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Abstract

Hepatocellular carcinoma (HCC) is a global health problem. Currently, there is no effective

therapeutic strategy for HCC. Methyl gallate (MG), from plant-derived phenolic gallic acid,

has exhibited antitumor efficacy. However, the effect of MG on HCC is unclear. In vitro

growth activity was detected by a sulforhodamine assay. A zebrafish xenotransplantation

was applied to evaluate the inhibitory effect of MG. Reactive oxygen species (ROS) produc-

tion, autophagy, and lysosome formation were detected by specific dyes. Finally, apoptosis

was examined using annexin V-FITC/PI staining and western blot was performed to deter-

mine the molecular mechanism. It was demonstrated that MG treatment inhibited the prolif-

eration of Hep3B, Mahlavu, and HepJ5 cells. Xenotransplantation also showed that MG

inhibited the growth of Hep3B and HepJ5 cells. MG treatment increased cellular levels of

superoxide and oxidative stress. Increases in autophagy and lysosome formation were

found after MG treatment. The western blot analysis showed that MG activated cleavage of

caspase-3 and poly (SDP ribose) polymerase (PARP), modulated levels of the Bcl2, Bax,

and Bad ligands, and induced apoptosis. MG induced autophagy with notable activation of

beclin-1, autophagy related 5+12 (ATG5+12), and conversion of light chain 3-I (LC3-I) to II.

Our study showed that MG exposure inhibited HCC proliferation both in vitro and in vivo.

And blocking autophagy enhanced MG-induced cytotoxicity in HCC cells. These findings

suggested MG might serve as a powerful therapeutic supplement for human HCC patients.
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1. Introduction

Hepatocellular carcinoma (HCC) is a highly prevalent cause of death worldwide [1, 2]. Fewer

than 30% of newly diagnosed patients tolerate curative surgical treatment or liver transplanta-

tion [3, 4]. The poor prognosis of HCC is related to the high recurrence or metastasis rate after

surgical treatment [5–7]. New approaches for preventing, diagnosing, and treating HCC

urgently need to be developed. In HCC, there is a progressive linking of chronic inflammation

with cirrhosis and carcinogenesis. Accumulating evidence has revealed that inflammation is

related to invasion and metastasis of human cancers [8]. It is important to clarify the mecha-

nisms of the carcinogenesis and metastasis of HCC and identify effective therapeutic agents

[9].

Radiotherapy and chemotherapy for HCC treatment produce significant complications

with limited responses. Recent attention has focused on seeking safe and effective agents from

natural remedies for chemoprevention, especially from traditional Chinese medicine [10].

Methyl gallate (MG), methyl-3,4,5-trihydroxybenzoic acid, is prevalent phenolic compounds

in plants [11]. It was reported MG decreased oxidative stress and DNA damage related to

hydrogen peroxide in MDCK cells. And MG, similar to vitamin E analogues, reduced lipid

peroxidation and prevented depletion of intracellular glutathione (GSH) [12]. Moreover, MG

showed low cytotoxic effects against the HaCaT normal skin cell line [13]. Thus, although MG

is generally recognized as safe, it possesses antioxidant abilities and inhibits lipid peroxidation

[14].

Aside from its antioxidant activity, MG also exhibits multiple biological properties that

include anti-spasmodic, anti-atherogenic, anti-inflammatory, and anti-microbial activities [12,

15–17]. MG was reported to have a protective effect against oxidative stress in erythrocytes

[18], adipocytes [14], vascular endothelial cells [19], cardiac myocytes [20], and brain and neu-

ral networks [21, 22]. MG inhibited focal adhesion formation, and reduced cell viability and

migration in glioma cells. Mechanically, downregulation of the protein kinase B (AKT)/phos-

phorylated AKT and extracellular signal-regulated kinase (ERK) signaling pathways was noted

[23, 24]. MG modulated immune responses by inhibiting interleukin (IL)-6 and IL-8 in

human oral epithelium cells [16]. Cancer-bearing hosts often exhibit detectable specific immu-

nity against tumor-associated antigens. MG modulated antitumor immunity in lymphomas by

inhibiting tumor infiltration of CD4+ CD25+ T-regulatory cells (Tregs) and showed a synergic

effect with cisplatin [25, 26]. However, information on oxidative stress and biological activities

related to MG in HCC cells is scanty.

