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Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that is defined

by loss of upper and lower motor neurons, associated with accumulation of protein

aggregates in cells. There is also pathology in extra-motor areas of the brain, Possible

causes of cell death include failure to deal with the aggregated proteins, glutamate toxicity

and mitochondrial failure. ALS also involves abnormalities of metabolism and the immune

system, including neuroinflammation in the brain and spinal cord. Strikingly, there are

also abnormalities of the peripheral immune system, with alterations of T lymphocytes,

monocytes, complement and cytokines in the peripheral blood of patients with ALS. The

precise contribution of the peripheral immune system in ALS pathogenesis is an active

area of research. Although some trials of immunomodulatory agents have been negative,

there is strong preclinical evidence of benefit from immune modulation and further trials

are currently underway. Here, we review the emerging evidence implicating peripheral

immune alterations contributing to ALS, and their potential as future therapeutic targets

for clinical intervention.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, defined by the presence
of muscle weakness and the progressive death of upper and lower motor neurons (1). ALS leads
to respiratory failure with the length of survival being predicted by respiratory muscle weakness
(2). However, ALS is more than just a motor neurone disease. ALS also has extra-motor features,
including cognitive and behavioral disturbance (3–5). ALS is markedly heterogeneous in clinical
features, such as site of onset of weakness and rate of progression (6, 7), and is more common in
men than in women (8).

ALS can be sporadic (SALS) or familial (FALS), although the distinction can be difficult to assign
(9). Genetic susceptibility (10, 11) and environmental exposure (12) contribute to the pathogenesis
of ALS, possibly through a multi-stage process (13, 14). Causative genes exist in patients with FALS,
and mutations in these genes occur in some patients with SALS (15). Calculations suggest that
61% of the variance in risk of developing ALS is due to genetic factors (16), which means that
∼40% of the variance in risk is due to non-genetic factors, which could include environmental
exposures. The pathological features of ALS include aggregation of insoluble protein within cells
(17), but the type of protein aggregate varies among patients. It has been thought that the majority
of patients have accumulation of tar DNA binding protein 43 (TDP-43), (as well as others), with a
small group of patients having accumulations of superoxide dismutase 1 (SOD1) (18–20). However,
recent evidence suggests that SOD1 may aggregate in the spinal cord in a majority of ALS patients
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(21, 22). The genes that cause ALS usually encode for proteins or
polypeptides that accumulate within cells or are involved in the
metabolism of protein aggregates (19, 23). There is evidence that
some of the aggregated proteins can transfer from cell to cell in a
prion-like fashion (24, 25) which could explain the characteristic
spread of weakness from the site of onset to other regions.

A number of possible pathways of disease have been described,
including mitochondrial dysfunction, glutamate excitotoxicity
(26, 27), problems with autophagy (28) and altered RNA
metabolism (29). Furthermore, the death of motor neurons can
be “non-cell autonomous,” meaning that other types of cells
such as astrocytes, microglia and possibly oligodendrocytes can
drive motor neuron death (30, 31). There has been considerable
research on the type of cell death that occurs in ALS. It has been
previously thought that neuronal cell death in ALS is due to
apoptosis (32–35) which is mediated through caspases. Evidence
for apoptosis in ALS has been found with TUNEL staining of
human tissues (36) and with measurements of bcl-2 (37). Others
found increased p53 in ALS (38). In ALS there is also evidence of
caspase activation (35). However, more recently there has been a
suggestion that necroptosis, an inflammatory form of cell death
which is caspase independent and involves RIP kinase activation,
is a common form of cell death in neurodegenerative disease
(39). Necroptosis is the mechanism of cell death from glutamate
toxicity (40), which is one of the most important mechanisms
proposed for the pathogenesis of ALS. There is evidence that
necroptosis occurs in a cell culture model of ALS (41). Mutations
in optineurin, a rare genetic cause of ALS, allow the activation
of RIP kinases to promote necroptosis (42). More recently still,
ferroptosis, an oxidative form of cell death (43), has been reported
to occur in ALS (44).

