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Abstract

Background: Multiple myeloma (MM) is a disease of cell cycle dysregulation while cell cycle modulation can be a target for
MM therapy. In this study we investigated the effects and mechanisms of action of a sesquiterpene lactone 6-O-
angeloylplenolin (6-OAP) on MM cells.

Methodology/Principal Findings: MM cells were exposed to 6-OAP and cell cycle distribution were analyzed. The role for
cyclin B1 to play in 6-OAP-caused mitotic arrest was tested by specific siRNA analyses in U266 cells. MM.1S cells co-
incubated with interleukin-6 (IL-6), insulin-like growth factor-I (IGF-I), or bone marrow stromal cells (BMSCs) were treated
with 6-OAP. The effects of 6-OAP plus other drugs on MM.1S cells were evaluated. The in vivo therapeutic efficacy and
pharmacokinetic features of 6-OAP were tested in nude mice bearing U266 cells and Sprague-Dawley rats, respectively. We
found that 6-OAP suppressed the proliferation of dexamethasone-sensitive and dexamethasone-resistant cell lines and
primary CD138+ MM cells. 6-OAP caused mitotic arrest, accompanied by activation of spindle assembly checkpoint and
blockage of ubiquitiniation and subsequent proteasomal degradation of cyclin B1. Combined use of 6-OAP and bortezomib
induced potentiated cytotoxicity with inactivation of ERK1/2 and activation of JNK1/2 and Casp-8/-3. 6-OAP overcame the
protective effects of IL-6 and IGF-I on MM cells through inhibition of Jak2/Stat3 and Akt, respectively. 6-OAP inhibited
BMSCs-facilitated MM cell expansion and TNF-a-induced NF-kB signal. Moreover, 6-OAP exhibited potent anti-MM activity in
nude mice and favorable pharmacokinetics in rats.

Conclusions/Significance: These results indicate that 6-OAP is a new cell cycle inhibitor which shows therapeutic potentials
for MM.
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Introduction

Multiple myeloma (MM) is a malignant proliferation of bone

marrow (BM) plasma cells that produce monoclonal immuno-

globulin [1]. The uncontrolled growth of myeloma cells has many

consequences, including anemia, immunosuppression, osteolytic

lesions, and end-organ damage. Increased BM angiogenesis is also

frequently observed [2]. MM accounts for 0.8% of all cancer

deaths with approximately 86,000 new cases each year worldwide

[3]. The annual incidence is 1–2 per 100 000 in China and 4.3 per

100 000 people in USA [2]. The use of high-dose chemotherapy

followed by autologous stem cell transplantation as well as novel

agents including thalidomide, bortezomib (BOR), and lenalido-

mide has increased remission rates and progression-free survival

[4–7]. However, MM remains an incurable disease in that though

patients often respond to initial therapy, the disease ultimately

recurs and over the course of time becomes refractory to further

treatment [1]. Studies demonstrate that BM microenvironment,

including BM stromal cells (BMSC) [8], paracrine signaling loops

involving cytokines interleukin-6 (IL-6) and insulin-like growth

factor-I (IGF-I) [9], plays pivotal roles in myeloma pathogenesis

and drug resistance. Hence, novel agents targeting pathways

critical to myeloma cell survival/proliferation and BM microen-

vironment that lead to overcome of drug resistance, remain an

urgent need.

MM is a disease of cell cycle dysregulation and loss of apoptotic

control. Self-renewing and non-cycling myeloma cells are both

found in the BM [10]. Overexpression of cyclin D1 and D3
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frequently associates with MM [11], and mutually exclusive cyclin-

dependent kinase (CDK) 4/cyclin D1 and CDK6/cyclin D2

pairing inactivates retinoblastoma protein and promotes cell cycle

dysregulation [12]. In addition, elevated expression of cyclin B1

(CCNB1) and the mitotic cyclin-specific ubiquitin-conjugating

enzyme E2C (UBE2C) is detected in MM with chromosome

abnormalities [13]. While its role in MM pathogenesis is not well

understood, cyclin B1 high expression predicts a favorable

outcome in patients with follicular lymphoma [14], and a cyclin

B1-accumulating agent induces mitotic arrest of HCT-116 colon

tumor cell line [15]. Therefore, cell cycle modulation can be a

target for MM therapy [15–19].

Centipeda minima (L.) A.Br. is a Compositae plant distributing over

East and South East Asia, Nepal and Oceania. It has been used as a

medicinal herb for the treatment of headache, cough, expectora-

tion, nasal allergy, diarrhea, malaria, and asthma in China and

Korea [20,21]. 6-O-angeloylplenolin (6-OAP, Figure 1A) is a

sesquiterpene lactone isolated from Centipeda minima which is shown

to have anti-bacterial and anti-protozoal activities [21–23]. Our

preliminary data demonstrated that 6-OAP could inhibit prolifer-

ation of human colorectum, liver, stomach, lung, and skin tumor

cells [24]. Recent study showed that 6-OAP could also induce

apoptosis through a mitochondrial/caspase and NF-kB pathway in

human HL-60 leukemia cells [25]. However, whether 6-OAP has

anti-MM activity or not remains unknown. In this study, we

investigated the effect of 6-OAP against human myeloma cells.

Materials and Methods

Ethics
Use of the samples was approved by the Institutional Review

Board of Institute of Zoology, Chinese Academy of Sciences and

The Cancer Hospital, Sun Yat-Sen University. All bone marrow

and peripheral blood samples were obtained with written informed

consent from patients at the Cancer Hospital, Sun Yat-Sen

University. All animal studies were conducted according to

protocols approved by the Animal Ethics Committee of the

Institute of Zoology, Chinese Academy of Sciences, with the

approval ID of AEC2010050804.

