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Abstract

Drug-induced liver injury (DILI) is a leading cause of acute
liver failure, and a major reason for the recall of marketed
drugs. Detection of potential liver injury is a challenge for
clinical management and preclinical drug safety studies, as
well as a great obstacle to the development of new, effective
and safe drugs. Currently, serum levels of alanine and
aspartate aminotransferases are the gold standard for
evaluating liver injury. However, these levels are assessed
by nonspecific, insensitive, and non-predictive tests, and
often result in false-positive results. Therefore, there is an
urgent need for better DILI biomarkers to guide risk assess-
ment and patient management. The discovery of microRNAs
(miRNAs) as a new class of gene expression regulators has
triggered an explosion of research, particularly on the
measurement of miRNAs in various body fluids as biomarkers
for many human diseases. The properties of miRNA-based
biomarkers, such as tissue specificity and high stability and
sensitivity, suggest they could be used as novel, minimally
invasive and stable DILI biomarkers. In the current review,
we summarize recent progress concerning the role of miRNAs
in diagnosing and monitoring both clinical and preclinical
DILI, and discuss the main advantages and challenges of
miRNAs as novel DILI biomarkers.

E 2014 The Second Affiliated Hospital of Chongqing Medical
University. Published by XIA & HE Publishing Ltd. All rights
reserved.

Introduction

Drug-induced liver injury (DILI) is a growing challenge
because of the increasing number of drugs used in medical
care, and the increasing number of individuals who take
them.1,2 A database (www.livertox.nih.gov) has been estab-
lished to provide up-to-date, comprehensive clinical informa-
tion on DILI for both the general physician and the specialist.
A recent epidemiologic study by Bjornsson and co-workers
suggested that approximately 20 new cases of DILI per
100,000 persons occur each year.2 DILI is also one of the
most frequent causes for the termination of drug develop-
ment or withdrawal of approved drugs, and therefore, has an
enormous economic impact on health care expenditures.3–6

Moreover, it is the leading cause of acute liver failure.7 Of the

estimated 10000 documented drugs developed for humans,
more than 1000 have been associated with DILI.8 The main
causes of DILI in the United States are antibiotics, agents for
the central nervous system, health foods and dietary supple-
ments.4,9,10 In China, traditional Chinese medicine and anti-
tuberculosis drugs are the major causes of DILI.4,11,12

Children, women, and the elderly are more vulnerable to
DILI, and the susceptibility is related to genetic and environ-
mental factors.13–15 Although there are many consistent
features of DILI, early diagnosis is still challenging due to
the lack of specific and sensitive clinical features.8,16

Classification of DILI

DILI is usually categorized as non-idiosyncratic (predictable)
and idiosyncratic (unpredictable).17–19 The most common
example of non-idiosyncratic DILI is from acetaminophen,
which is one of the most commonly used medicines with a
very high safety profile when used properly.20,21 However, if
misused, either intentionally or accidentally, significant liver
injury can occur,22 which has a short latency period, and is
dose-related. This hepatotoxicity can also be studied in
animal models.23–26 Although idiosyncratic DILI has a
longer/variable latency and is less common, it comprises
the majority of clinical DILI cases.27–29 Idiosyncratic DILI
generally cannot be recapitulated in traditional animal models
or in clinical trials.28,30–32 Examples of this kind of DILI
include those related to amoxicillin/clavulanate, non-steroi-
dal anti-inflammatory drugs, and isoniazid.13,33,34

Pathogenesis and treatment of DILI

The bulk of drug metabolism occurs in the liver, which is also
vulnerable to damage from drug metabolites. The more
common idiosyncratic type of DILI has no significant relation-
ship with drug or dose,27–29 and the mechanism can be
divided into allergic35 and metabolic idiosyncratic.36 The
allergic form is closely related to the high variability of the
human leukocyte antigen system on chromosome 6,37–39

whereas the metabolic form is closely associated with the
genetic polymorphisms of individual drug-metabolizing
enzymes, such as cytochrome P450 enzymes,40 uridine
diphosphate glucuronosyltransferase,41 and N-acetyltrans-
ferase.42 In addition, oxidative stress and the host inflam-
matory response also play important roles in the
development of idiosyncratic DILI. There is mixed evidence
to support the role of host factors such as age, sex,
obesity,43,44 and chronic liver disease in the development of
DILI, and genetic predisposition appears to be a risk factor for
injury from specific drugs.38

