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In alpine skiing, estimation of the joint moments acting onto the skier is essential to quantify
the loading of the skier during turning maneuvers. In the present study, a novel forward
dynamics optimization framework is presented to estimate the joint moments acting onto
the skier incorporating a three dimensional musculoskeletal model (53 kinematic degrees
of freedom, 94 muscles). Kinematic data of a professional skier performing a turning
maneuver were captured and used as input data to the optimization framework. In the
optimization framework, the musculoskeletal model of the skier was applied to track the
experimental data of a skier and to estimate the underlying joint moments of the skier at the
hip, knee and ankle joints of the outside and inside leg as well as the lumbar joint. During the
turning maneuver the speed of the skier was about 14m/s with a minimum turn radius of
about 16 m. The highest joint moments were observed at the lumbar joint with a maximum
of 1.88 Nm/kg for lumbar extension. At the outside leg, the highest joint moments
corresponded to the hip extension moment with 1.27 Nm/kg, the knee extension
moment with 1.02 Nm/kg and the ankle plantarflexion moment with 0.85 Nm/kg.
Compared to the classical inverse dynamics analysis, the present framework has four
major advantages. First, using a forward dynamic optimization framework the underlying
kinematics of the skier as well as the corresponding ground reaction forces are dynamically
consistent. Second, the present framework can cope with incomplete data (i.e., without
ground reaction force data). Third, the computation of the joint moments is less sensitive to
errors in the measurement data. Fourth, the computed joint moments are constrained to
stay within the physiological limits defined by the musculoskeletal model.
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1 INTRODUCTION

In alpine skiing, field experiments in the natural environment
(i.e., on the ski slope) are essential to analyze the movement of the
skier regarding performance characteristics or for the purpose of
injury prevention. While performance analyses primarily focus
on kinematic characteristics of the skier such as the trajectory of
the center of mass, the skier’s velocity and/or the path length of a
turning maneuver (e.g., Federolf, 2012; Spörri et al., 2012; Gilgien
et al., 2015; Fasel et al., 2018a), kinetic characteristics such as the
joint moments at the lumbar, hip, knee and ankle joints of the
skier or the ground reaction forces are the main focus in the
context of injury prevention (e.g., Stricker et al., 2010; Klous et al.,
2012; Lee et al., 2017; Spörri et al., 2018; Meyer et al., 2019).

Focusing on injury prevention, inverse dynamics is the
preferred approach to estimate the joint moments acting on a
skier during turning maneuvers (e.g., van den Bogert et al., 1999;
Klous et al., 2012, 2014; Hirose et al., 2013; Lee et al., 2017). An
inverse dynamics analysis is typically based on kinematic data of
the body segments of the skier as well as measurement data of
external forces (i.e., ground reaction forces) as input and provides
the net joint moments of the skier as output (Winter 2009). The
loading of the knee joint is of high interest, since most serious
injuries in recreational skiing (Posch et al., 2021) and competitive
alpine skiing are located at the knee (Haaland et al., 2016; Barth
et al., 2021). Inverse dynamics is computationally inexpensive,
straightforward and available in several software packages such as
OpenSim or Anybody. However, it has some important
limitations. First, in an inverse dynamics analysis the
kinematics and ground reaction forces are dynamically not
consistent (Fluit et al., 2014). This inconsistency arises due to
measurement errors of the kinematics and ground reaction forces
as well as differences between the biomechanical model used in
the inverse dynamics analysis and the real physical system (Hatze,
2002) and introduces errors in the computation of the joint
moments (Faber et al., 2018). Second, an inverse dynamics
analysis requires double differentiation of the segment
kinematics, which amplifies errors in the measurement data.
Consequently, inverse dynamics is highly sensitive to
measurement errors (Cahouët et al., 2002; Pàmies-Vilà et al.,
2012). Third, the computed joint torques are not constrained to
stay within physiological limits (Bailly et al., 2021). The main
reason is that muscle characteristics such as the maximum
isometric force, the force-length relationship, the force-velocity
relationship and the activation dynamics are not taken into
account in the inverse dynamics analysis of the joint
moments. Consequently, the estimated joint moments might
be unrealistic high and physiologically not plausible (Bailly
et al., 2021).

These limitations of inverse dynamics analysis may have
affected previous studies in alpine skiing estimating joint
moments during turning maneuvers. Hirose et al. (2013), for
example, computed the joint moments at the lower extremities
during a carving turn using an inverse dynamics analysis that was
based on kinematic data obtained by an IMU based system and
measured ground reaction forces between the ski boot and ski.
They reported a peak external hip flexion moment of about

900 Nm, which is about a factor of 2.5 above the maximum
voluntary hip joint torque reported in the study of Anderson et al.
(2007) for the age group 19 to 25. Furthermore, Klous et al.
(2012), computed knee extensionmoments up to 8.35 Nm/kg and
4.07 Nm/kg for a skidded and a carved turn, respectively.
Although the speed of the skier was relatively low in the
carved turn (v = 13.9 m/s) and the skidded turn (v = 10.4 m/
s), the reported peak knee flexion moments exceeded in turn the
maximum voluntary joint torques derived by Anderson et al.
(2007). The inverse dynamics analysis incorporated kinematic
data captured by a multi-camera system and ground reaction
force measured by custom-built mobile force platforms mounted
between the ski binding and the ski. In addition, Klous et al.
(2012) reported peak external knee abduction moments, which
are about a factor of three higher than the assumed injury
threshold of 125 Nm valgus moment in the study of McLean
et al. (2008), although they did not investigate an injury prone
situation. Thus, the reported peak joint moments in these studies
are likely to be error prone and unrealistic high.