Reagents
6-OAP with a purity of up to 99.5% was extracted from Centipeda

minima (L.) as described [24]. 6-OAP was dissolved in DMSO (Sigma)

at a stock solution of 1022 M and stored at 220uC. Dexamethasone

(Dex) was kindly provided by Dr. Hong-Qian Zhu (Department of

Hematology, Nanfang Hospital Affiliated to Nanfang Medical

University). Doxorubicin (Dox) was purchased from Sigma-Aldrich.

BOR was attained from Millennium Pharmaceuticals Inc. IL-6, IGF-

I and TNF-a were purchased from R&D systems.

Cell culture
MM.1S, MM.1R, U266 and RPMI 8226 human MM cell lines

were purchased from the American Type Culture Collection.

MM.1S is a glucocorticoid (Dex)-sensitive cell line established

from the peripheral blood of a patient with IgA myeloma.

MM.1S cells harbor a reciprocal translocation involving 12q24.3

and 14q32.3, express leukocyte antigen DR, PCA-1, T9 and T10

antigens, and are negative for the presence of the EBV genome

[26]. MM.1R is a dex-resistant variant of MM.1S. Both U266

and RPMI 8226 are plasmacytomas of B cell origin. The U266

cells produce IL-6 and are resistant to glucocorticoids, while

RPMI 8226 cells produces Ig L chains but not H chain or IL-6

[27,28]. The cells were cultured in RPMI 1640 supplemented

with 10% (for U266) or 15% (for RPMI 8226, MM.1S, MM.1R)

fetal bovine serum (FBS; Hyclone) and incubated in a humidified

atmosphere with 5% CO2 at 37uC.

Figure 1. 6-OAP inhibits cell proliferation of MM cells. (A) Chemical structure of 6-OAP. (B) Effects of 6-OAP on cell proliferation of RPMI 8226,
U266, MM.1S, and MM.1R cells. In this experiment, cells were treated with 6-OAP at indicated concentration for 48 h, and analyzed by MTT assay. (C)
MM cells were treated with or without 6-OAP, and analyzed by trypan blue exclusion assay. P values for difference between the cells treated without
and with 6-OAP for 48 h: p,.0001 for U266 and RPMI 8226 cells; p = .0037 for MM.1S and p = .0043 for MM.1R cells. (D) CD138+ cells harvested from
7 MM patients (P1–P7) were treated with or without 6-OAP, and analyzed by MTT assay. (E) Peripheral blood mononuclear cells from 5 healthy
volunteers (V1-V5) were co-incubated with 6-OAP at indicated concentration for 48 h, and analyzed by MTT assay.
doi:10.1371/journal.pone.0021930.g001
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Patient samples
CD138+ cells from 7 MM patients were isolated with informed

consent from BM mononuclear cells by using positive immuno-

magnetic column separation (Miltenyi Biotech, Auburn, CA). The

purity of CD138+ cells is above 97% as determined by flow

cytometry. BMSCs were generated from a MM patient-derived

CD138-negative BM mononuclear cells cultured for 5 weeks [29].

Peripheral blood mononuclear cells (PBMCs) from 5 healthy

donors were separated by Ficoll-Hipaque density sedimentation.

Cell proliferation and cell viability
U266, RPMI 8226 cells (16104), primary CD138+ cells,

PBMCs (56104), and BMSCs (16104) were cultured in 96-well

dishes and incubated without or with 6-OAP at indicated

concentration for 48 h. MM.1S and MM.1R cells (26104) were

seeded into 96-well dishes and pre-cultured for 24 h, then treated

with 6-OAP for 48 h. Cell proliferation was determined by MTT

assay. Cell viability was estimated by trypan blue dye exclusion

[30].

Analysis of cell cycle
MM cells were synchronized to G1/S boundary by a double-

thymidine block. Briefly, cells were treated with 2 mM thymidine

(Sigma-Aldrich) for 16 h, released into fresh medium for 9 h and

subjected again to thymidine for another 16 h and then exposed to

6-OAP for indicated time points. Cells were harvested, fixed with

70% cold ethanol, incubated with RNase, and stained with

propidium iodide (PI) (Sigma-Aldrich). Cell cycle distribution was

analyzed by flow cytometry and CellQuest software (Becton

Dickson).

Western blotting and immunoprecipitation
Cell pellets were lysed in RIPA buffer containing 50 mM Tris

pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholate, 1% NP-40,

1 mM DTT, 1 mM NaF, 1 mM sodium vanadate, and protease

inhibitors cocktail (Sigma). For immunoprecipitations, cells were lysed

on ice for 15 minutes in RIPA buffer. Lysates were centrifuged. The

supernatant was incubated with indicated antibodies overnight, after

which protein A/G Plus beads (Santa Cruz Biotechnology) were

added and incubated for 3 h. The beads were washed 4 times in RIPA

buffer. Then the beads were resuspended in 16 sample buffer and

boiled for 3 min. Protein extracts were quantitated and loaded on 8%

to 12% sodium dodecyl sulfate polyacrylamide gel, electrophoresed,

and transferred to a nitrocellulose membrane (Whatman). The

membrane was incubated with primary antibody, washed, and

incubated with horseradish peroxidase (HRP)–conjugated secondary

antibody (Pierce). Detection was performed by using a chemilumi-

nescent western detection kit (Cell Signaling). The antibodies used

were anti-cyclin B1, anti-pCdc2 (Tyr15), anti-pStat3 (Tyr705), anti-

Stat3, anti-pPDK1(Ser241), anti-PDK1, anti-pJak2 (Tyr1007/

Tyr1008), anti-Jak2, anti-pHistone 3 (Ser10), anti-ubiquitin, anti-

Cdc20, anti-pIkBa (Ser32/36), anti-pP65 (Ser536), anti-ERK1/2,

anti-pERK1/2 (Thr202/Tyr204), anti-pJNK1/2 (Thr183/Tyr185)

(Cell Signaling Technology), anti-pAkt (Ser473), anti-Akt, anti-Cdc2,

anti-a-tubulin, anti-BubR1, anti-Mad2, anti-IkBa, anti-P65 (Santa

Cruz Biotechnology), and anti-b-Actin (Sigma) antibodies.