Treatment for most forms of DILI is focused on supportive
care and requires longitudinal monitoring of the patient and
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laboratory work. Suspected cases of idiosyncratic DILI can be
categorized as hepatitic, cholestatic, or mixed on the basis of
the degree/ratio of abnormalities in the alanine aminotrans-
ferase (ALT) and alkaline phosphatase.45 However, a careful
evaluation for other causes of liver disease should be
performed, and sometimes, a liver biopsy is needed. The
mainstay of treatment for DILI is the immediate discontinua-
tion of the offending drugs, and avoidance of drugs with
similar chemical structures or pharmacologic effects. The
timing of discontinuation of hepatotoxic drugs is controver-
sial. Some investigators believe that the elevation of liver
enzymes, including aspartate aminotransferase (AST) or ALT
. 36 upper limit of normal (ULN) or alkaline phosphatase .

1.56 ULN, accompanied by elevation of bilirubin levels (. 36
ULN), indicate serious liver damage, and should trigger
immediate discontinuation of suspected causative drugs.46–49

The Federal Drug Administration has proposed the following
criteria for immediate cessation of the drug in question: ALT .

86 ULN, ALT . 56 ULN for two weeks, ALT . 36 ULN
accompanied by serumbilirubin. 26ULN, pro-thrombin time-
international normalized ratio . 1.56 ULN, or the appearance
of liver damage symptoms. For oral agents, the severity of
many cases of DILI can be decreased by reducing the residual
drug in the gastrointestinal tract by means of gastric lavage,
catharsis, and adsorption, or the use of diuresis, hemodialysis
and other methods, within six hours of ingestion.50,51

Diagnosis of DILI

It is very important to have a reliable and predictable
biomarker for DILI, and considerable effort has been made
to identify markers specifically for early detection. The
Federal Drug Administration recently endorsed four standard
serum biomarkers, including ALT, AST, total bilirubin and
alkaline phosphatase, to help identify severe DILI events in
clinical trials.21,49,51 However, limitations of these current
blood-based biomarkers include an unacceptable frequency
of false positives/negatives, poor sensitivity, and lack of
tissue specificity. For example, serum ALT activity is also
associated with kidney damage and muscle necrosis.52–54

Liver damage is only considered when serum ALT levels reach
two to four times that of the control group, thus the best
treatment period can easily be missed.55 Fenofibrate can
induce elevated serum transaminases, but does not cause
significant liver damage, resulting in false positives.56,57 In
addition, the markers may become elevated only after
substantial and sometimes irreversible tissue damage.58 All
of these characteristics decrease confidence in the utility of
aminotransferases as biomarkers for DILI. Ideally, more
sensitive and predictive biomarkers that respond very early
before irreversible injury has occurred would offer improved
outcomes.

MicroRNAs

MicroRNAs (miRNAs) are a recently discovered class of small,
endogenous, non-coding, single-stranded RNAs that are 19–
24 nucleotides in length.59 They are highly conserved, and
regulate approximately 30% of all gene expression at a post-
transcriptional level.59 miRNAs were first reported in 1993 in
a study by Lee et al. who showed that Lin-4 controlled the
timing of sexual development in Caenorhabditis elegans.60 To
date, there are 24521 entries representing hairpin precursor
miRNAs, which correspond to 30432 mature miRNAs

expressed in 206 species (miRBase Release 20; http://
www.mirbase.org). The major function of miRNA is to
modulate gene expression either by translational repression
or mRNA degradation. Binding of a miRNA to the 39-
untranslated region of mRNA with partial complementarity,
as occurs in animals,59,60 will inhibit translation, whereas
perfect complementarity, such as occurs in plants,59,61 will
specifically direct mRNA cleavage resulting in target gene
degradation.