As an alternative to inverse dynamics, recent advances in forward
dynamics methods opened up new opportunities (Erdemir et al.,
2007). Specifically, given amusculoskeletalmodel, forward dynamics
optimization such as forward dynamics assisted data tracking offer
the possibility to estimate dynamically consistent kinematics and
ground reaction forces as well as joint torques and muscle forces
(Nitschke et al., 2020). In addition, thesemethods are less sensitive to
errors in the measurement data and allow to incorporate the force
generating muscle properties such as the maximum isometric force,
the force-length relationship, the force-velocity relationship and the
muscle activation dynamics (Erdemir et al., 2007).

In alpine skiing, only a few studies applied a musculoskeletal
simulation model in combination with forward dynamics
optimization to estimate consistent joint kinematics and ground
reaction forces, joint torques and muscle forces (e.g., Gerritsen et al.,
1996; Heinrich et al., 2014, 2018). However, all of these studies
incorporated a two dimensional model of an alpine skier, which was
constrained to the sagittal plane and applied to analyze jump landing
maneuvers in downhill skiing. Analyzing turning maneuvers,
however, requires a three dimensional skier model. To the
authors’ knowledge, no three dimensional musculoskeletal skier
model has been developed. Therefore, the first objective of the
present study was to develop a three dimensional musculoskeletal
model of an alpine skier capable of simulating turning maneuvers.
The second objective was to apply themusculoskeletal skiermodel in
combination with a forward dynamics optimization framework to
estimate dynamically consistent kinematics, ground reaction forces
and joint moments during a turning maneuver. The estimation of
the jointmoments was constrained such that computed joint torques
stayed within physiological limits imposed by the
musculoskeletal model.

2 MATERIALS AND METHODS

2.1 Musculoskeletal Skier Model
We developed a three dimensional musculoskeletal model of an
alpine skier with two skis and 53 degrees of freedom (19 for the
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skier and 17 for each ski) to simulate turning maneuvers in alpine
skiing (Figure 1). The skeletal model of the skier consisted of 20
rigid segments and was derived from the full-body OpenSim
model of Hamner et al. (2010). At each lower extremity the
subtalar andmtp joints were locked because of the skier’s ski boot,
which allows only plantarflexion and dorsiflexion at the ankle
joint. The restraining effect of the ski boot was represented by a
passive moment at the ankle joint incorporating the non-linear
relation between the boot-induced moment and the ankle joint
angle (Eberle et al., 2017). To increase computational speed the
position of the arms of the skier was locked in a typical position
and the mass of the ski poles was neglected. In total, the skier
model had 19 degrees of freedom (6 between pelvis and ground; 3,
1, and 1 at each hip, knee and ankle, respectively; 3 at the lumbar
joint between trunk and pelvis).

Each ski was discretized into 18 rigid segments (7 rear
segments, 1 center segment and 10 front segments) connected
by revolute joints. Mass and inertia properties of the ski segments
were derived form measurement data of a competitive giant
slalom ski. The length of the ski was 2.02 m with a sidecut
radius of 32 m and a mass of 2.1 kg. The center segment was
firmly affixed to the foot-ski boot segment of the skier model.
Rotational spring-damper elements were attached to the revolute
joints to incorporate stiffness and damping properties of the skis
(Heinrich et al., 2014). Stiffness and damping parameters were
derived from laboratory measurements of bending deflection and
bending vibration (Mössner et al., 2014). Torsional twist of the
skis was neglected because it was shown to be low during turning
maneuvers (Yoneyama et al., 2008).

The motion of the skier was actuated by 94 muscles (43 per leg
and eight actuating the lumbar joint). The muscle model was
based on the OpenSim model of Catelli et al. (2019), since deep

squatting and high hip flexion are often encountered during
turning maneuvers. In the OpenSimmodel of Catelli et al. (2019),
80 muscles were includes (40 per leg) actuating the joints of both
legs only. To actuate the lumbar joint additionally, we added eight
muscles (2 × erector spinae, rectus abdominus, external obliques,
internal obliques) to the skier model (Harris et al., 2017).
Furthermore, we added three hip muscles (gemelli, pectineus,
quadratus femoris) to each leg to increase hip muscle strength
based on the musculoskeletal model presented in Harris et al.
(2017) focusing on hip musculature.

Muscle activation dynamics was assumed as a first-order
process (He, 1991) and models the change in muscle
activation as a function of the current active state and the
neural excitation of the muscle. The corresponding time
constants for muscle activation and deactivation were set to 10
and 40 ms, respectively (Zajac, 1989; Nitschke et al., 2020).
Muscle contraction dynamics was modeled in analogy to
Nitschke et al. (2020) assuming a three-element Hill-type
muscle model, which incorporates the force-length-velocity
characteristics of the muscle. Contraction dynamics was
formulated in implicit form, which was shown to result in
better convergence and increased computational speed (van
den Bogert et al., 2011; De Groote et al., 2016).