Immunofluorescence staining and confocal microscopy
Both control and 6-OAP-treated MM cells were plated on glass

slides by centrifugation using a cytospin, air-dried for 5 min at

room temperature, and fixed with 4% paraformaldehyde for

15 min. After a brief washing in PBS with 100 mM glycine, slides

were blocked with 5% bovine serum albumin (BSA; Sigma) and

0.3% Triton X-100 in PBS for 30 min at room temperature.

Microtubules were detected with indicated antibodies diluted 1:50

in 5% BSA in PBS overnight at 4uC and FITC or rhodamine-

conjugated secondary antibodies (Santa Cruz) diluted 1:200 in 5%

BSA in PBS for 1.5 h at 37uC. Cells were then washed three times

with PBS. Nuclei were stained with DAPI (Sigma). Preparations

were observed with a Leica TCS SP2 Spectral Confocal System,

and analyzed using the LSM 3.95 software.

Transfection of siRNA
Two siRNAs targeting cyclin B1 were designed and synthesized

by Shanghai GenePharma Co., referred to as siRNA1 and siRNA2.

The RNAi candidate target sequences were 59-AAACTTTC-

GCCTGAGCCTATT-39 for siRNA1 and 59- AAGAAATGTA-

CCCTCCAGAAA-39 for siRNA2, respectively. Non-specific con-

trol (NC) siRNA was also purchased from GenePharma Co., with

the sequences as 5’-UUCUCCGAACGUGUCACGUTT-3’.

U266 cells were transfected with siRNA using HiPerFect

Transfection Reagent (Qiagen) according to the manufacturer’s

instructions. Cells were transfected with siRNA1, siRNA2 or NC

siRNA at a concentration of 50 nM, and 6 h after transfection the

cells were treated with 6-OAP at 7.5 mM for indicated time points.

The cells were then harvested for cell cycle analysis, immunoflu-

orescence staining, or lysed for Western blotting.

Murine model
All mice used in this study were bred and maintained in a

specific pathogen-free environment. BALB/c nude mice (6 to 7

weeks old) were obtained from the Shanghai Laboratory Animal

Center (Shanghai, China), and maintained and monitored in a

specific pathogen-free environment. All animal studies were

conducted according to protocols approved by the Animal Ethics

Committee of our institute. The mice were injected subcutane-

ously with 16107 U266 cells in 100 mL RPMI-1640 media into the

right flank [31]. Treatments were started when the tumors reached

a palpable size. The control group received vehicle (0.8% DMSO/

18% Cremophor/8% Ethanol in normal saline), while the other

two groups received intraperitoneally injection of 6-OAP (50 or

75 mg/kg per day, five times a week for 4 weeks). Caliper

measurements of the longest perpendicular tumor diameters were

performed twice a week to estimate the tumor volume, using the

following formula: 4p/36 (width/2)26 (length/2), representing

the 3-dimensional volume of an ellipse. Animals were sacrificed

when tumors reached 2 cm or if the mice appeared moribund to

prevent unnecessary morbidity to the mice. At the time of the

animals’ death, tumors were excised; cells were separated and

subjected to immunofluorescence analysis or lyzed for Western

blotting.

Pharmacokinetic study
Eight Sprague–Dawley rats (220–250 g, female) were bought

from the Laboratory Animal Center of Nanfang Medical

University (Guangzhou, China), and maintained and monitored

in a specific pathogen-free environment. They were fasted

overnight before the experiments. All rat studies were conducted

according to protocols approved by the Animal Ethics Commit-

tee of our institute. Four rats were administered with 6-OAP

(30 mg/kg) by intravenous injection, and the other four rats were

inoculated with 6-OAP (40 mg/kg) by intraperitoneal injection.

Blood samples of 100–200 mL were collected from the orbit at the

time points indicated. The plasma concentrations of 6-OAP were

determined by LC-MS/MS. The pharmacokinetic parameters

were obtained from the pharmacokinetic software DAS 2.0 (Drug

and Statistics Version 2.0).

Effects of 6-OAP on Multiple Myeloma
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Statistical analysis
All experiments were repeated at least three times and the data

are presented as the mean 6 SD unless noted otherwise.

Differences between data groups were evaluated for significance

using Student t-test of unpaired data or one-way analysis of

variance and Bonferroni post-test. The tumor volume was

analyzed with two-way ANOVA and independent sample t test

using the software SPSS 12.0 for Windows (Chicago, IL). P values

,.05 were considered statistically significant.

Results

Effects of 6-OAP on MM and normal cells
We firstly examined the growth inhibitory effect of 6-OAP on

MM cell lines. By using MTT assay, we found that 6-OAP had

moderate cytotoxicity to U266, RPMI 8226, MM.1S, and

MM.1R cells with IC50 of 3.5 to 9.2 mM (Figure 1B and

Table 1). By using the trypan blue exclusion assay, we found that

at 5 to 7.5 mM 6-OAP markedly inhibited cell growth of U266,

RPMI 8226, MM.1S, and MM.1R cells (Figure 1C). 6-OAP also

suppressed cell growth of CD138+ primary cells harvested from

7 MM patients (Figure 1D), but did not drastically affect the

growth of normal PBMCs from 5 healthy volunteers (Figure 1E),

suggestive of a relative selectivity against MM cells.

6-OAP induces mitotic arrest in MM cells
We carefully examined the morphological change of the cells,

and found that after treatment with 6-OAP at 7.5 mM for 24 to

48 h, the commonly round-shaped U266 cells transformed into

ellipse-shaped or spindle-shaped ones (Figure 2A). Cellular mitosis

is accompanied by proper metamorphosis [32], this observation

pointed to a cell cycle perturbation. We then analyzed the effects

of 6-OAP on cell cycle, and the results confirmed that treatment

with 6-OAP at 5 to 10 mM for 48 h led to accumulation of U266

(Figure 2B) and MM.1S (Figure 2C) cells in G2/M phase.