Oxidative stress is constantly generated by aerobic metabolism and includes peroxides and

free radicals [27, 28]. Oxidative stress causes cell damage, as well as DNA strand breaks [29,

30]. Redox homeostasis is mediated via the balance between ROS production and antioxidant

scavengers [31]. A hypoxic microenvironment is common in rapidly growing solid tumors,

like HCC [32]. Aerobic metabolism is very important for cancer cells to adapt to a hypoxic sta-

tus and reach a steady-state over time, and it even induces more-aggressive/resistant cells [27,

33]. Various protective mechanisms against oxidative stress have been identified, including the

transient overproduction of ROS inside cells. Large amounts of ROS or reactive nitrogen spe-

cies (RNS) production can change expression patterns and signal pathways, which in turn may

induce cell death or give rise to carcinogenesis. MG and N-acetylcysteine were reported to

exhibit protective efficacy in rat pheochromocytoma cells by decreasing H2O2-induced apo-

ptosis [34]. It was suggested that antioxidative and cytoprotective properties of MG may

change to pro-oxidative and cytotoxic properties in different cell lines or microenvironments

[35].
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While MG has a proven inhibitory effect on glioma, lymphoma, and human epidermoid

carcinoma cells, its general antitumor effects and the detailed mechanism of how it regulates

apoptosis and/or autophagy in human HCC cells remain unknown. Herein, we attempted to

explore the biological roles and redox signaling of MG in HCC.

2. Materials and methods

2.1. Chemicals, reagents, and cell culture

All the chemicals used in the study were purchased from Sigma (St. Louis, MO, USA). Anti-

bodies targeting ATG5/12, Beclin-1, LC3, GAPDH, Bcl-2, Bax and cleaved caspase3 (C-cas-

pase3) were obtained from Cell Signaling Technology (Danvers, MA, USA), and antibodies for

cleaved poly (ADP ribose) polymerase (c-PARP) were purchased from Santa Cruz Biotechnol-

ogy (Santa Cruz, CA, USA). Hep3B and Mahlavu cell lines were purchased from American

Type Culture Collection (ATCC, Manassas, VA, USA), and HepJ5 cells were established by

Dr. C. S. Yang’s laborotary as previously described [36]. HCC cell lines (Hep3B, HepJ5, and

Mahlavu) were grown and maintained in Dulbecco’s modified Eagle’s medium (Life Technol-

ogies, Grand Island, NY, USA) supplemented with 10% (v/v) fetal calf serum in a 5% CO2

humidified incubator at 37˚C.

2.2. Sulforhodamine B (SRB) colorimetric assay for cytotoxicity screening

Initially, 2×104 cells were seeded in each well of 24-well plates. After overnight incubation in

the CO2 incubator, different doses of MG (0~40 μg/ml) were added into the wells and leave for

24 or 48 h. Next, the treated cells were fixed with 10% trichloroacetic acid overnight and then

stained with protein-bound SRB for 30 min. After staining, cells were washed twice with 1%

acetic acid to remove excess dye. A 10 mM Tris base solution was used to dissolve the protein-

bound dye. The optical density was measured with a microplate reader at 515 nm (Bio-Rad

Laboratories, Hercules, CA, USA).

2.3. Xenotransplantation assay

The xenotransplantation process was performed at the Taiwan Zebrafish Core Facility-Human

Disease Model Resource Center. Briefly, zebrafish embryos of 2 days post-fertilization (dpf)

were dechorionated and anesthetized with tricaine (0.04 mg/ml; Sigma). The HCC cells,

HepJ5 or Hep3B, were detached and collected from the culture wells for CM-Dil (red fluores-

cence) (Vybrant; Invitrogen, Carlsbad, CA, USA) labeling. The labeled cells (4.6 nl, approxi-

mately 200 cells) were injected into the yolk of each 2-dpf embryo using a Nanoject II Auto-

Nanoliter Injector (Drummond Scientific, Broomall, PA, USA). After implantation, the zebra-

fish embryos (n = 20 for each group) were washed with fish water once to remove the residual

chemicals and incubated at 28˚C for 1 h. Later, either distilled H2O or MG at doses of 0, 40μg/

ml were applied to the embryos. Fluorescent cells in the embryos were checked at 2 h post-

implantation and examined at 1 and 3 days post-injection (dpi) by fluorescence microscopy.