Similar to other molecules involved in regulating gene
expression, the expression levels of miRNAs differ signifi-
cantly in various tissues and at distinct developmental
stages.59,61–63 The diversity of miRNA sequences, structures,
abundance and expression make them powerful regulators of
mRNA that are involved in development, proliferation,
differentiation, apoptosis, energy metabolism and other
physiologic processes.63 Therefore, alterations in miRNA
expression may reflect a change in the physiologic and
pathologic states. Fig. 1 shows the number of retrievable
manuscripts over the past 12 years in PubMed using
‘‘microRNA’’ and ‘‘biomarkers’’ as the keywords. An impress-
ive and increasing number of related studies were observed,
showing that the use of miRNA as a biomarker is currently
one of the most important topics in the field.

Recent studies have shown that there are a large number
of circulating miRNAs, and that altered miRNA expression
profiles are closely related to disease. The discovery of
miRNAs in circulating blood was first reported by Lawrie and
co-workers in 2008.64 Subsequently, the presence of stable
miRNAs in plasma and serum was reported by other
researchers.65,66 Gilad and co-workers found that miRNA
can be detected in serum, urine, saliva, and amniotic and
other fluids, and placenta-associated serum miRNAs are
significantly elevated during pregnancy.67 These studies
demonstrated that miRNAs are present in bodily fluid of
humans and other animals, such as mice, rats, bovine
fetuses, calves and horses, which laid the foundation for the
use of miRNAs as noninvasive biomarkers, and their applica-
tion in cancer prevention and disease diagnosis.68–71

MicroRNA and pathogenesis of DILI

Responses to xenobiotics can be regulated or modulated by
miRNAs in liver. For example, the exposure of rats to liver
hepatotoxins, such as acetaminophen or carbon tetrachloride,
results in altered expression of various miRNAs, including a
decrease in miR-298 and miR-370, which are thought to
regulate an oxidative stress-related gene.72 An increase in
levels of several oncogenicmiRNAs, such as the 17–92 cluster,
miR-106a, and miR-34, was detected in rat livers following
exposure to tamoxifen, a potent hepatocarcinogen.73 Another
research group demonstrated that dioxins, which are ubiqui-
tously present in the environment and tend to accumulate in
humans and wildlife, alter the expression of miR-101a and its
target, cyclooxygenase-2, which plays a significant role in liver
damage.74 Using the same method, Endo et al. found that in
patients with suppressed expression of miR-106b, the hepa-
totoxic drug halothane caused upregulation of signal transdu-
cer and activator of transcription 3, which was involved with
the resultant severe liver injury.75 Furthermore, there are
many studies reporting that drug-metabolizing enzymes, such
as cytochrome P450 1B1, which is highly expressed in human
liver, are targeted by certain miRNAs.76–78 Taken together,
these studies demonstrate that miRNAs play a significant role
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in the pharmacologic and toxicologic progression of hepato-
toxicity. As shown in Fig. 2, miRNAs may be involved in
multiple DILI developmental processes via regulation of their
target genes.

Circulating miRNAs as potential biomarkers of DILI

Although studies of miRNAs as biomarkers are primarily
concentrated in cancer research,69,70 their potential as
toxicologic biomarkers have also been recently explored.79

Over the past several years, many animal and clinical studies
have been published showing that miRNAs have an advan-
tage over the conventional biomarkers for DILI. They are
exceptionally stable, can be highly liver-specific and remark-
ably altered in pathologic states, are readily detectable in
easily accessible bodily fluids, and are strictly conserved
among species. Table 1 summarizes the published reports
using circulating miRNAs in the blood and urine as new DILI
biomarkers.

Serum or plasma miRNAs as biomarkers in
experimental DILI

A pioneer study by Wang et al. examined miRNAs as novel
biomarkers in a well-established mouse model of acetamino-
phen-induced liver injury.80 The authors demonstrated that
the liver-enriched miR-122 and miR-192 were the top two
miRNAs elevated in blood in a dose-and exposure time-
dependent manner. The levels of these miRNAs preceded and
paralleled serum ALT and AST levels and corresponding liver
histopathology.