To distinguish the specific arrest in G2 or M phase, effects of 6-

OAP on cellular microtubule networks were examined in U266

cells using a monoclonal anti-a-tubulin antibody and immunoflu-

orescence techniques. As shown in Figure 2D, in the absence of 6-

OAP the U266 cells exhibited normal microtubule staining.

Interestingly, after treatment with 6-OAP at 5 to 7.5 mM for 24 h

(Figure 2D, left panel) or 7.5 mM for 12 to 24 h (Figure 2D, right

panel), cellular microtubules assembled to form mitotic spindle.

Previous studies reported that histone 3 (H3) was phosphorylated

at Ser10 during mitosis by Aurora kinase and phosphorylated H3

(pH3) could be used as a specific mitotic marker [33]. We

investigated the expression of pH3, and found that treatment with

6-OAP up-regulated pH3 in U266, MM.1S (Figure 2E), and

CD138+ primary cells isolated from 1 MM patient (Figure 2F).

These findings indicate that 6-OAP induces mitotic arrest in MM

cells.

Accumulation of cyclin B1 is required for 6-OAP-induced
mitotic arrest

Mechanisms of 6-OAP-induced mitotic arrest were investigated

in U266 cells which upon 6-OAP show typical metamorphosis. We

tested the expression of cyclin D1, which is expressed in early G1,

drives the G1/S phase transition, and is degraded in G2/M phase

[34]. Our results showed that cyclin D1 was down-regulated in

U266 (Figure 3A) and MM1.S cells (Figure 3B) upon 6-OAP

treatment at 12 to 48 h of time course. Cyclin B1/Cdc2 complex

in which Cdc2 could be dephosphorylated on Thr14 and Tyr15

[35,36], is crucial for G2/M transition [37,38]. We found that 6-

OAP caused an increase of cyclin B1 and decrease of tyrosine-15-

phosphorylated Cdc2 (pCdc2 (Y15)) in U266 (Figure 3A), MM.1S

(Figure 3B) and CD138+ primary cells from MM patients

(Figure 2F). To evaluate the role for cyclin B1 accumulation to

play in 6-OAP-induced M phase arrest, U266 cells were trans-

fected with siRNA1 or siRNA2 targeting cyclin B1 (Figure 3C),

followed by 6-OAP treatment. Interestingly, cyclin B1 silencing

abrogated 6-OAP-induced abnormal metamorphosis (Figure 3D),

cell cycle arrest (Figure 3E), growth inhibition (Figure 3F) and

mitotic spindle formation (Figure 3G). These data demonstrate

that cyclin B1 accumulation plays a critical role in 6-OAP-

triggered mitotic arrest.

In eukaryotes, the spindle-assembly checkpoint (SAC) which is

comprised of checkpoint proteins including Bub1, BubR1/Mad3,

Bub3, Mad1 and Mad2, is a ubiquitous safety device that ensures

the fidelity of chromosome segregation in mitosis [39]. The SAC

targets CDC20, a co-factor of the ubiquitin ligase anaphase-

promoting complex/cyclosome (APC/C). Specifically, the SAC

negatively regulates the ability of CDC20 to activate the APC/C-

mediated polyubiquitylation of cyclin B and securin, thereby

preventing their destruction by the 26S proteasome. Normally,

ubiquitination and degradation of cyclin B inactivates Cdk1,

results in exit from mitosis [39,40]. We investigated the effects of 6-

OAP on SAC component proteins. By using an anti-BubR1

antibody and immunofluorescence techniques, we found that

BubR1 was assembled in 6-OAP-treated MM cells, demonstrating

an activated SAC (Figure 3H). By immunoprecipitation and

Western blot assays, we showed that while Mad2 bound Cdc20, 6-

OAP enhanced the binding affinity in U266 and MM.1S cells

(Figure 3I). Moreover, in cells upon 6-OAP, the ubiquitinated

cyclin B1 (Ub-cyclin B1) was markedly decreased (Figure 3J).

These results indicate that the ubiquitin-proteasome pathway-

mediated cyclin B1 degradation is inhibited by the SAC activation,

and 6-OAP induced-mitotic arrest is a SAC-dependent event

(Figure 3K).

6-OAP enhances effects of other anti-MM drugs
Conventional myeloma treatment will eventually fail because of

intrinsic or acquired drug resistance, and only 35%–40% of MM

patients respond to BOR [5,31,41,42]. We investigated whether 6-

OAP could enhance the effects of other anti-MM drugs in MM.1S

cell line because it is sensitive to Dex, BOR and 6-OAP. The cells

were treated with Dox (Figure 4A), Dex (Figure 4B), or BOR

(Figure 4C) for 48 h in the absence or presence of 6-OAP (5 mM)

and then analyzed by MTT assay. Our results showed that 6-OAP

significantly enhanced cytotoxicity of these agents, in particular

Dox and BOR (Figure 4, A through C). In MM.1R cells, Dex at 1

to 2 mM only achieved a slight inhibition rate on cell proliferation

analyzed by MTT assay (Figure 4D). Interestingly, 6-OAP

Table 1. IC50s of 6-OAP on MM cell lines.

Cell lines IC50 (mM)

U266 8.660.5

RPMI 8226 3.560.3

MM.1S 6.160.4

MM.1R 9.262.1

(The cells were treated with 6-OAP at various concentrations for 48 h, the cell
proliferation was analyzed by MTT assay, and the IC50 was calculated using the
CalcuSyn software (version 2.0, Biosoft, Cambridge, UK). Values shown are
means plus or minus SD of quadruplicate determinations.)
doi:10.1371/journal.pone.0021930.t001
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drastically potentiated inhibitory effect of Dex on the cells

(Figure 4D).