2.4. Total ROS/superoxide detection using the FlexiCyteTM protocol

The intracellular ROS were measured using a total ROS/Superoxide Detection Kit (Enzo Life

Science, Farmingdale, NY, USA) following the manufacturer’s instructions. In brief, cells were

stained with the two-color ROS Detection Kit and monitored using the NucleoCounter1NC-

3000TM system (ChemoMetec, Allerod, Denmark). The detail protocol was modified from the

one previously described [37].
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2.5. Autophagy detection using an autophagy detection kit

CYTO-ID1 Autophagy Detection Kit (ENZ-51031, Enzo) was used to measure autophagic

activity according to the manufacturer’s instructions. 2.4×105 cells were seeded into each well

of six-well plates and grown in a CO2 incubator at 37˚C overnight. The next day, MG or vehi-

cle was applied to the cells for 24 h. Number of autophagic vacuoles was measured and the

autophgic flux was monitored after the cells were harvested and stained with fluorescent dyes.

The fluorescence intensity and number of autophagosomes were detected and measured using

the NucleoCounter1NC-3000TM system (ChemoMetec) [37].

2.6. Lysosome formation

Lysosome formation induced by MG was measured using the LYSO-ID1 Green Detection

Kit (ENZ-51034, Enzo). 2.4×105 cells were seeded into each well of six-well plates and cultured

in a CO2 incubator at 37˚C overnight. MG or the vehicle were used to treat the cells for 24 h,

and the cells were harvested and stained with fluorescent dyes using the LYSO-ID1 Green

Detection Kit as described by the manufacturer’s. Fluorescence intensity was measured using

the NucleoCounter1 NC-3000TM system (ChemoMetec) [37].

2.7. Protein extraction and western blot analysis

Proteins were extracted from the cells treated with MG or the vehicle for 48 h and were ana-

lyzed by western blotting as previously described [38]. Briefly, aliquots of total 20 μg proteins

were denatured and separated by sodium dodecylsulfate polyacrylamide gel electrophoresis

(SDS-PAGE) followed by electrotransfering onto polyvinylidene difluoride membranes (GE

Healthcare Piscataway, NJ, USA). The membranes were incubated with BSA for 1h and then

incubated with ATG5/12, Beclin-1, LC3, Bcl2, Bax, c-PARP or c-caspase3 primary antibodies

overnight at 4˚C individually. The respective secondary antibodies were subsequently probed,

and the signals were amplified by using an enhanced chemiluminescence reagent (GE Health-

care) and visualized using VersaDoc 5000 (Bio-Rad Laboratories, Hercules, CA, USA).

2.8. Annexin V-FITC/ Propidium Iodide (PI) double staining assay

Annexin V-FITC Apoptosis Detection Kit (Cat No.: AVK250) was purchased from Strong Bio-

tech Corporation. Cells were cultured in 6-well plates at cell density of 2.4×105 cells /well and

treated with MG (40 μg/ml) for 48h alone or in combination with CQ (10 μM) for 16 h. After

treatment, the medium was removed and the cells were centrifuged and washed with PBS.

After the supernatant was discarded, the cell pellets were resuspended in 100 μL of binding

buffer. Then Annexin V and PI working solution were added to cell suspension and incubated

at room temperature for 15 minutes. Then the samples were analyzed using a flow cytometer

(BD Biosciences, San Diego, CA, USA).

2.9. Statistical analyses

Statistical analysis was performed using statistics functions of Microsoft Excel. Data are pre-

sented as mean±standard deviation (SD) of at least three independent experiments. For IC50

experiments, statistical significant differences were used one-way ANOVA or Student’s t-test

(two-tailed) (�, p<0.05; ��, p<0.01).
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3. Results

3.1. MG inhibits the growth of HCC cells

First, we investigated the cytotoxic effects of MG on HCC (Hep3B, Mahlavu, and HepJ5) cells

by an SRB assay. As shown in Fig 1, MG treatment markedly decreased the proliferation of

Hep3B, HepJ5, and Mahlavu cells in a dose-dependent manner (Fig 1). The 50% inhibitory

concentration values of MG were >40, ~40, and ~20 μg/ml for Hep3B, Mahlavu, and HepJ5

cells at 48h, respectively. These data indicate that MG treatment inhibits significantly the cell

survival of Hep3B, HepJ5, and Mahlavu cells.