The death of motor neurons, possibly stimulated by the
pathways described above, and occurring through one of the
types of cell death described above, is the cardinal feature of
ALS. However, the pathology of ALS in the brain and spinal
cord also involves more than death of motor neurons, with
evidence of involvement of the immune system (45). There is
neuroinflammation with microglial activation and a modest level
of T lymphocyte infiltration (46–48). In ALS patients, microglial
activation is visible with PET imaging suggestive of an ongoing
neuroinflammatory process (49). Such inflammatory pathology
could be a reaction to cellular damage. Once established, such
inflammation could aggravate disease. However, it must be also
noted that the immune system can also be protective, particularly
after injury (50, 51). Thus, the role of the immune system in
pathogenesis could be either harmful or helpful, and work is
required to delineate the precise role of each immune pathway
to ALS pathology.

There is also evidence of abnormality of the peripheral
immune system in ALS, and this is the topic of the present review.
As with inflammation in the CNS, peripheral immune activation
could be a reaction to tissue damage, but once established, could
exacerbate disease. This review will focus on describing the
abnormalities of circulating blood cells, different immune system
proteins, and their key inflammatory mediators, cytokines. These
are summarized in Tables 1, 2. To consider whether the immune
abnormalities contribute to disease pathogenesis, we list some

evidence that these abnormalities are correlated with human
disease or are pathogenic in animal models of ALS. If immune
abnormalities contribute to pathogenesis, then modification of
the immune response could be beneficial to patients, so we also
highlight the results of forthcoming and completed clinical trials
of immune interventions in ALS.

ABNORMALITIES OF PERIPHERAL BLOOD
CELLS

Total Leukocyte Count/Granulocytes
Several studies have provided evidence of immune activation in
the peripheral blood in ALS. The total leukocyte count is elevated
in patients with ALS, and correlates with progression of disease
(52). The ratio of neutrophils to monocytes was also shown
to be increased (53), as was the total number of granulocytes
(54). A micro-array study further confirmed evidence for mild
neutrophilia in ALS patients (55). In the SOD1G93A transgenic
mouse ALSmodel, circulating neutrophils are increased (73), and
neutrophils and mast cells are present along peripheral motor
axons, with masitinib treatment leading to reduction of axonal
damage (56). This suggests these cells are harmful and contribute
to disease progression.

Lymphocytes
CD4+ T Cells
Some studies demonstrate increased levels of CD4+ helper T
lymphocytes in patients with ALS (54, 57, 58), but others have
found reduced numbers of these cells (59). It is possible that this
variation is related to the variation in immune responsiveness
of individuals. CD4+ T cells in the CNS are thought to be
neuroprotective in an animal model of ALS (60), and a lack of
CD4+ T cell mediated neuroprotection could be detrimental,
in patients with reduced numbers. This protection is mediated
through Treg cells that are discussed below.

CD8+ T Cells
There are reports of reduced levels of CD8+ cytotoxic T
lymphocytes in ALS (57), reports of increased levels of CD8+

cytotoxic T lymphocytes (54, 61), and reports of no alterations
in these cells (59). Once again this could be related in part
to individual variability. In the SOD1G93A mouse ALS model,
cytotoxic lymphocytes cause death of motor neurons (62), so
increased numbers could be detrimental.

NKT Cells
NK T cells recognize lipid antigens through CD1,and secrete
an array of cytokines (95). A study in people with ALS found
increased levels of natural killer T (NKT) cells (61). In the
SOD1G93A mouse model, there are also increased NKT cells,
especially in the liver (63); furthermore treatment that reduced
the numbers of peripheral NKT cells led to prolongation of
life-span, suggesting that these cells are harmful in ALS.

Th 17 Cells
The co-stimulatory pathway activated through CD40 ligand is
upregulated in some human subjects with ALS (96), and there
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TABLE 1 | Changes in peripheral blood cells in ALS.