The dynamics of the whole musculoskeletal skier model was
given by the multibody dynamics of the skier and skis, the muscle
activation dynamics and the muscle contraction dynamics. The
dynamics was formulated in implicit form (van den Bogert et al.,
2011) as

f x, _x, u( ) � 0 (1)
where x denotes the states of the musculoskeletal skier model, _x
the time derivative of the states and u the controls of the
musculoskeletal skier model. Specifically, the states x of the
musculoskeletal skier model were represented by the degrees
of freedom and their derivatives of the multibody model of the
skier and skis, the projected length of the muscle fibers (=length
of the contractile element in the Hill muscle model) and the
muscle activations; the controls u of the musculoskeletal skier
model were represented by the neural muscle excitations of the
muscles (van den Bogert et al., 2011).

2.2 Ski-Snow Contact Model
We modeled the ski-snow contact using three types of forces
acting on each segment of both skis (Mössner et al., 2014). First,
we applied a penetration force Fp acting normal to the snow
surface. The penetration force was based on an elastic force
penetration relation and depended on the penetration depth
and speed of the edge of the ski segment orthogonal to the
snow surface as well as the edging angle of the ski. The edging
angle was defined as the angle between the base surface of the ski
segment and the snow surface. Second, we applied a shear force Fs
acting orthogonal to the ski edge and parallel to the snow surface.
The shear force provided resistance against lateral shearing and
depended on the penetration depth of the ski edge. Finally, we
applied a frictional force Ff acting antiparallel to the segment’s
velocity with a constant friction coefficient μ = 0.1 (Heinrich et al.,
2014; Mössner et al., 2014).

FIGURE 1 | Three dimensional musculoskeletal model of the skier with
two skis, 53 kinematic degrees of freedom (19 for the skier and 17 for each ski)
and 94 muscles visualized in OpenSim (Delp et al., 2007). The subtalar and
mtp joints were locked because of the skier’s ski boots, which allowed
only plantarflexion and dorsiflexion at the ankle joints.
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2.3 Experimental Data
To analyze a turning maneuver with the present musculoskeletal
model we took measurement data collected by our working group
in a previous study (Filippi Oberegger, 2011) where a professional
skiing instructor performed a turn to the right with the same giant
slalom skies implemented in the musculoskeletal skier model.
The movement of the skier was captured by a multi-camera
system consisting of three cameras and a frequency of 50 Hz. In a
post-processing step 23 landmarks of the skier were manually
digitized and the three dimensional coordinates were
reconstructed using the direct linear transformation (DLT)
algorithm. Given the 23 landmarks we used OpenSim to scale
the skier model and used the inverse kinematics tool to compute
the kinematics of the skier (i.e., joint angles of skier at the inside
and outside leg, joint angles at the lumbar joint and the
translation and orientation of the pelvis segment of the skier).

2.4 Optimization Framework
Given the musculoskeletal skier model, we used a forward
dynamics optimization framework to simulate the movement
of the skier, track the experimental data of the skier during the
turning maneuver and to compute the joint moments of the skier.
Specifically, we formulated a corresponding optimal control
problem (i.e., tracking problem). The task of the optimal
control problem was to find the states x and controls u of the
musculoskeletal skier model such that a given objective function J
is minimized (van den Bogert et al., 2011). Specifically, we used
the following objective function

J � 1
T
∫T

0
w1‖errq‖22︸����︷︷����︸
tracking error

+w2 ∑nmus

i�1 a2i( )︸�����︷︷�����︸
muscle effort

+w3 ‖ _x‖22 + ‖ _u‖22( )︸�������︷︷�������︸
regularization

including a tracking error term, a muscle effort term and a
regularization term. Simulation time is denoted by T, ‖ − ‖2
denotes the Euclidean norm, nmus the number of muscles and
w1, w2 and w3 are weighting factors.

The first term in the objective function corresponded to the
tracking error where errq denotes the deviation of the degrees of
freedom of the skier model (i.e., pelvic translation and rotation,
joint angles at the lumbar, hip, knee and ankle joints) and the
corresponding measurement data. The second term in the
objective function corresponded to muscle effort and was used
to resolve muscle redundancy (having more muscles than degrees
of freedom). In the literature several criteria have been suggested
(Erdemir et al., 2007). One common criterion is to use muscle
activation a squared as a surrogate for muscle effort. This
criterion has been used in a number of studies involving
dynamic movement tasks such as jump landing (Laughlin
et al., 2011), squatting (Catelli et al., 2019) or cutting
(Weinhandl and O’Connor, 2017). Finally, a small
regularization term was added with a small weight factor w3 to
enhance convergence by minimizing the derivatives of the states x
and controls u (Nitschke et al., 2020).

The optimal control problem was subjected to constraints due
to the dynamics of the musculoskeletal skier model (i.e., muscle
activation and contraction dynamics and multibody dynamics of

the skier model) as well as lower and upper bounds on the states x
and controls u (van den Bogert et al., 2011; Nitschke et al., 2020).

