developed [75,76]. One of the greatest challenges into reversing the
CF defect in the airways is to design strategies to overcome the
absence of functional CFTR by stimulating chloride secretion via
alternative pathways, thus restoring airway hydration and mucociliary
clearance. This can be achieved via the activity of calcium-activated
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chloride channels stimulated by agents that raise the intracellular
calcium concentration. This strategy has been plagued by the
attendant side effects of the amplification of the calcium dependant
pro-inflammatory response resulting in the undesirable activation of
NFkB [26]. Thus identification of agents, particularly natural
endogenous biologicals, that stimulate alternative non-CFTR CI
secretory pathways and promote ASL hydration and optimal ASL
height recovery are likely to be of therapeutic benefit in improving
mucociliary clearance in patients with CF. The effects of LXAs
inhalation has been evaluated in a pilot study of eight asthmatic and
healthy adult subjects. The challenge was tolerated, had no adverse
effect on pulse or blood pressure and demonstrated favourable effects
on specific airway conductance [77].

Conclusion and future prospect

Taken together, the discovery of the multiple LXA+ functions in
restoring bronchial epithelium ion transport in enhancing ASL height,
in restoring epithelial barrier function and in reducing inflammation
might provide significant advance in improving quality of life and

longevity for CF patients (Figure 2).
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