3.2. MG suppressed HCC cell proliferation in a zebrafish model

We used a zebrafish xenotransplantation assay to further evaluate the effect of MG treatment

on HCC. As shown in Fig 2, Hep3B and HepJ5 cells were stained by the carboxyfluorescein

succinimidyl ester (CFSE) florescence dye and then implanted into a zebrafish embryo yolk.

The florescence intensity was monitored at 1 dpi, and after being treated with the drug for 2

days, was monitored at 3 dpi. We compared 1- vs. 3-dpi stages to demonstrate the proliferative

activity between HepJ5 or Hep3B cells treated with vehicle, or 40 μg/ml MG. Numbers of

HepJ5 cells were dramatically reduced in MG-treated embryos compared to vehicle-treated

embryos (Fig 2A and 2B). The same trend was found in Hep3B-injected embryos (Fig 2C and

2D). Numbers of increased cells in MG-treated embryos were lower than those in vehicle-

treated embryos (100% vs. 39%). Our results indicated that MG treatment caused a decrease in

the cell growth ability of HepJ5 and Hep3B cells.

Fig 1. Methyl Gallate (MG) treatment decreases hepatocellular carcinoma (HCC) cell survival. After treating

Hep3B, Mahlavu, and HepJ5 cells with different doses of MG (0~40 μg/ml) for 48h, the relative cell survival rate was

determined using an SRB assay. Survival of vehicle-treated cells was defined as 100%. MG treatment showed reduction

of the cell survival rate in HCC cells in a dose-dependent manner. Data are expressed as the mean±SD of three

independent experiments in triplicate (� p<0.05, �� p<0.01).

https://doi.org/10.1371/journal.pone.0248521.g001
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3.3. MG enhances ROS and superoxide generation

ROS production is involved in apoptosis and/or autophagy as documented in several previous

reports. We detected ROS levels in MG-treated HepJ5 and Mahlavu cells using an ROS/Super-

oxide Detection Kit. As shown in Fig 3, exposure of HepJ5 and Mahlavu cells to 40 μg/ml MG

for 24 h significantly increased intracellular oxidative stress and superoxide production (Fig

3). Levels of ROS generation and superoxide generation in HepJ5 reached 1.9- and 1.8-fold,

respectively after MG exposure (Fig 3A and 3B). The similar results were found in Mahlavu

cells. These results showed that MG induced intracellular ROS levels and superoxide genera-

tion in HCC cells. We examined the effects of aminoguanidine hemisulfate (AGH) on ROS

and superoxide levels in MG-treated HCC cells. AGH, a well-known antioxidant, is a diamine

oxidase and nitric oxide synthase inhibitor [39]. AGH significantly blocked ROS and superox-

ide levels in MG-treated HepJ5 and Mahlavu cells (Fig 4A and 4B). These results indicated that

Fig 2. MG-suppressed cell proliferation in a xenotransplantation model. Zebrafish was used as the animal model

for the xenotransplantation assay to determine the efficacy of MG treatment in hepatocellular carcinoma (HCC).

Fluorescence labeled Hep3B and HepJ5 cells were implanted into an embryo yolk of the zebrafish, and then embryos

were exposed to 40 μg/ml MG or dH2O as a vehicle control. Proliferative activities of the HCC cell lines in the embryos

(n = 20 for each group) were compared by monitoring the fluorescence intensity on days 1 and 3 post-injection (1 and

3 dpi) of MG. (a and b) MG treatment reduced the increase in cell numbers in the embryo population (from 80% for

the vehicle to 33% embryos respectively) in HepJ5 cells. A decrease in the fluorescence intensity was shown after 3 days

in Hep3B cells with 40 μg/ml MG treatment (c and d). In the Hep3B cell line, the increase in cell numbers in the

embryo population decreased from 100% (vehicle) to 39% (40 μg/ml) within 20 embryos. Treatment with 40 μg/ml

MG dramatically decreased the fluorescence intensity in HCC cells compared to the vehicle. Scale bare was 1 mm.

https://doi.org/10.1371/journal.pone.0248521.g002
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Fig 3. Methyl Gallate (MG) increases Reactive Oxygen Species (ROS) and superoxide levels in HepJ5 and Mahlavu

cells. Both of HepJ5 and Mahlavu cells were treated with 40 μg/ml MG for 24 h. ROS and superoxide levels were

detected using specific dyes. MG treatment significantly increased ROS and superoxide levels compared to the vehicle.