2.5 Model Implementation and Numerical
Solution
Solving an optimal control problem is computationally
challenging. Recently, however, several efficient computational
frameworks have been developed for solving dynamic
optimization problems (e.g., Falisse et al., 2019; Nitschke et al.,
2020). Similar to the approach of Nitschke et al. (2020) we
implemented and solved the optimal control problem in an
efficient way. We used MotionGenesis (Motion Genesis LLC,
Menlo Park, CA, United States) to generate the equations of
motion for the multibody dynamics of the skier model. The
equations of motion were exported as C-code and imported in
MATLAB via the MEX interface. In MATLAB we fused the
equations for the multibody dynamics and the muscle
contraction and activation dynamics and formulated the
optimal control problem (i.e., tracking problem). To solve the
optimal control problem, we transformed it into a constrained
nonlinear programming problem (NLP) using direct collocation
and the implicit Euler formula (van den Bogert et al., 2011). To
increase computational speed, we provided analytical derivatives
of the objective function and constraints to the NLP solver IPOPT
(Nitschke et al., 2020).

2.6 Data Analysis
To evaluate the simulation of the turning maneuvers and the
associated tracking error, we first calculated the root mean
squared difference (RMSD) between the joint angles of the
skier derived from the measurement data and the
corresponding joint angles of the skier in the simulation.
Second, we compared the track of the skier where we used the
ankle joint centers of the outside and inside leg as reference points
(Supej et al., 2020). Finally, we computed the RMSD between the
measured and simulated speed of the skier during the turning
maneuver. In the data analysis, we focused on the steering phase
of the turning maneuvers, where the skier is subjected to the
highest loads (Klous et al., 2012, 2014). Similar to the recent study
of Supej et al. (2020), we defined the beginning and end of
steering phase when the turn radius of the skier was below the
side cut radius of the ski (R = 32 m). After the evaluation we
computed the joint moments at the hip, knee and ankle joint of
the outside and inside leg as well as the lumbar joint of the skier.
Joint moments were represented as internal joint moments and
hip flexion, adduction and internal rotation, knee extension and
ankle dorsiflexion moments were denoted as positive. To analyze
the loading of the knee joints in more detail, we further computed
the full 6-DOF intersegmental joint moments and forces at the
knee of the outside and inside leg (van den Bogert et al., 2013),
respectively, solving the Newton-Euler equations consecutively
starting at the ski segments to the shank segment. Since
intersegmental joint forces are not the total forces at joint and
have limited utility on their own (Derrick et al., 2020), we focused
on the analysis of the intersegmental knee joint moments. The
intersegmental knee joint moments and forces were represented
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in the local coordinate system of the shank; the x-axis, y-axis and
z-axis referred to the anterior-posterior, superior-inferior and
medial-lateral direction.

3 RESULTS

3.1 Kinematics
In the forward dynamics optimization framework, the turning
maneuver could be successfully simulated (an animation of the
simulated turning maneuver is provided as Supplementary
Material) in about 35 min of computational time on a single
core of a workstation (Thinkstation 330, 3.5 GHz E-2146
CPU). In the simulation, the musculoskeletal skier model
was able to track the measured kinematic data closely
(Figure 2). Specifically, the RMSD between the measured
joint angles and the joint angles obtained by the
musculoskeletal skier model were in the range from 0.50 to
2.72° (Table 1). The lowest differences were observed for
lumbar bending and knee flexion at the outside left leg; the
highest differences were observed for pelvis list and hip
adduction at the inside right leg.

In addition, the simulated track of the skier and the speed of
the skier were in good agreement with the measurement data
At the inside and outside leg, the mean deviation between the

measured and simulated track was 0.025 and 0.018 m,
respectively (Figure 3A). The speed of the skier increased
from about 13.5 m/s to 14.5 m/s during the simulated turning
maneuver and matched the measured speed with a root mean
squared difference of 0.12 m/s (Figure 3B). For the speed
comparison, the midpoint between the right and left hip
joint center was chosen as the reference point. The turn
radius of the center of mass of the skier dropped at the
beginning of the steering phase to a minimum of about
16 m and remained almost constant afterwards in the range
from 18 to 19 m (Figure 4A).

3.2 Ground Reaction Forces
In the simulation of the turning maneuver, the ground reaction
forces were higher on the outside leg compared to the inside leg
(Figure 4B). Computing the force distribution between the
inside and outside leg, about 60% of the total ground
reaction force was acting on average on the outside leg.
Consequently, the load on the outside leg was on average
50% higher. Peak forces reached 1.00 BW and 0.94 BW on
the outside and inside leg, respectively. The local maximum at
the beginning of the steering phase was induced by the skier
performing an unloading-loading motion after the phase of edge
change and the beginning of the steering phase (see animation
provided online as Supplementary Material).