Several independent groups have provided additional
data supporting the use of miRNAs as DILI biomarkers.
In 2010, one group confirmed the time-dependent increase
of plasma miR-122 levels in mice that correlated with liver

histopathology induced by D-galactosamine and alcohol.81

They also confirmed that the changes of miR-122 were larger
than and preceded the changes in ALT. Importantly, signifi-
cant increases in miR-122 were detected before obvious
histopathologic changes in the liver, suggesting that miR-122
could be used for diagnosing and monitoring disease at early
stages. Bala and co-workers discovered that serum plasma
miR-122 and miR-155 were predominantly associated with
the exosome-rich fraction in alcoholic and inflammatory liver
injuries, whereas in acetaminophen-induced liver injury,
these miRNAs were present mainly in the soluble protein-
rich fraction.82 These results suggest that circulating miRNAs
may serve as biomarkers to differentiate between hepatocyte
injury and inflammation, and the exosome- or protein-
associated miRNAs may provide further specific mechanisms
of liver pathology. The same group also compared 40 plasma
miRNAs that were dysregulated with lethal or sub-lethal
doses of acetaminophen, and found that miR-574-5p, miR-
135a, miR-466g, miR-1196, miR-466f-3p and miR-877 were
upregulated in the setting of lethal hepatotoxicity, while miR-
342-3p, miR-195, miR-375, miR-29c, miR-148a and miR-652
were markedly downregulated.83 Thus, differential expres-
sion of miRNAs in human plasma may be useful to distinguish
lethal and sub-lethal hepatotoxicity.

Compared with mice, the susceptibility to acetaminophen-
induced liver injury is lower in rats.84 Using rat models
created by the administration of chemical or special diets,
Yamaura et al. examined the levels of the plasma miRNAs in
acute liver injury (hepatocellular injury or cholestasis) and
chronic liver injury (steatosis, steatohepatitis, and fibrosis).85

Their results showed that miR-122 levels increased more
quickly and dramatically than levels of aminotransferases,
reflecting the extent of hepatocellular injury. Importantly,
their study also demonstrated that the expression profiles of
plasma miRNAs differed according to the type of liver injury,

Fig. 1. The number of articles listed on Pubmed concerning miRNAs as biomarkers published from 2002 to 2013
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suggesting that these miRNAs could be specific and sensitive
biomarkers for various types of liver injury. Su et al. also
reported that miR-122, miR-192 and miR-193 have the
potential to serve as sensitive, specific and noninvasive
biomarkers for the diagnosis of herb-induced liver damage.86

Furthermore, Starckx and co-workers demonstrated that the
levels of miR-122 in rat plasma were significantly increased
following administration of four well-characterized com-
pounds associated with different types and mechanisms of
liver toxicity: acetaminophen, allyl alcohol, alpha-naphthyl
isothiocyanate, and phenobarbital.87 The response of miR-
122 secretion by mouse liver cells paralleled that of other
markers, and was consistent with liver injury as indicated by
ALT/AST and histopathologic evaluation. The changes of
plasma miR-122 were also detected significantly earlier than
other conventional biomarkers, and exhibited a wide dynamic
range. Taken together, all the above discoveries demonstrate
that miR-122 has great potential to be used as a biomarker of
liver injury and may provide added value for assessing liver

toxicity in both preclinical studies and the development of
new drugs.

Urinary miRNAs as noninvasive biomarkers in
experimental DILI

The discovery of circulating miRNAs in the urine and other
bodily fluids has created a new approach for the discovery of
noninvasive biomarkers of organ injury.88 For example,
urine-derived miRNAs could become useful biomarkers for
kidney89 and bladder diseases,90 or even for DILI. In a rat
DILI model, urinary levels of some miRNAs were elevated,
likely released from the liver after injury.91 High-dose
acetaminophen-treated rats showed elevations of serum
ALT/AST, histologic signs of liver injury, and significant
increases in urinary miRNAs levels. Although low-dose
acetaminophen-treated rats did not show histologic signs of
liver injury or changes in serum ALT/AST, urinary levels of
nine miRNAs were substantially increased. Similarly, carbon

Fig. 2. Pathways by which miRNAs may be involved in the development of drug-induced liver injury (DILI). Drugs induce hepatocyte injury through their toxic
metabolites generated via CYP450. The toxic metabolites can induce the consumption of ATP, production of reactive oxygen species and formation of drug-protein/DNA
complexes, which result in mitochondrial uncoupling and hepatocellular apoptosis. When there is no ATP consumption, the reactive metabolites increase the mitochondrial
permeability, causing an increase in cytosolic Ca2+ and cell necrosis. All of these processes can affect the expression of miRNAs, and the deregulated miRNAs can, in turn,
regulate the development of DILI through their target genes.
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tetrachloride also led to an increase in urinary levels of 28
miRNAs, among which ten overlapped with the 44 identified
in the acetaminophen-induced model. Therefore, urinary
miRNAs appear to be another form of noninvasive DILI
biomarker and may be useful for the classification of
hepatotoxins. However, further studies are needed to exam-
ine their organ-specificity in detecting DILI.