Cell Change in ALS Evidence of disease association Reference(s)

Total leukocytes Increased Level correlates with rapidity of progression (52)

Granulocytes/neutrophils Increased granulocytes,

increased neutrophils, increased

ratio of neutrophils to monocytes

Treatment with mastinib reduces axonal degeneration in animal

model

(53–56)

CD4+T cells Conflicting reports, most suggest

an increase

CD4+ T cells are protective in animal model (54, 57–60)

CD8+ T cells Conflicting reports Cytotoxic cell cause death of motor neurones in animal model (54, 57, 59, 61, 62)

NK T cells Increased Reduction in numbers led to prolonged survival in animal model (61, 63)

Treg cells Reduced and dysfunctional Inverse correlation with rate of progression (57, 61, 64–66)

CD14+ monocytes Variable reports of numbers, but

evidence of activation, increased

ratio of classical to non-classical

monocytes

Monocyte activation correlates with disease progression (52, 57, 58, 67–69)

TABLE 2 | Changes in peripheral blood proteins in ALS.

Protein Changes in ALS Evidence for role in pathogenesis References

IgG Increased Passive transfer leads to motor neurone degeneration (70–72)

Complement Increased complement in ALS Lack of C5a is protective in animal model (59, 73–75)

Tumor necrosis factor Increased Mixed effects on motor neuron survival, depending on receptor (76–82)

Interleukin 1β Increased Blocking IL-1 led to prolonged survival in animal model of ALS (77, 79, 83)

Interleukin 33 Reduced Treatment with IL33 reduced disease in animal model of ALS (84, 85)

Interleukin 6 Increased Genetic variation of IL-6 receptor influences the severity of ALS.

However, IL6 deficiency has no effect of animal model

(79, 86–90)

Interleukin 17 Increased Unknown- but usually pro-inflammatory (91)

C reactive protein Increased Unlikely—this is evidence of inflammation (89, 92–94)

is thought to be a particular activation of Th-17 T lymphocytes
(97). Th17 lymphocytes are pro-inflammatory and thought to
be harmful, but can exhibit plasticity and change to other less
harmful functions (98).

Treg Cells
Much work has focused on regulatory T cells (Tregs) in ALS
(99). There are reduced levels of Tregs in ALS patients (57,
61, 64), and these cells are also found to be dysfunctional
(65). The level of Tregs correlates inversely with progression
of disease (64). Another study also found that there was
an inverse correlation between Treg numbers and the rate
of disease progression (66). In a human trial, three patients
were given autologous expanded Tregs (100), which showed a
possible reduction in the rates of disease progression during
infusion periods. A trial has been commenced to determine
whether rapamycin, which increases levels of Tregs through
the mToR pathway, can lead to increased levels of Tregs in
ALS (101).

In SOD1G93A mice, there is evidence of dysfunction of Tregs
and transfer of wild-type Tregs delays onset of disease (102).
Another study in SOD1 transgenic mice showed that transfer
of Tregs slowed disease progression (66). These studies are a
promising area of research because of the suggestion that Tregs
are able to control or reduce disease activity, but clearly requires

larger, controlled and blinded human studies to validate their
therapeutic potential.

NK Cells
NK cells are cells of the innate immune system, that mediate
cytotoxicity. There is an increase in NK cells in patients with ALS
compared to controls (52, 54). NK cells are found in the CNS of
SOD1 G93A mutant mice where they are thought to be harmful.
Thus, NK cells could possibly be pathogenic and a trial of anti-NK
therapy has been proposed in ALS (http://grantome.com/grant/
NIH/R21-NS102960-01A1).

Monocytes
Monocyte Classification
With measurements of expression of CD14 (the
lipopolysaccharide receptor) and CD16 (the FcγIII receptor),
monocytes can be separated into three groups; these are classical
(CD14++ CD16−), intermediate (CD14++CD16+) and non-
classical (CD14+CD16++) (103, 104). HLA DR is expressed in
CD16+ monocytes, while CD14+ monocytes reduce HLADR
expression when activated (105). Other markers can also be used
to distinguish monocyte subsets (106).

Monocyte Numbers and Proportions
There is a report of a mild increase in CD14+ monocyte numbers
in ALS (52). However, another study reported reduced levels
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of CD14+ cells in the early stage of disease (57). There is also
a report that there is no difference on the numbers of CD14+

monocytes between patients and controls (58). In addition, it
has been reported there is a reduction in CD16− monocytes in
ALS (53). These variations could be explained by differences in
methodology and the lack of clear demarcation between these
monocyte populations in flow cytometry gating strategies. There
are also reports of alterations in the proportions of monocytes
in ALS, with an increase in the ratio of classical to non-classical
monocytes (67, 107).