FIGURE 2 | Comparison of the optimized kinematics of the skier (red) during the turning simulation and the corresponding measured kinematic data (yellow).
Kinematic data refer to the orientation of the pelvis (tilt, list, rotation) and the joint angles at the lumbar joint (flexion, lateral bending, rotation), hip joint (flexion, adduction,
internal rotation), knee joint (flexion) and ankle joint (dorsiflexion). The blue dotted lines represent the kinematics of a straight schussing maneuver, which was used as
initial guess in the optimization framework.
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3.3 Joint Moments
The highest internal joint moments were observed at the lumbar
joint with a maximum value of 1.88 Nm/kg for lumbar extension.
This was about 2.5 times larger compared to the maximum
lumbar bending moment rising to 0.75 Nm/kg and about
12 times larger compared to maximum lumbar rotation
moment (Table 2; Figure 5). At the outside leg, the highest
internal joint moments corresponded to the hip extension
moment with 1.27 Nm/kg, the knee extension moment with
1.02 Nm/kg and the ankle plantarflexion moment with
0.85 Nm/kg. At the inside leg, peak knee and hip extension
moments were of similar order compared to the inside leg.
The ankle plantarflexion moment and the passive boot
moment, however, were 45 and 60% lower, respectively
(Table 2; Figure 5).

The intersegmental knee joint moments in the frontal plane
showed that primarily an internal adduction moment was acting
on the knee joint of the outside leg during the turning maneuver
(Figure 5), which was mainly induced by the ground reaction
force passing laterally to the knee. Correspondingly, the
intersegmental mediolateral force at the knee joint pointed
medially to counteract the lateral component of the ground
reaction force. Contrary, primarily an internal abduction
moment acted on the knee joint of the inside leg during the
turning maneuver (Figure 6) caused by the ground reaction force
passing medially to the knee. Correspondingly, the
intersegmental mediolateral force at the knee joint pointed
laterally to counteract the medial component of the ground

reaction force. Peak internal knee adduction and abduction
moments reached 0.23 and 0.31 Nm/kg at the outside and
inside leg, respectively (Table 3). In the transverse plane, the
rotation moments at the knee ranged between -0.08 and
0.22 Nm/kg at the outside leg with alternating phases of
internal and external rotation (Figure 6). At the inside leg,
mainly an internal rotation moment was present throughout
the turning maneuver with values ranging between 0.05 and
0.28 Nm/kg (Table 3).

4 DISCUSSION

The main objectives of the present study were to 1) develop a
three dimensional musculoskeletal simulation model of an alpine
skier and 2) apply the musculoskeletal skier model in
combination with a forward dynamics optimization framework

TABLE 1 | Root mean squared difference (RMSD) between the measured joint
angles of the skier during the turning maneuvers and the corresponding joint
angles of the musculoskeletal skier model in the tracking simulation. Minimum and
maximum values of the joint angles of the skier during the turning maneuvers are
reported, additionally.

— RMSD Minimum Maximum

Pelvis (deg)
— Tilt 0.73 -38.7 -28.3

List 2.72 14.6 33.4
Rotation 2.60 -18.4 30.3

Right hip (deg)
— Flexion 1.16 69.5 117.1

Adduction 2.63 -12.6 11.1
Rotation 2.30 -26.2 -9.5

Right knee (deg)
— Flexion 2.03 -114.0 -80.5
Right ankle (deg)
— dorsiflexion 2.04 17.2 21.4
Left hip (deg)
— Flexion 1.85 50.3 80.6

Adduction 0.67 -27.0 -2.6
Rotation 0.92 4.7 27.5

Left knee (deg)
— Flexion 0.62 -79.9 -56.1
Left ankle (deg)
— Dorsiflexion 1.21 18.3 26.7
Lumbar (deg)
— Flexion 2.16 -28.7 -22.8

Bending 0.50 -4.6 0.4
Rotation 1.06 -2.8 10.3

FIGURE 3 | Comparison of the optimized track of the skier in the turning
simulation (solid lines) and the corresponding measurement data (dashed
lines) in (A) (B) shows the measured (solid red) and optimized speed (solid
yellow) of the skier.
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to estimate dynamically consistent kinematics, ground reaction
forces and joint moments during a turning maneuver. The
estimation of the joint moments was constrained such that
computed joint torques stayed within physiological limits
imposed by the musculoskeletal model.

4.1 Musculoskeletal Simulation Model
We developed a novel three dimensional musculoskeletal model
of an alpine skier with two skis and 53 kinematic degrees of
freedom and applied it successfully to simulate and analyze a
turning maneuver. To the authors’ knowledge, the present study
incorporates the first three dimensional musculoskeletal model
for analyzing turning maneuvers in alpine skiing. In previous
musculoskeletal simulation studies in alpine skiing only two
dimensional models were developed (Gerritsen et al., 1996;
Heinrich et al., 2014, 2018). These models were applied to
analyze jump landing maneuvers in downhill skiing in the
sagittal plane and possible risk factor for an injury of the
anterior cruciate ligament. Developing a three dimensional
musculoskeletal simulation model is computational challenging
due to the increased model complexity and consequently the high
computational cost involved for the optimization. To reduce the
computational cost, we employed recent advances in
musculoskeletal modeling and simulation. In particular, we
formulated the system dynamics in implicit form (van den
Bogert et al., 2011) and used direct collocation with analytical
derivatives of the system dynamics to solve the underlying
dynamic optimization problem (Nitschke et al., 2020).