Data are presented as the mean±SD of three independent experiments in triplicate (� p<0.05, �� p<0.01).

https://doi.org/10.1371/journal.pone.0248521.g003

Fig 4. Pretreatment with aminoguanidine hemisulfate (AGH; an antioxidant) abolishes the Methyl Gallate (MG)-

induced reactive oxygen species pretreatment with aminoguanidine hemisulfate (AGH; an antioxidant) abolishes

the Methyl Gallate (MG)-induced Reactive Oxygen Species (ROS) and superoxide levels. HepJ5 and Mahlavu cells

were treated with AGH and then exposed to MG. Levels of ROS and superoxide were detected using specific

fluorescence dyes. (a) Significant increase of the ROS level was found after MG treatment. The MG-induced ROS level

was abolished in AGH pretreated HepJ5 and Mahlavu cells. (b) The superoxide level increased after exposure to MG

and was abolished with AGH pretreatment. Data are presented as the mean±SD of three independent experiments in

triplicate (�� p<0.01).

https://doi.org/10.1371/journal.pone.0248521.g004
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MG exposure can induce ROS production, and pretreatment with an antioxidant can suppress

MG-induced ROS production.

3.4. MG induces autophagy and lysosome formation in HCC cells

Autophagy may play an important role in treatment response of cancer. We further checked

whether or not MG can influence activation of the autophagic pathway. Autophagic vacuoles

and autophagic flux were measured with a CYTO-ID1 Autophagy Detection Kit. Fluorescent

detection was evaluated in the vehicle control and MG-treated HepJ5 and Mahlavu cells at 24

h. Treatment of HepJ5 and Mahlavu cells with MG caused induction of autophagosome for-

mation (a 2-fold increase in the fluorescence intensity) compared to vehicle-treated cells (Fig

5A). In addition, we further detected lysosome formation with a LYSO-ID1 Green Detection

Kit. Cells were incubated with LYSO-ID1 Green dye after incubation with MG for 24 h. MG-

treated HepJ5 and Mahlavu cells displayed a 4-fold greater fluorescence intensity than vehicle-

treated HepJ5 and Mahlavu cells (Fig 5B). These results suggested that MG treatment induces

autophagosome and lysosome formation in HCC cells.

3.5. MG affects expressions of proteins associated with autophagy

Western blot analysis was used to confirm that MG induced autophagic signals in HepJ5 cells.

Expressions of ATG5/12, LC3-I, LC3-II, and Beclin-1 proteins were analyzed, all of which con-

tribute to activation of downstream autophagy components. MG treatment induced upregula-

tion of ATG 5+12 and Beclin-1 and the conversion of LC3-I to LC3-II, which confirmed

induction of autophagy in HepJ5 (Fig 6A).

3.6. MG affects expressions of proteins associated with apoptosis

We next examined the effect of MG on caspase-dependent apoptosis in HepJ5 cells. A western

blot analysis demonstrated that treatment of HepJ5 cells with MG resulted in upregulation of

c-PARP and c-caspase3 (Fig 6B). Decreased antiapoptotic (Bcl-2) members and increased

Fig 5. Methyl Gallate (MG) increases autophagosomes and lysosomes formation. HepJ5 and Mahlavu cells were

exposed to 40 μg/ml MG for 24 h. (a) Autophagosomes and (b) lysosomes were detected using specific dyes. The

formation of autophagosomes and lysosomes increased after MG treatment compared to the vehicle. Data are

presented as the mean±SD of three independent experiments in triplicate (�� p<0.01).

https://doi.org/10.1371/journal.pone.0248521.g005
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proapoptotic (Bax and Bad) members suggested that MG induced caspase-dependent apopto-

sis in HepJ5 cells.