To gain insights into the molecular mechanisms underlying the

combined use of 6-OAP and BOR, several signaling pathways

were investigated in MM.1S cells co-incubated with 6-OAP

(5 mM)/BOR (3 nM) combinatory regimen for 6, 12, or 24 h. We

found that while 6-OAP upregulated cyclin B1 expression, BOR

did not enhance this effect (Figure 4E). Studies demonstrate that

activation of the extracellular signal-regulated kinases 1/2

(ERK1/2) confers a drug-resistant phenotype to cancer cells

[43–45]. In this study, we found that treatment with 6-OAP for

6 h induced an increase in phosphorylated ERK1/2 (pERK1/2)

(Figure 4E). Interestingly, treatment with BOR for 12 to 24 h

dramatically inhibited 6-OAP-induced pERK1/2 upregulation

(Figure 4E), suggesting that BOR might be helpful for

overcoming potential resistance to 6-OAP. Treatment with 6-

OAP/BOR combination for 12 to 24 h upregulated phosphor-

ylation of c-Jun N-terminal kinase (pJNK), and induced activation

of caspase-8 and -3, and cleavage of casp-3 substrate PARP

(Figure 4E). While cleavage of PARP was seen in an early stage

(6 h), activation of casp-3 was seen in cells upon 6-OAP/BOR for

12 h (Figure 4E), suggesting that other effector caspases such as

casp-7 could also be activated by the treatment protocol.

6-OAP overcomes the protective effects of IL-6, IGF-I, and
BMSCs on MM cells

IL-6 and IGF-I have been shown to be able to confer MM cells

with resistance to therapeutics through induction of phosphatidy-

linositol 3-kinase (PI3-K)/Akt and/or Janus-activated kinase 2

(Jak2)/signal transducers and activators of transcription 3 (Stat3)

signaling [29,46,47]. We therefore examined whether 6-OAP

could abrogate the protective effects of IL-6 and IGF-I on MM.1S

cells. We found that IL-6 at 2 to 10 ng/ml promoted proliferation

of MM.1S cells detected by MTT assay, while 6-OAP at 5 to

7.5 mM drastically reversed this effect (Figure 5A). Similarly, co-

incubation with exogenous IGF-I (10 to 50 ng/ml) resulted in

myeloma cell expansion, and 6-OAP at 5 to 7.5 mM abolished

IGF-I-caused cell proliferation (Figure 5B). We further generated

Figure 2. 6-OAP induces mitotic arrest in MM cells. (A) U266 cells were treated with 6-OAP at 7.5 mM for 0, 24, 48 h and imaged by Leica DMI
400B microscope. (B) U266 cells were treated with 6-OAP at indicated concentrations for 48 h. Cell cycle distribution was determined by flow
cytometry. (C) MM.1S cells were treated with 5 mM 6-OAP for 48 h. Cell cycle distribution was determined by flow cytometry. (D) U266 cells were
treated with 6-OAP at 5 to 7.5 mM for 24 h (left panel) or at 7.5 mM for 12 to 24 h (right panel). For immunofluorescence analysis of microtubules, cells
was stained with an anti-a-tubulin antibody to visualize microtubules (green) and DAPI to counter stained DNA (blue) and observed by confocal
microscopy. (E) Indicated cells were treated with 6-OAP at indicated concentration for 24 h, lysed, and Western blotting was performed using
antibodies indicated. (F) CD138+ primary cells isolated from 1 MM patient were treated with 6-OAP (7.5 mM) at indicated concentration for 24 h,
lysed, and Western blotting was performed using antibodies indicated.
doi:10.1371/journal.pone.0021930.g002
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Figure 3. 6-OAP accumulates cyclin B1 which is required for mitotic arrest. (A) U266 cells were treated with 6-OAP at indicated
concentration and time points, lyzed, and Western blotting was performed using antibodies indicated. (B) MM.1S cells were treated with 6-OAP for
48 h, lyzed, and Western blotting was conducted using antibodies indicated. (C) U266 cells were transfected with 50 nM cyclin B1-specific siRNA1,
siRNA2 or NC siRNA, followed by treatment without or with 6-OAP. Cells were harvested for Western blot analyses. (D through F) U266 cells were
transfected with cyclin B1-specific siRNA2 or NC siRNA, followed by treatment with 6-OAP at 7.5 mM. After co-incubation with 6-OAP for 18 h, the cells
were then harvested and detected by Leica DMI 400B microscope (D), or analyzed by flow cytometry for the cell cycle distribution (E). To evaluate cell

Effects of 6-OAP on Multiple Myeloma
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BMSCs from CD138- BM mononuclear cells isolated from a de

novo patient with MM [29], followed by co-incubation of the cells

with MM.1S cells in the absence or presence of 6-OAP (at 5 or

7.5 mM). We found that while BMSCs facilitated MM.1S cell

expansion, 6-OAP significantly inhibited this effect (Figure 5C).

We then tested the effects of 6-OAP on Jak2/Stat3 and Akt

signal cascades which play a major role in the proliferation and

survival of MM cells [48,49]. Our results showed that in MM.1S

cells, phosphorylated Stat3 (pStat3) and its upstream molecule,

pJak2, was upregulated by treatment with IL-6 at 10 ng/ml for 10

to 30 min (Figure 5D, upper panel). Interestingly, pretreatment

with 6-OAP (7.5 mM for 12 hours) markedly inhibited IL-6-

induced upregulation of pJak2 and pStat3 (Figure 5D, upper

panel). We further showed that the markedly upregulated pStat3

in cells upon IL-6 at 10 ng/ml was dramatically reduced by 6-

OAP treatment at 5 to 10 mM for 12 h (Figure 5D, lower panel).

Similarly, treatment of MM.1S cells with 6-OAP (at 7.5 mM for

12 h) inhibited IGF-I (at 50 ng/ml for 10 to 30 min, or for 1 h)-

induced pAkt expression (Figure 5E, upper and lower panels).