The simulation of the turning maneuver was based on a
forward dynamics optimization framework (i.e., forward
assisted data tracking), where measured kinematic data of an
alpine skier performing a turning maneuver were tracked by the
musculoskeletal skier model. In the simulation of the turning

maneuver, the experimental data of the skier could be tracked
closely with a RMSD below 3° at all joints. This RMSD is
considered to be low, because it is well within the precision of
current mobile measurement devices such as inertial
measurement units (IMU) based systems (Fasel et al., 2018b)
or machine learning techniques (Ostrek et al., 2019).
Additionally, the track and the speed of the skier could be
tracked well. Comparing the inside and outside leg, higher
errors were detected at the inside leg. The higher errors could
have been caused by the higher hip and knee flexion on the inside
leg during the turning. This might have complicated the manual
digitization process due to occlusions and consequently reduced
the accuracy of the corresponding measurement data.

In the forward dynamics optimization framework, kinematic
data obtained by video-based stereophotogrammetry and a
multi-camera setup were used as input data. IMU based
systems in combination with a Global Navigation Satellite
System (GNSS) or computer vision and human pose
estimation have been shown to be promising approaches for
capturing the kinematics of a skier during turning maneuvers on
the ski slope (e.g., Fasel et al., 2018b; Ostrek et al., 2019). Since
only measured kinematic data are mandatory in the forward
dynamics optimization framework (see also next section), the
present musculoskeletal simulation model might also be
combined with either of these approaches in future research
without the need to provide ground reaction force data captured
by mobile force platforms or pressure insoles. This might open
up new opportunities regarding the analysis of the loading of the
skier during turning maneuvers in the natural environment if
only kinematic data are available. If measured ground reaction

FIGURE 4 | Turn radius of the center of mass of the skier in the turning
simulation (A) as well as the total ground reaction force, the ground reaction
force acting on the outside ski (red) and inside ski (blue) (B).

TABLE 2 | Peak joint moments at the lumbar joint as well as the hip, knee and
ankle joint of the inside right knee and outside left knee, respectively.

Joint moments — Minium Maximum

Right hip (Nm/kg)
— Flexion -1.05 -0.21

Adduction 0.00 0.45
Rotation -0.02 0.23

Right knee (Nm/kg)
— Extension 0.04 0.96
Right ankle (Nm/kg)
— Dorsiflexion -0.47 0.04

ski boot -0.46 -0.07
Left hip (Nm/kg)
— Flexion -1.27 -0.03

Adduction -0.39 0.52
Rotation -0.17 0.06

Left knee (Nm/kg)
— Extension 0.07 1.02
Left ankle (Nm/kg)
— Dorsiflexion -0.85 0.03

ski boot -1.16 -0.05
Lumbar (Nm/kg)
— Extension 0.16 1.88

Bending 0.01 0.75
Rotation -0.16 -0.01

Joint moments are represented as internal joint moments and hip flexion, adduction and
internal rotation, knee extension, ankle dorsiflexion and lumbar extension, lateral bending
and left rotation moments are denoted as positive.
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force, however, are additionally available as input data, these
data might also be tracked in the optimization framework.
Specifically, in the objective function of the optimization
framework the deviation of the simulated and measured
ground reaction forces might be taken into account to track
the measured ground reaction forces as good as possible (van
den Bogert et al., 2011; Nitschke et al., 2020).

4.2 Forward Dynamics Optimization
Framework
In the present study we used a forward dynamics optimization
framework to compute the joint moments during a tuning
maneuver. In the literature there are only a few studies
analyzing the loading of the skier during turning maneuvers
dynamically (Klous et al., 2012, 2014; Hirose et al., 2013; Lee

FIGURE 5 | Joint moments at the lumbar joint, hip, knee and ankle joint of the inside leg (blue) and the outside leg (red) as well as the passive joint moment induced
by the ski boot at the ankle joint. Joint moments are represented as internal joint moments and hip flexion (hip flex), adduction (hip add) and internal rotation (hip rot), knee
extension (knee ext) and ankle dorsiflexion (ankle dorsiflex) moments are denoted as positive. At the lumbar joint, lumbar extension (lumbar ext), lateral bending (lumbar
bend) and left rotation (lumbar rot) moments are denoted as positive.

FIGURE 6 | Intersegmental forces and moments at knee joint of the inside leg (blue) and outside leg (red), respectively. Forces and moments are represented in the
shank coordinate system, where the z-axis, x-axis and y-axis refer to the medial-lateral, anterior-posterior and superior-inferior direction. Positive joint moments denote
an internal knee extension, adduction and internal rotation moment, respectively.
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et al., 2017). However, in all of these studies the authors used
an inverse dynamics approach to compute the joint moments
at the lower extremities. Compared to the classical inverse
dynamics analysis, the present framework has four major
advantages.

First, using a forward dynamics optimization framework the
obtained kinematics of the skier as well as the corresponding
ground reaction forces are dynamically consistent. Consequently,
no residual forces and torque have to be added such that the
equations of motion of the skier are satisfied (Bailly et al., 2021).
This is important since residual forces and moments do not exist
in reality and affect the computation of kinetic variables such as
joint moments, power and work (Hatze, 2002; Faber et al., 2018).
Contrary, using an inverse dynamics approach the validity of the
computed joint moments is impaired depending on the size of the
introduced residual forces and moments (Faber et al., 2018).