3.7. Blocking autophagy enhances the apoptotic effect of MG in HCC

To determine the role of autophagy in regulating MG-induced cell death in HCC, CQ (chloro-

quine, a lysosomal inhibitor) was used in MG-treated HepJ5 cells. It was found that combina-

torial treatment of CQ significantly increased MG-induced cytotoxicity in HCC. As shown in

Fig 7A, the cell viability was decreased to 60.8% and 48.0% following 40 μg/ml MG and MG

plus 10 μM CQ treatment, respectively. However, CQ treatment only did not affect the cell via-

bility. Furthermore, CQ markedly enhanced MG-induced apoptosis in HCC (Fig 7B). The per-

centage of apoptotic cells was 25.8% after combination treatment of MG and CQ compare

with 19.2% of the cells treated with MG for 48h in HepJ5. In addition to autophagy initiation,

the accumulation of LC3-II may result from impaired autophagic flux. Therefore, the blockage

of autophagy flux was confirmed by detecting the accumulation of LC3-II. The data showed

that LC3-II expression was dramatically increased in CQ-treated cells and in combinatorial

treatment with MG (Fig 7C). Taken together, these results suggested that MG induced protec-

tive autophagy and cytotoxicity in HCC, and blocking autophagy flux increased MG-induced

cell death in HCC.

4. Discussion

HCC is a highly prevalent cancer, and there is a significant geographical epidemiology, as 80%

of new cases occur in developing countries, such as southern Africa and Asia [40]. The long-

term survival rate of advanced HCC has remained poor in the past several decades [41]. Find-

ing powerful agents that work effectively and efficiently through various antitumor

Fig 6. Methyl Gallate (MG) treatment causes changes in autophagy- and apoptosis-related proteins. HepJ5 cells

were treated with 40 μg/ml MG or vehicle for 48h. a. Levels of autophagy-related proteins (ATG5, ATG12, Beclin-1,

and LC3) were checked by western blot. Amounts of ATG5, ATG5+12, and Beclin-1 were similar between MG-treated

and vehicle-treated samples. The ratio of LC3-II/LC I was high in the MG-treated sample. b. Levels of cell apoptosis-

related proteins (Bcl-2, Bax, Bad, c-caspase 3 and c-PARP) were checked. MG-treated cells showed decreased Bcl-2

(antiapoptotic), increased Bax and Bad proteins (proapoptotic), and increased cleavage of caspase 3 (c-caspase3) and

PARP (c-PARP). All experiments were repeated at least three times independently (�� p<0.01).

https://doi.org/10.1371/journal.pone.0248521.g006
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mechanisms is urgently needed. Plants synthesize a wide range of natural compounds, and

some of the metabolites act as antioxidant and antitumor drugs because of their cytotoxic

effects toward malignant cells [25, 42]. Some natural compounds, such as curcumin and β-glu-

cans, suppress cell proliferation and induce apoptosis in HCC cells [43–45]. MG is a natural

phenolic agent from plants and a derivative of gallic acid [46]. The current study focused on

examining the anticancer effects of MG on HCC.

MG exhibits multiple biological properties such as antioxidant, anti-inflammatory, antimi-

crobial, antitumor activities [34, 46, 47]. In the inflammatory response, mitochondrial ROS

support a balance between mitogen-activated protein kinases and cytokines [48]. Furthermore,

immunotherapy with MG enhanced the anticancer effect of cisplatin in lymphoma treatment

[26]. Our data indicate the antitumor effects of MG via ROS-dependent cell death. Cancer

cells generate a variety of endogenous ROS, but they are vulnerable to increased and prolonged

exposure to ROS. Many chemotherapeutics increase intracellular ROS levels in order to induce

the apoptosis of cancer cells. ROS are chemically reactive molecules that increase during envi-

ronmental stress. ROS, including peroxides and superoxide, are generated as byproducts of

mitochondrial metabolism [49]. In addition, oxidative stress caused by excess ROS leads to

loss of the mitochondrial membrane potential and induces cytochrome C release [50]. Our

results indicated that the levels of oxidation and superoxide production dramatically increased

after MG exposure (Fig 3) and then induced apoptosis and autophagy of MG-treated HCC

cells.