Circulating miRNAs as biomarkers in human DILI

A study examining human subjects who suffered DILI showed
that the plasma levels of both miR-122 and miR-192 were
substantially higher in patients who suffered acetaminophen-
induced liver injury than in those who did not.92 Moreover,
levels of the liver-enriched miR-122, but not miR-192,
correlated with serum ALT levels, consistent with results
from a previous study in a mouse model.80 Their findings also
showed that the level of circulating miR-122 decreased to
baseline much earlier than serum ALT did, suggesting that
miR-122 has a shorter circulatory half-life. This work provided
the first convincing evidence that circulating miRNAs could be
used as a human DILI biomarker. Jetten et al. also demon-
strated that miR-19b and miR-29c were upregulated in
human blood cells after treatment with low-dose acetamino-
phen.93 However, the level of ALT was not altered. These
results suggest that the expression profile of circulating
miRNAs may be altered at a very early stage when liver
damage is undetectable using conventional markers. Indeed,
another study showed that miR-122, along with high mobility
group box-1 and full-length and caspase-cleaved keratin-18,
were more sensitive than ALT at identifying acetaminophen-
induced acute liver injury.94 Thulin and colleagues also
showed that serum keratin-18 and miR-122 levels were
significantly increased at an earlier time point and to a
greater extent than ALT in patients with DILI.95

Paraquat is one of the most common toxic herbicides, and
is widely used around the world. By comparing paraquat-
exposed human subjects with healthy donors, Dingand and
co-workers found that the serum levels of miR-122 were
strongly increased and correlated well with the status of liver
function.96 This pattern was similar to that was seen in the
mouse acetaminophen-induced liver injury model.80

However, miR-192, also identified in the mouse study, was
unexpectedly decreased two-to-eight-fold in human hepatic
samples.

Conclusions

The prediction, diagnosis and management of DILI are very
complicated issues. The current biomarkers or approaches to
assess DILI include biochemical markers such as amino-
transferases, total bile acids, histopathology or ultrastructural
pathology, active metabolites and immune-related markers.
However, due to the poor sensitivity, stability or specificity,
these conventional toxicologic biomarkers cannot provide
accurate information for early evaluation of liver hepatotoxi-
city. The development of novel, reliable and informative
biomarkers remains an important issue in clinical and
preclinical settings. Liver-specific miR-122 has been shown
to be involved in various processes of liver development,
differentiation, metabolism and stress responses.97–99

Compared with the conventional hepatotoxic markers, circu-
lating miR-122 can effectively and consistently distinguish
intrahepatic from extrahepatic damage with higher sensitivity

and specificity.92–96 Thus, miR-122 is expected to be a
preclinical and clinical biomarker of DILI.

Although the use of circulating miRNA levels for early
diagnosis of DILI shows promise, further study is required
before it is used in clinical applications. Themajor issues to be
addressed include: 1) lack of association between miRNAs
and mechanistic information on DILI; 2) lack of drug-specific
miRNAs to diagnose various types of DILI; 3) lack of larger
sample sizes validating the assay; and 4) lack of conventional
detection methods that can be carried out in routine clinical
laboratories, including standardized detection systems, stan-
dard reference materials, and quality control materials.100,101

More studies are required to demonstrate the mechanisms
underlying the phenotypes of DILI, including research and
investigation on the alterations of miRNAs in liver tissues
after treatments with various drugs representing a broad
range of DILI types, combining miRNAs with other biomar-
kers, and multicenter collaborations.

In conclusion, the use of miRNAs, especially miR-122, as
noninvasive biomarkers for DILI shows great potential, but is
still in its infancy. More research on circulating miRNAs is
needed to validate the use of miRNAs as novel biomarkers of
DILI.
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