In addition to population shifts, there have been reports
of alterations in monocyte activation in ALS. CD14+CD16−

classical monocytes in ALS show an inflammatory microRNA
profile (68). Another study reported increased production
of neurotoxic cytokines by monocytes from twins with ALS
compared to the unaffected twin (108). Increased peripheral
monocyte expression of inflammatory genes correlates with
disease progression (69). Another study reported expression of
activation markers on monocytes but reduced expression of
HLA-DR (57). In another study, patients with ALS could be
separated into groups, with one group showing increased HLA-
DR expression on monocytes (54). Another study found that
there was increased expression of HLA-DR onCD14+ monocytes
in ALS and this correlated with the rate of disease progression
(58). Another study used exosomes to activate monocytes, and
found that monocytes from ALS patients were less responsive
than those from healthy individuals (109). ALS monocytes
are less responsive to purinergic stimulation than those from
controls (110).

As outlined above, the pathology of ALS is characterized by the
accumulation of aggregates of proteins in neurons. There is now
evidence of abnormal accumulation/location of these proteins in
monocytes. For example, altered location of TDP43 inmonocytes
of patients with genetic mutations in TARDBP, the gene encoding
TDP-43 has been demonstrated (111). There is also a report
that C9orf72 is expressed in myeloid cells and that expression
in monocytes increases after activation (112). Ablation of the
mouse homologue of C9orf72 led to macrophage dysfunction
and microglial activation (113).

There is evidence that peripheral monocytes enter the CNS
in ALS (107), although this is controversial. In SOD1G93A mice,
numbers of inflammatory monocytes correlated with disease
progression (114). Activated macrophages are found around
degenerating nerve (115) and at the neuro-muscular junction
in mouse models of ALS (116). These experimental studies
suggest that a shift toward activated monocytes in ALS could
contribute to ALS progression through secretion of inflammatory
and potentially neurotoxic mediators. Further research is needed
to precisely define the role of the monocyte in ALS.

ABNORMALITIES OF IMMUNE PROTEINS
IN PERIPHERAL BLOOD

Immunoglobulin Levels
Some of the first studies of the role of the immune system
in ALS were concerned with the presence of antibodies in the

blood of subject with ALS, particularly reports of antibodies to
voltage gated calcium channels (117, 118). In addition, there
have been studies of non-specific changes in antibodies, as a
recent study has shown an increase in IgG levels in subjects
with ALS compared to controls (70). In mice, an experimental
study showed that prolonged intra-peritoneal injection of
immunoglobulin from human subjects with ALS led to loss of
spinal motor neurons and loss of muscle strength (71). An earlier
study showed that passive transfer of purified immunoglobulin
from ALS patients led to motor neuron degeneration and
accumulation of calcium containing organelles (72).

Complement System
There is clear evidence of activation of innate immune
complement system in human subjects with ALS, with raised
C5a levels and increased expression of C5a on human leukocytes
(74). A two dimensional gel electrophoresis was used to study
serum proteins in ALS subjects and found that components
of complement C3 were increased compared to controls (75)
and another study using nephelometry showed increased levels
of complement C3 in the blood of ALS patients (59). Animal
studies also indicate a role for terminal complement activation
in motor neuron degeneration. In SOD1 and TDP43 animal
models of ALS there is evidence of complement activation (119,
120), and genetic deficiency or pharmacological inhibition of the
C5a receptor, C5aR1, is protective in rodent SOD1G93A models
(73, 121–123). A comprehensive review of the involvement of
complement in ALS has recently been written (124).

Cytokines
Tumor Necrosis Factor (TNF)
There are increased levels of TNF and soluble TNF receptor in
the blood of patients with ALS (76–78). A meta-analysis found
that TNF levels were significantly increased in ALS (79). RNA-
seq analysis has identified TNF as a contributor to inflammation
in the spinal cord of ALS patients (125). It is unknown whether
this inflammation is harmful or beneficial. It has been suggested
that TNF is harmful and that reduction would be beneficial (80).
On the other hand, TNF stimulates a survival pathway in motor
neurons and could be beneficial (81, 82).