However, phosphorylation of PDK-1, a known upstream molecule

of Akt, is not affected by 6-OAP (Figure 5E, upper panel). These

results indicate that 6-OAP can block Jak2/Stat3 and Akt signal

pathways to overcome the protective effects of IL-6 and IGF-I on

MM cells, respectively, and Akt might be directly inhibited by 6-

OAP.

The activation of NF-kB confers growth/survival advantage

and drug resistance to MM cells in the bone marrow milieu

[50,51]. We tested whether 6-OAP inhibited this pathway

stimulated by TNF-a. As can be seen in Figure 5F, we showed

that in MM.1S cells 6-OAP inhibited phosphorylation of IkBa
(pIkBa) and pP65 induced by TNF-a, indicating that degradation

of IkBa and translocation of P65 from cytoplasm to nucleus can be

blocked by 6-OAP.

6-OAP shows in vivo anti-MM activity and favorable
pharmacokinetic profiles

We tested the in vivo anti-MM efficacy of 6-OAP. To do this,

nude mice were subcutaneously inoculated into the right flank

with U266 or MM.1S cells, and the results showed that 90% of the

mice injected with U266 cells developed a measurable tumor after

a mean of 8 (6 to 13) days, while only 30% of mice inoculated with

MM.1S cells developed a measurable tumor after a mean of 14 (8

to 20) days. Therefore, U266 cells were used to establish MM

murine model to test the in vivo therapeutic efficacy of 6-OAP.

Nude mice were subcutaneously inoculated into the right flank

with 16107 U266 cells in 100 mL RPMI 1640 media [31]. When

the tumors reached a palpable size, the mice were randomized into

3 groups (n = 10 for each group) and treated with 6-OAP at 50 or

75 mg/kg (five times a week for four weeks) or vehicle control.

Animals were humanely killed when their tumors reached 2 cm in

diameter or when paralysis or major compromise in their quality

of life occurred. Intriguingly, we found that 6-OAP at both 50 and

75 mg/kg significantly inhibited tumor growth compared to

vehicle control (P,.0001) (Figure 6, A and B). Consistent with

these data, the survival of 6-OAP-treated mice was also prolonged

compared to mice treated with vehicle control (Figure 6C).

Importantly, treatment with 6-OAP did not reduce body weight of

mice (Figure 6D). The tumor samples were isolated, cells were

harvested, and experiments were conducted to test whether 6-

OAP induced mitotic arrest and perturbed cyclin B1 expression in

vivo. Interestingly, we showed that in samples from mice treated

with 6-OAP, apparent spindle formation was detected (Figure 6E),

indicating mitotic arrest of the cells. Moreover, cyclin B1 was

accumulated in samples from 6-OAP-treated mice as compared to

tumor tissues from control mice (Figure 6F).

We then tested the pharmacokinetic features of 6-OAP in

Sprague-Dawley rats. To do this, 4 rats were administered with 6-

OAP (30 mg/kg) by intravenous injection, and another 4 rats were

inoculated with 6-OAP (40 mg/kg) by intraperitoneal injection.

The mean plasma concentration-time profiles (n = 4) were shown

in Figure 6G, and the main pharmacokinetic parameters were

summarized in Table 2. We reported that in 4 rats received

intravenous injection of 6-OAP at 30 mg/kg, 6-OAP in plasma

achieved a peak concentration of 16.43761.936 mg/mL (47.5066

5.595 mM) at 0.033 h (1.980 min), with a t1/2 of 1.764 h. In 4 rats

administrated intraperitoneally with 6-OAP at 40 mg/kg, 6-OAP

in plasma achieved a peak concentration of 3.87261.116 mg/mL

(11.19163.225 mM) at 0.813 h (48.780 min), with a t1/2 of

4.676 h. Moreover, in rats with intraperitoneal injection, the

bioavailability of 6-OAP was 92.5%. These results demonstrate

that administration of 6-OAP via intravenous injection as well as

intraperitoneal inoculation can reach the therapeutic concentra-

tion of 6-OAP used in vitro, indicating the tremendous therapeutic

potentials of this compound in treating human myeloma.

Discussion

Traditional medicines continue to provide front-line pharma-

cotherapy for many millions of people worldwide [52]. For

malignant neoplasms such as myeloma, natural compounds can

also be a source of inspiration for drug discovery. Centipeda minima

is a medicinal herb from which three sesquiterpene lactones, 6-O-

methylacrylylplenolin, 6-O-isobutyroylplenolin, and 6-OAP have

been extracted. These compounds exhibit antibacterial activity

against Bacillus subtilis and Staphylococcus aureus, while 6-OAP also

shows anti-tumor activity on some malignant cells [24,25]. In the

present study, we report for the first time that 6-OAP exhibits

moderate anti-MM activity in vitro and in vivo, and enhances the

efficacy of BOR, Dox and Dex, but do not show toxicity to normal

PBMCs from healthy donors and nude mice, demonstrating its

therapeutic potential. Interestingly, while the widely used mitotic

inhibitor paclitaxel is an extremely complex diterpene isolated

from the bark of the Pacific Western yew [53], 6-OAP is a

relatively simple and small compound. While the Yew tree is a

limited resource, Centipeda minima (L.) A.Br. is rich in many

countries. Furthermore, intravenous injection of 6-OAP obtains a

very high plasma drug concentration, and the bioavailability of 6-

OAP administrated by intraperitoneal injection reaches 92.5%.