Second, optimization of a forward dynamic model with data
tracking and effort minimization also has the advantage that the data
being tracked can be any number of variables. The number of
measurements can be overdetermined (more measurements than
kinematic degrees of freedom and external loads), or
underdetermined (fewer measurements than kinematic degrees of
freedom and external loads). This makes it possible to perform a full
dynamic analysis without external loads (i.e., ground reaction forces)
provided for example by instrumented skis, as demonstrated
previously in a planar analysis of jump landing in skiing (van den
Bogert et al., 2011) or in the present three dimensional analysis of a
turning maneuver in skiing. In contrast, classical inverse dynamic
analysis requires the measurement of all kinematic degrees of
freedom and external loads, not more and not less.

Third, the computed joint moments are less sensitive to errors in
the measurement data, since only the measured kinematic data
(i.e., joint angles, pelvic translation and orientation) are tracked in
the simulation. First or second derivatives of the measured kinematic

data are not required. Contrary, inverse dynamics requires the second
derivative of the measured kinematic data, which amplifies
measurement errors (Cahouët et al., 2002; Pàmies-Vilà et al., 2012).

Fourth, the computed joint moments are constrained to stay
within physiological limits. The physiological limits were induced
by the musculoskeletal model, which included a three element
Hill-type muscle model with activation and contraction
dynamics. Contraction dynamics incorporates the force-
length-velocity characteristics of the muscle, the active state as
well as the maximum isometric force (van den Bogert et al., 2011)
and limits the acting muscle forces and the corresponding joint
moments. In addition, the activation dynamics limits the change
of the corresponding joint moments, incorporating time
constants for muscle activation and deactivation in the
dynamics equation (Bailly et al., 2021).

4.3 Joint Moments
Based on the musculoskeletal model and the forward dynamics
optimization framework we computed the joint moments at the
lumbar joint as well as the hip, knee and ankle joints of the outside
and inside leg of the skier during the turning maneuver. At the
outside leg, highest lower-limb joint moments were identified at
the hip joint (1.27 Nm/kg, hip extension), followed by the knee
joint (1.02 Nm/kg, knee extension) and ankle joint (0.85 Nm/kg,
ankle plantarflexion). Knee and hip extension moments were
similar at the outside and inside leg, although the ground reaction
forces were on average about 50% higher on the outside leg. This
can be explained by the increased knee and hip flexion on the
inside leg, which required higher activation of the knee and hip
extensor muscles. The ankle plantarflexion moment and also the
passive boot moment were lower on the inside leg, which
indicated that the skier was pushing more against the shaft of
the ski boot at the outside leg.

In accordance with the present study, the hip extension
moment was reported as the highest joint moment in the
kinetic studies of Hirose et al. (2013) and Lee et al. (2017)
analyzing turning maneuvers in skiing based. In both studies,
the authors used on an inverse dynamics approach to compute
the joint moments given kinematic data from an IMU based
system and measured ground reaction forces. Specifically, in the
study of Lee et al. (2017), the peak knee extension moment
(0.5 Nm/kg) and ankle plantarflexion moment (1.1 Nm/kg) were
roughly of the same order of magnitude as in the present study.
Strikingly, however, the peak hip extension moment reached
6 Nm/kg. In the study of Hirose et al. (2013), the hip
extension moment reached 12 Nm/kg assuming a mass of the
skier of 75 kg. Compared to the present study, these reported peak
hip extension moments are a factor of 5 and 10, respectively,
higher and are likely to be unrealistic high. In particular, these
values exceed reported maximum voluntary joint moments by
about 70 and 240%, respectively, if we take the data of the age
group 19–25 in the study of Anderson et al. (2007) as reference
data and add one standard deviation to the mean value.
Unfortunately, Hirose et al. (2013) and Lee et al. (2017) did
not present any information about the external forces acting on
the skier (i.e., ground reaction forces or speed and turn radius of
the skier) or the kinematics of the skier, which makes a more

TABLE 3 | Peak intersegmental forces and moments during the turning maneuver
at the inside right knee and outside left knee, respectively, represented in the
corresponding shank coordinate system.

— Minimum Maximum

Right knee forces (N/kg)
— Fx 0.76 3.35

Fy -6.23 -1.07
Fz 0.28 1.08

Right knee moments (Nm/kg)
— Mx -0.31 0.04

My 0.05 0.28
Mz 0.04 0.96

Left knee forces (N/kg)
— Fx 0.63 3.90

Fy -6.83 -0.77
Fz -1.16 0.00

Left knee moments (Nm/kg)
— Mx -0.10 0.23

My -0.08 0.22
Mz 0.07 1.02

The z-axis, x-axis and y-axis refer to the medial-lateral, anterior-posterior and superior-
inferior direction. Positive joint moments denote an internal knee extension, adduction
and internal rotation moment, respectively.
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detailed comparison impossible. On the other hand, similar hip
extension moments as in the present study were reported in the
study of van den Bogert et al. (1999). Nine male subjects were
instrumented with a 12-channel accelerometer system mounted
on the upper body and the hip extension moment was computed
through an inverse dynamics analysis. The authors reported an
average peak hip extension moment of 1.75 Nm/kg during long
turns on a flat slope assuming a mean mass of the skiers of 75 kg.
The skiers were asked to load the outer ski only and lift the inner
ski, which shifted the entire load to the outer ski. In contrast, only
60% of the external load was acting on the outside leg of the skier
during the turning maneuver in the present study.