In SOD1 mutant mice, signaling through the TNF receptor 2
lead to motor neurone death (126), whereas signaling through
TNF receptor 1 was harmful (127). The recent suggestions that
TNF inhibitors could be a risk factor for ALS (128) could indicate
that TNF is beneficial in some way.

Interleukin 1 (IL-1)
Interleukin 1 exists as a family of proteins (129). One study found
that interleukin 1 β (IL-1β) was undetectable in ALS patients
(130) but other studies have found increased levels (77). A meta-
analysis found that IL-1β was significantly increased in ALS
(79). Pathways involving IL-1 are thought to be involved in ALS
pathogenesis as shown in SOD1 and TDP-43 animal models
(83, 131, 132). A proteomic study of plasma from ALS patients
showed activation of pathways associated with inflammation and
activation of two networks centered on NF B and IL-1 (133). In
animal studies, blocking IL-1 led to prolonged survival (83). In
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humans, there has been a pilot study that showed that blocking
IL-1 with Anakinra was safe in ALS, although there was no
prolongation of survival (134).

Interleukin 33 (IL-33)
IL-33, a cytokine related to IL-1, has a role both in inflammation,
and in metabolism (135, 136). IL-33 binds to receptor, ST2.
Levels of IL-33 are reduced in ALS, and levels of soluble ST2 are
increased in ALS (84). In a study in SOD1G93A transgenic mice,
IL-33 treatment ameliorated disease (85), suggesting this is a key
downstream mediator of ALS progression.

Interleukin 6 (IL-6)
IL-6 is considered to be a pro-inflammatory cytokine, and is
part of an acute phase response, however, it also has some
documented anti-inflammatory effects. Plasma levels of IL-6 are
increased in ALS (79, 86, 87), and this was supported by a meta-
analysis (79). One study suggested that this was a response to
hypoxia rather than to the disease itself (137) (see below). IL-6
has been suggested to have a role in endothelial damage in ALS
(138). Genetic variation in the IL-6 receptor has been shown to
modify the severity of ALS (88). Treatment with the IL-6 blocking
antibody toclizumab reduced levels of IL-6 and other cytokines
in cells from some ALS patients (89); this study did not look for
effects on clinical signs. In SOD1 mutant mice, IL-6 deficiency
did not affect the severity of disease (90).

Interleukin 17 (IL-17)
IL-17 is a pro-inflammatory cytokine that also responds to stress
(139, 140). Increased levels of IL-17 are reported in the serum
of subjects with ALS (91, 141), but to date IL-17 has not been
explored clinically as a therapeutic target.

Interleukin 13 (IL-13)
IL-13 regulates T lymphocytes and has been implicated in
autoimmune disease (142). IL-13 levels are elevated in the blood
of patients with ALS (77). IL-13 producing T lymphocytes have
been found in the blood of subjects with ALS and correlate with
the rate of disease progression (91, 143).

Interleukin 18 (IL-18)
IL-18 is another member of the IL-1 family of cytokines and
stimulates many lymphoid cells (144). Although levels of IL-18
are increased in patients with ALS (130), there is no information
about relation of IL-18 to disease activity to date.

Chemokines
Chemokines are small proteins that are involved in chemotaxis
and activation of granulocytes and lymphocytes. In the CNS,
chemokines also have a role in signaling between cells (145). The
expression of MCP-1 receptor (CCR2) is reduced on circulating
monocytes in ALS (146). Another study showed significantly
increased expression of CXCR3, CXCR4, CCL2, and CCL5 on T
lymphocytes in ALS patients compared to healthy controls (147).
There are higher levels of the chemokine MCP-1 in patients with
a shorter diagnostic delay, which is a marker of more severe
rapidly progressing disease (148).

Other Evidence of Systemic Inflammation
There is also evidence of increased levels of C reactive protein
and erythrocyte sedimentation rate (ESR) in subjects with ALS
compared to controls, and evidence that levels correlate with the
levels of disability as measured by the ALS functional rating scale
(89, 92–94). Levels of lipopolysaccharide are elevated in patients
with ALS, (149), as have levels of nitric oxide, suggesting systemic
inflammation (78).