DNA damage and mitochondrial dysfunction mediate apoptosis and autophagy. ROS levels

play a role in cell death through activating different signaling pathways, including AKT/mam-

malian target of rapamycin [51, 52]. Excess mitochondrial ROS production modulates pro-

gressive autophagy [53, 54]. Redox homeostasis can determine the fate of cancer cells through

various signaling pathways, including apoptosis, autophagy, and cell cycle arrest [55]. MG-

caused tumor cell death, including by apoptosis, is dependent on ROS production. MG-trig-

gered ROS and superoxide were markedly reversed by aminoguanidine hemisulfate (AGH), a

Fig 7. Blocking autophagy enhances MG-induced cytotoxicity in HepJ5 cells. The cell viability in cells treated with

MG for 24 h in the presence and absence of CQ for 16 h was determined using SRB assay (a). Apoptotic cells were

quantified using Annexin V-FITC/PI staining and FACS analysis after 40 μg/ml MG treatment for 48h in the presence

and absence of CQ for 16 h (b). The blockage of autophagy flux was confirmed by detecting the accumulation of

LC3-II using western blot (c). Data are presented as the mean±SD of three independent experiments in triplicate, ��

p<0.01).

https://doi.org/10.1371/journal.pone.0248521.g007
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well-known antioxidant (Fig 4). In our study, the anticancer effect induced by MG in HCC

cells in vitro were additionally demonstrated in the experimental zebrafish xenograft model.

Apoptosis is the most comprehensive form of programmed cell death [56]. The caspase

pathway plays a role in intrinsic and extrinsic apoptosis [57]. The intrinsic apoptotic pathway

is modulated by the Bcl-2 family, which involves proapoptotic proteins, including Bad, Bak,

and Bax, as well as the antiapoptotic proteins, Bcl-2 and Bcl-XL [58]. Increased c-PARP and c-

caspase-3 and decreased expression of Bcl-2 were demonstrated in our study. Increased Bax

and Bad expressions indicated that MG triggered mitochondrial-specific apoptosis in HCC

cells. We observed the early and late stages of apoptosis, and even necrosis, in HCC cells

treated with MG.

Autophagy is initiated to produce intracellular energy and nutrients, and cells self-eat their

unfolded proteins and organelles to maintain homeostasis [59, 60]. Recent reports linked

autophagy to failure of clinical cancer treatments, including chemo- and radio-resistance [61].

Under stressful conditions, cancer cells induce autophagy, thus promoting cell survival in a

nutrition-deprived situation. Activation of the autophagic pathway acts in both protective and

inhibitory roles in cancer progression [62]. Autophagy-related 5 (ATG5) is a key protein

involved in autophagic vesicles. ATG5 is necessary for LC3-I to form LC3-II (LC3-phosphati-

dylethanolamine conjugate) [63]. During progressive autophagy, LC-3 is cleaved to LC3-II on

membranes of autophagosomes. Beclin-1 is a key molecule for autophagosome formation, and

is a vital component of the class III phosphatidylinositol 3 kinase complex [64]. Our results

indicated MG treatment produced increases in Beclin-1 and ATG5 + ATG12 expressions, and

the conversion of LC3-I to LC3-II (Fig 6), which is consistent with MG-treated cells inducing

autophagosome and lysosome formation. In our study, elevated ROS levels, cell apoptosis and

progressive autophagy phenomena occurred in MG treated-HCC cells. And blocking autop-

hagy increased MG-induced cytotoxicity.

Our studies demonstrated that MG inhibits human HCC cells via apoptosis. Multiple hypo-

thetical pathways were discussed before by Chen et al. [65] who showed GSH depletion, cas-

pase and MAPK activation, and upregulation of p53, Bax, Fas, and Fas-L expressions in

leukemia cells after propyl gallate (PG), the MG-related gallate, treatment. Interestingly, MG’s

induction of GSH depletion and cell death in leukemia cells did not result from increasing

ROS levels. MG inhibited the nuclear translocation of Nrf-2, sequenced by c-GCS downregula-

tion, which may ultimately result in GSH depletion in MG-treated leukemia cells. MG may

play a different role in ROS levels, and the cell response depends on different MG concentra-

tions, treatment durations, or cell types. In conclusion, MG effectively inhibited HCC cells

both in vivo and in vitro. Treatment of HCC cells with MG increased intracellular ROS and

superoxide levels, upregulated ATG5-ATG12 complex and Beclin-1, and converted LC3-I to

LC3-II, all of which are essential to the induction of autophagy of HCC cells. And our results

revealed that autophagy activation was a protective response against MG-induced cell death in

HCC. These findings suggest that MG might be a promising therapeutic agent against HCC

development.
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