The internal knee joint moments showed that in the frontal plane
primarily an adduction moment was acting on the knee joint of the
outside leg in combination with alternating phases of an internal and
external rotation moment in the transverse plane as well as a knee
extensionmoment. Klous et al. (2012) studied the loading of the knee
joint during a carved and skidded turn. The turn radius of the skier
was about 10m in both turns, while the mean speed during the
carving turn was higher than during the skidded turn (13.9 m/s vs
10.4 m/s). The authors determined peak knee extension moments up
to 8.35 and 4.07 Nm/kg for the skidded and carved turn, respectively,
based on an inverse dynamics approach. In addition, they computed
peak adduction moments up to 5.70 and 5.75 Nm/kg in the frontal
plane and external rotation moments up to 6.85 and 2.75 Nm/kg in
the transverse plane for the skidded and carved turn. All of these
values are significantly higher compared to the values of the present
study. The differences might be explained in part by the decreased
turn radius of the skier in the study of Klous et al. (2012), which
induced a higher external loading onto the skier. However, due to
measurement noise and the limitations of the inverse dynamics
approach, the computed joint moments might have been
overestimated exceeding physiologically plausible values. For
example, if we compare the peak knee extension moments with
literature data such as maximum voluntary knee extension moments
(Anderson et al., 2007) or maximum isometric knee extension
moments (Pincivero et al., 2004; Domire et al., 2011), these values
are unrealistic high. In addition, the reported knee abduction
moments are about three times higher than the assumed injury
threshold of 125 Nmvalgusmoment (= 1.67 Nm/kg assuming amass
of 75 kg) in the study of McLean et al. (2008), although they did not
investigate an injury prone situation.

Interestingly, in the present study the peak joint moment at the
lumbar joint exceeded the peak values at the lower limbs during the
turningmaneuver. In particular, the lumbar extensionmoment rose up
to 1.88Nm/kg, while the lateral bending and rotation moments were
remarkably lower. Consistent with the results of the present study, the
highest joint moment was observed at the lumbar joint for lumbar
extension in the study ofHirose et al. (2013). High values at the lumbar
joint imply that the lower back of the skier is subjected to high loads
during turning maneuvers. These high values may be linked to lower
back pain, which is a common overuse injury in alpine skiing (Spörri
et al., 2018). Furthermore, it has been reported that the combination of
lumbar flexion, lateral bending and axial rotation amplifies the loading
at the lower back (Spörri et al., 2018). Further studies, however, and a
more sophisticated model of the lower back are necessary to quantify
the internal loading at the lower back in more detail.

4.4 Limitations
Some limitations of the present study have to be mentioned. First,
in the simulation of the turning maneuver we did not track the
movement of the arms of the skier. The reason was to reduce the
complexity of the model and to decrease computational time,
which is one of the big challenges in three dimensional
musculoskeletal simulations. However, since we included the
mass and inertia properties of the arm in the model and
assumed a mean posture of the arms in front of the skier, the
impact on the computed joint moments is expected to be low.

Second, we did not implement a detailed spine model, but used
a single lumbar joint at the lower back. Consequently, the present
simulation model is expected to provide only basic features
regarding the loading of the lower back of the skier turning
maneuvers. While these basic features might contribute to the
understanding of lower back pain, which is a common overuse
injury in alpine skiing (Spörri et al., 2018), a more detailed spine
model might provide further insight.

Third, in the present simulation study we analyzed data of a
professional skiing instructor performing a giant slalom turning
maneuver. Changing the characteristics of equipment, the present
simulation model might also be used to analyze turning maneuvers in
other disciplines such as slalom, super-G (super giant slalom), or
downhill skiing. Furthermore, the present simulationmodelmight also
be used to analyze jump landing maneuvers in super-G and downhill,
which have been identified as a common situation leading to injury
(Gilgien et al., 2014). Regarding jump landing maneuvers the present
simulation model might extend the current knowledge derived from
two dimensional simulation models (Heinrich et al., 2014) regarding
the loading of the skier in the frontal and transverse plane.

5 CONCLUSION AND OUTLOOK

In the present study we developed a novel three dimensional
musculoskeletal simulation model to analyze the kinematics and
kinetics (i.e., the intersegmental moments at the knee joint) of a
skier during turning maneuvers. While the focus of the present
study was on the joint moments acting on the skier, the present
musculoskeletal model might also be applied to analyze muscle
forces and further characteristics related to muscle function
such as muscle length change, muscle contraction velocity,
muscle power and muscle work (van den Bogert et al., 2013).
Kinematic data captured by a multi-camera setup were used as
input data. In future applications, the present simulation model
might also be used in combination with kinematic data obtained
by mobile measurement devices (i.e., IMU and GNSS based
systems) or machine learning techniques (i.e., human pose
estimation) providing additional insight into the loading of
the skier during turning maneuvers.
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