growth, the cells were treated with 6-OAP for indicated time points and analyzed by trypan blue exclusion assay (F). (G) U266 cells were transfected
with cyclin B1-specific siRNA1 or NC siRNA, followed by treatment with 6-OAP at 7.5 mM for 18 h. The cells were assayed by immunofluorescence
analysis using an anti-cyclin B1 antibody to visualize the expression of cyclin B1 (red), an anti-a-tubulin antibody to visualize microtubules (green),
and DAPI to counter stained DNA (blue). (H) U266 cells were treated without or with 7.5 mM 6-OAP for 24 h, and stained with anti-a-tubulin and anti-
BubR1 antibodies to visualize microtubules (green), BubR1 (red), and DAPI to counter stained DNA (blue), and analyzed by confocal microscopy. (I
and J) U266 and MM.1S cells were incubated without or with 6-OAP at indicated concentration for 24 h, lysed, and immunoprecipitation was
performed followed by Western blotting using indicated antibodies. (K) Hypothetical model showing how 6-OAP causes cyclin B1 accumulation in
MM cells. In eukaryocytes, APC can attach monoubiquitin to multiple lysine residues on cyclin B1, followed by polyubiquitin chain extensions linked
through multiple lysine residues of ubiquitin [56]. In this simplified model only one polyubiquitin chain is shown. Ub, ubiquitin.
doi:10.1371/journal.pone.0021930.g003
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Our data thus clearly indicate the promise of 6-OAP in treating

human neoplasms.

MM is a heterozygous disease, and each MM cell line has its

unique characteristics. We test the anti-myeloma efficacy of 6-OAP

on 4 cell lines (U266, RPMI 8226, MM.1S and MM.1R) and

CD138+ primary cells harvested from MM patients. We show that

upon 6-OAP, U266 cells [27,28] exhibit typical morphological

changes of mitotic arrest, so we choose this cell line to evaluate the

role for cyclin B1 to play in 6-OAP-induced mitotic arrest. We

employ MM.1S line in the mechanism studies for the following

reasons: (1) This cell line is negative for the presence of the EBV

genome [26]. (2) Results obtained from experiments using this cell

line can be compared to those based on assays using MM.1R cells, if

necessary. Together with MM.1R, MM.1S cell line provides a

useful model to investigate the mechanisms of new agents and

potential strategy to overcome Dex-resistance. (3) It is sensitive to

glucocorticoid (Dex), thus represents a valuable tool to elucidate the

mechanisms of action of glucocorticoids. (4) While IL-6, IGF-I and

Figure 4. 6-OAP enhances cytotoxicity of Dox, Dex and BOR to MM cells. (A through C) MM.1S cells were treated for 48 h with Dox (A), Dex
(B) or BOR (C) in the presence or absence of 6-OAP at 5 mM. MTT assay was used to test the proliferation of MM.1S cells. (D) MM.1R cells were treated
for 48 h with Dex in the presence or absence of 6-OAP at 7.5 mM. MTT assay was used to test the proliferation of MM.1R cells. *p,.001,** p,.05. (E)
MM.1S cells were cultured with control media (con), 6-OAP (O, 5 mM), BOR (B, 3 nM), or 6-OAP (5 mM) plus BOR (3 nM) (OB) for indicated time points.
Cells were then lysed and subjected to Western blotting using indicated antibodies. CF, cleavage fragment.
doi:10.1371/journal.pone.0021930.g004
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BMSCs facilitate the cells’ growth and proliferation, MM.1S cells

can serve as a tool to study the chemical biology of new compounds

on cell-microenvironment interaction. To establish MM murine

model, both U266 and MM.1S cells are inoculated into nude mice

and we report that 90% of the mice injected with U266 cells develop

a measurable tumor after a mean of 8 (6 to 13) days, while only 30%

of mice inoculated with MM.1S cells have a palpable tumor after a

mean of 14 (8 to 20) days. Therefore, U266 cells were used in our

study to establish MM murine model to test the in vivo therapeutic

efficacy of 6-OAP. The preclinical results obtained from these

cellular and animal models thus provide rationales for a possible

trial to test the therapeutic efficacy of 6-OAP in MM patients.

Cell cycle deregulation is a common feature for cancer, and cell

cycle targeting compounds may be able to block the initiation or

progression of cancer cells. For example, mitosis arresting

anticancer agents, paclitaxel and vincristine, are currently used

in treating solid tumors and leukemia [17]. In this work, we show

that 6-OAP causes accumulation of U266 and MM.1S cells at the

G2/M phase (Figure 2, B and C). We further demonstrate that 6-

OAP induces mitotic arrest by observing a-tubulin staining and

pH3 (S10) expression [33] in these cells upon 6-OAP treatment

(Figure 2, D through F). Previous studies reported that cyclin B1

accumulates in S-phase, reaches a maximum at mitosis, and is

then rapidly degraded at the metaphase/anaphase transition

[54,55]. We demonstrate that 6-OAP treatment leads to

inappropriate accumulation of cyclin B1 (Figure 3, A and B). 6-

OAP activates cyclin B1/Cdc2 complex by up-regulating the

expression of cyclin B1 and down-regulation of pCdc2 (Y15)

Figure 5. 6-OAP overcomes the protective effects of IL-6, IGF-I and BMSCs on MM cells. (A and B) MM.1S cells were cultured for 48 h with
indicated concentrations of 6-OAP at the presence or absence of IL-6 (A) or IGF-I (B). Cell proliferation was assessed by MTT assay. (C) MM.1S and/or
BMSCs cells were cultured for 48 h with indicated concentrations of 6-OAP. Cell proliferation was assessed by MTT assay. *p,.01,** p,.05. (D) MM.1S
cells were serum starved for 2 h, then co-cultured without or with 6-OAP at 5 mM for 12 h, followed by stimulation with IL-6 at 10 ng/ml for indicated
time points (upper panel), or IL-6 at 10 ng/ml for 1 h, followed by treatment with 6-OAP at indicated concentration for 12 h (lower panel). Whole-cell
extracts were prepared and examined by Western blotting using antibodies against pJak2, pStat3, Stat3 or b-actin. (E) MM.1S cells were serum
starved for 2 h, then co-cultured without or with 6-OAP (5 mM) for 12 h, followed by stimulation with IGF-I at 50 ng/ml for indicated time points
(upper panel), or stimulated with IGF-I at 50 ng/ml for 1 h, followed by treatment with 6-OAP at indicated concentration for 12 h (lower panel).
Whole-cell extracts were prepared and examined by western blotting using antibodies against pPDK1, pAkt, Akt or b-actin. (F) MM.1S cells were
serum starved for 2 h, then co-cultured without or with 6-OAP (5 mM) for 12 h, followed by stimulation with TNF-a at 5 ng/ml for indicated time
points. Whole-cell extracts were prepared and examined by Western blotting using indicated antibodies.
doi:10.1371/journal.pone.0021930.g005
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(Figure 3, A and B). By RNAi experiment, we show that cyclin B1