Evidence of Hypoxia
In ALS, there is evidence of hypoxia in neurons, and this is
thought to contribute to pathogenesis. This can be seen as
increased levels of hypoxia inducible factor−1α (150). There is
also thought to be dysregulation of the pathways that protect
from hypoxia (151, 152). In the peripheral blood monocytes of
ALS patients there is also dysregulation of hypoxia pathways
(153). A gene expression study found evidence of hypoxia related
genes in peripheral blood of ALS patients (55). In an animal
model of ALS, hypoxia aggravates the loss of motor neurons
(154). The significance of these findings is presently unclear, but
this is further evidence of peripheral immune changes in ALS.

NF-κ B Pathways
Nuclear factor κB (NF-κ B) is a protein complex that regulates the
transcription of DNA. Evidence that NF-κ B is important in ALS
comes from studies showing genetic abnormalities in optineurin
(155). Analysis of cell transfection showed that the nonsense
and missense mutations of OPTN abolished the inhibition of
activation of NF-κ B. The authors proposed that NF-κ B is the
final common pathway in ALS pathogenesis, and that inhibitors
of NF-κ B could be used to treat ALS. Further, in animal studies
it has also been found that the NF-κ B p65 subunit is a binding
partner for TDP-43 and that dysregulation of TDP-43 leads to
activation of NF-κ B (156). NF-κ B is expressed in astrocytes
(157), and in activated microglia in ALS spinal cord (158).

Other evidence of a possible role of NF-κ B in ALS comes
from a role for hypoxia in ALS. (153, 159) (see above). NF-
κ B is activated during acute hypoxia and acts to up-regulate
inflammatory factors such as IL-6, cyclo-oxygenase (COX 2),
TNF-α, and prostaglandin E-2 (PGE-2) (159). Reactive oxygen
species lead to induction of NF-κ B. This is mainly in lymphoid
cells but also in neurones. It has been suggested that NF- B is a
transcription factor controlled by hypoxia and may contribute to
neurological disorders (160).

In neurodegenerative disease it is thought that NF-κ B can
augment cell death (161). There is some evidence about the
role of NF-κ B from animal models of ALS. In SOD1G93A

mutant mice, treatment with a PPAR inhibitor led to clinical
improvement and reduced expression of iNOS and NF-κ B
reactivity (162). Phenylbutyrate induced NF-κ B translocation to
the nucleus in ALS mice, and this led to reduced motor neuron
death (163). Intrathecal injection of an adenovirus containing
insulin like growth factor led to slowing of disease through
inhibition of NF-κ B in an animal model of ALS (164). However,
inhibition of NF-κ B in astrocytes did not reduce disease in ALS
mice (165).
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The above-mentioned studies focus predominantly on the role
of NF-κ B within the CNS in ALS. Little is known about NF-κ B
in the peripheral immune system in ALS, but given the central
role of NF-κ B in the biology of the immune system (166), this
warrants further study.

Immunometabolic Changes
There is considerable interaction between the immune system
and metabolic pathways, which is a rapidly growing research
field being known as “immunometabolism” (167, 168). For
survival, metabolism and the immune system need to be linked,
because there needs to be a mechanism for balancing the energy
needed for basal and defensive processes (169). In ALS, there is
evidence of alterations in metabolism (170). There are reports of
alteration in the levels of metabolic proteins such as adipokines.
This includes IL-6 but also other proteins such as leptin and
adiponectin (86, 171). A proteomic study found dysregulation of
pathways involved in lipid metabolism (133). In particular, there
was dysregulation of the Liver X receptor/Retinoid X receptor
(LXR/RXR) and the Farnesoid X receptor/Retinoid X receptor
(FXR/RXR) pathways that are at the intersection of immunology
and metabolism.

EVIDENCE FROM COMPLETED CLINICAL
TRIALS

It is attractive to consider that modulation of the immune
response will be a useful therapy in ALS. If neuroinflammation
enhances disease activity, then control of neuroinflammation
should be helpful (172), possibly by enhancing the protective
immunity (173).