silencing leads to a decrease of 6-OAP-induced spindle-shaped

cells and overcome of cell cycle arrest and growth inhibition

(Figure 3, D through F). In eukaryocytes, APC attaches ubiquitin

to cyclin B1 [36,56], and the proteasomal degradation of cyclin B1

can be inhibited in mitosis by SAC [57]. Two SAC proteins

BubR1 and Mad2 appear to be direct inhibitors of APC/C

ubiquitin ligase [58]. Studies further show that Mad2 binds to

Cdc20 which is necessary for ubiquitin ligase activity of the APC/

C [59]. We therefore investigate the dynamics of SAC proteins,

and discover that BubR1 is assembled in cells treated with 6-OAP,

demonstrating an activated SAC (Figure 3H). By using immuno-

precipitation assay, we show that 6-OAP facilitates the binding

between Mad2 and Cdc20 (Figure 3I). We further report that in

MM cells upon 6-OAP, the ubiquitinated cyclin B1 is markedly

reduced (Figure 3J). Thus, 6-OAP induced-mitotic arrest and

Figure 6. In vivo therapeutic efficacy of 6-OAP on human MM murine model. Nude mice were given subcutaneous inoculations in the right
flank with 16107 U266 cells. When the tumors reached a palpable size, the mice were treated intraperitoneally with vehicle or 6-OAP (50 or 75 mg/kg, 5
times a week for 4 weeks). (A) 6-OAP significantly inhibited MM tumor growth (P,.0001, 50 or 75 mg/kg vs control). (B) Growth inhibition of
subcutaneous tumors was observed in mice treated with 6-OAP. (C) Survival curve of control and 6-OAP-treated mice. (D) Treatment with 6-OAP did not
affect animal body weight. (E) Tumor samples were harvested from mice treated with vehicle or 50 mg/kg 6-OAP and subjected to immunofluorescence
analysis using an anti-a-tubulin antibody and DAPI. (F) Tumor tissues were harvested from mice treated with vehicle or 50 mg/kg 6-OAP, whole-tissue
lysates were subjected to Western blotting using an anti-cyclin B1 antibody. (G) The concentration-time profiles of 6-OAP after intravenous (30 mg/kg)
or intraperitoneal (40 mg/kg) injection of 6-OAP in Sprague-Dawley rats.
doi:10.1371/journal.pone.0021930.g006

Table 2. Pharmacokinetic parameters of 6-OAP in Sprague-Dawley rats.

Administration
and dosage

T1/2

(h)
AUC0-t

(mg/mL?h)
Tmax

(h)
Cmax

(mg/mL)
MRT0-t

(h)
CLz

(L/h/kg)
BA
(%)

iv (30 mg/kg) 1.76460.453 14.69061.019 0.03360.000 16.43761.936 1.44460.448 2.04560.146 —

ip (40 mg/kg) 4.67660.463 18.02162.702 0.81360.080 3.87261.116 5.75061.027 2.24060.335 92.5

AUC, Area under the plasma concentration time curve; BA, bioavailability; CL, total plasma clearance; Cmax, maximum observed plasma concentration; iv, intravenous
injection; ip, intraperitoneal injection; MRT, mean residence time; T1/2, terminal elimination phase half-life.
doi:10.1371/journal.pone.0021930.t002
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cyclin B1 accumulation are SAC-dependent events (Figure 3K).

However, which component of SAC or other related molecule is

the direct target of 6-OAP and how this small compound activates

SAC activity remain obscure, and a biotin-labeled 6-OAP in

combination with mass spectrometry assays will be helpful to

elucidate its precise mechanisms on MM.

6-OAP abrogates the protective effects of IL-6 and IGF-I on

myeloma cells through inhibition of Jak2/Stat3 and Akt signal

pathways, respectively (Figure 5, A, B, D and E). Moreover, 6-

OAP causes cytotoxicity even in MM cells adherent to BMSCs

(Figure 5C). These results suggest that 6-OAP can overcome

protection triggered by BM milieu. The activation of NF-kB

confers MM cells growth, survival, and drug resistance in the BM

milieu and modulates the expression of adhesion molecules on

MM cells and BMSCs [50,51,60]. While BOR induces canonical

NF-kB activation [61], we show that 6-OAP blocks TNF-a-

induced upregulation of pIkBa and pP65 (Figure 5F). We report

that 6-OAP-induced pERK1/2 is inhibited by BOR, and BOR-

induced JNK/caspase-8 activation is markedly enhanced by 6-

OAP (Figure 4E). At cellular level, 6-OAP potentiates cytotoxicity

of BOR, Dex and Dox (Figure 4, A through D). In a xenograft

murine model for MM, 6-OAP significantly inhibits tumor

growth, while the animal body weight is not affected (Figure 6,

A through C). We show that 6-OAP also induces mitotic arrest

and cyclin B1 accumulation in vivo (Figure 6, E and F). Taken

together, our data indicate that 6-OAP is a promising new cell

cycle inhibitor that could be a promising anti-MM agent, and 6-

OAP-based combinatory regimens including 6-OAP/BOR com-

bination could have clinical therapeutic potentials.
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