Overall, clinical trials of new disease-modifying therapies
in ALS have been disappointing (174). Several of these trials
have used medications that act on the peripheral immune
system. Total body irradiation and stem cell therapy were
of no benefit in ALS (175). Earlier attempts at immune
therapy included treatment with intravenous immunoglobulin,
(176), with cyclophosphamide, (177) and with azathioprine and
prednisone which were also of no benefit (178). Glatiramer
acetate, a synthetic polypeptide with immune effects that is
used in multiple sclerosis, further demonstrated no benefit in
ALS (179).

Minocycline, an anti-inflammatory agent, also failed in a trial
in ALS, and in fact, patients on this treatment had a worse
outcome (180). Celecoxib, another anti-inflammatory agent, also
failed its clinical end-point (181). Sodium chlorite (NP001) which
was proposed to deactivate macrophages, was also more recently
shown to be unsuccessful (182, 183).

Masitinib, a tyrosine kinase inhibitor that targets mast cells,
microglia, and macrophages despite showing positive results in
SOD1 transgenic mice (184), failed in its phase II study in
humans (185). Finally, a trial of granulocyte colony stimulating
factor led to a decrease in levels of MCP-1 and IL-17 in subjects
with ALS (186).

IS THERE AN INFLAMMATORY
SUBGROUP?

One of the challenging features of ALS is its heterogeneity- of
clinical features, of rate of progression and also in the underlying
pathological aggregation of proteins. This heterogeneity could
indicate that the pathogenesis of disease varies among patients,
and there could be sub- groups of patients in whom immune
processes are more or less important.

A study of gene expression indicated that patients can
be grouped into patients with higher expression of IL-6R
and myeloid lineage-specific genes, and patients with higher
expression of IL-23A and lymphoid-specific genes (55). The
results from a clinical trial of Toclizumab also led the authors to
note that Toclizumab reduced IL-6 and other cytokines in cells
from some ALS patients (i.e., an “inflammatory group”) but not
others (89).

INTERACTION AMONG THE NERVOUS
SYSTEM, THE IMMUNE SYSTEM AND THE
GUT MICROBIOTA

The gut microbiota has been increasingly recognized as playing
an important role in human health, and has been implicated in
neurodegenerative disease including ALS, as we have recently
reviewed (187). One of the many functions of the gut microbiota
is to regulate the immune system. It is therefore possible that
some of the immune abnormalities in ALS are linked to the gut
microbiota. However, this field is complex and analysis requires
large numbers of subjects so more remains to be discovered
regarding this possible interaction.

IMMUNOGENETICS OF ALS

If immune genes played a role in the susceptibility to ALS
or modified the course of ALS, this would be evidence of
involvement of the immune system in disease. In autoimmune
diseases, there is an association of disease with HLA loci (188).
This is not the case in ALS, except for a possible association with
HLA class I antigens (189, 190).

The association with HLA class I antigens could be due to
linkage with the haemochromatosis locus (HFE), which is found
in the HLA region. Some years ago, an association with the
H63D polymorphism was reported (191). More recently, a meta-
analysis has discounted this association but instead suggested an
association with the C282Y polymorphism (192).

There are numerous polymorphisms that affect the immune
system. These have been linked to autoimmune diseases such
as multiple sclerosis and type I diabetes (193) but not to ALS
(194). However, it would seem likely that genetic variation
in immune genes could influence the immune abnormalities
described above, For example, polymorphisms in cytokine genes
can influence the levels of cytokines such as IL-6, (195) and TNFα
(196) and the IL33/ST2 pathway (197).

The field of immunogenetics of ALS would appear to be a
fruitful topic for further exploration, and possibly could explain
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why some patients have a stronger immune response than others,
and why some patients show an “inflammatory” phenotype.
Immunogenetics, and variation in the immune response to
disease could therefore contribute to the known heterogeneity
of ALS.

CONCLUSION

There is clear evidence of immune activation in some patients
with ALS and in animal models of disease. It is possible that
there is a subgroup of patients in whom inflammatory pathways
are important in pathogenesis. In some cases, the immune
abnormalities are correlated with disease severity, but it is not
clear whether this is cause or effect. The immune system has both
harmful and beneficial effects and there is a need to focus research
efforts on enhancing the beneficial effects of protective immunity.

Clinical trials so far have been disappointing, but there is still
scope for further attempts at immune intervention to ameliorate
this disease.
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