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A B S T R A C T   

Background: G protein-coupled receptors (GPCRs), the biggest family of signaling receptors, ac-
count for 34 % of all the drug targets approved by the Food and Drug Administration (FDA). It has 
been gradually recognized that GPCRs are of significance for tumorigenesis, but in-depth studies 
are still required to explore specific mechanisms. In this study, the role of GPCRs in hepatocellular 
carcinoma (HCC) was elucidated, and GPCR-related genes were employed for building a risk- 
score model for the prognosis and treatment efficacy prediction of HCC patients. 
Methods: Patients’ data on HCC were sourced from the Liver Hepatocellular Carcinoma-Japan 
(LIRI-JP) and The Cancer Genome Atlas (TCGA) databases, while GPCR-related genes were ob-
tained from the Molecular Signatures Database (MSigDB). Univariant and multivariant Cox 
regression analyses, as well as least absolute shrinkage and selection operator (LASSO) were 
performed with the aim of identifying differentially expressed GPCR-related genes and grouping 
patients. Differential expression and functional enrichment analyses were performed; protein- 
protein interaction (PPI) mechanisms were explored; hub genes and micro ribonucleic acid 
(miRNA)-target gene regulatory networks were constructed. The tumor immune dysfunction and 
exclusion (TIDE) algorithm was utilized to evaluate immune infiltration levels and genetic vari-
ations. Sensitivity to immunotherapy and common antitumor drugs was predicted via the data-
base Genomics of Drug Sensitivity in Cancer (GDSC). 
Results: A GPCR-related risk score containing eight GPCR-related genes (atypical chemokine re-
ceptor 3 (ACKR3), C–C chemokine receptor type 3 (CCR3), CCR7, frizzled homolog 5 (FZD5), 
metabotropic glutamate receptor 8 (GRM8), hydroxycarboxylic acid receptor 1 (HCAR1), 5-hy-
droxytryptamine receptor 5A (HTR5A) and nucleotide-binding oligomerization domain-like re-
ceptor family pyrin domain containing 6 (NLRP6)) was set up. In addition, patients were 
classified into groups with high and low risks. Patients in the high-risk group exhibited a worse 
prognosis but demonstrated a more favorable immunotherapy response rate compared with those 
in the low-risk group. Distinct sensitivity to chemotherapeutic drugs was observed. A clinical 
prediction model on the basis of GPCR-related risk scores was constructed. Areas under the curves 
(AUC) corresponding to one-, three- and five-year survival were 0.731, 0.765 and 0.731, 
respectively. 
Conclusions: In this study, an efficient HCC prognostic prediction model was constructed by only 
GPCR-related genes, which are all potential targets for HCC treatment.  
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1. Introduction 

As the most prevalent and malignant cancer, hepatocellular carcinoma (HCC) accounts for 75%–85 % of primary liver cancer and is 
considered to be the third major cause of cancer-associated mortality across the globe [1]. Current standard therapeutic strategies 
encompass maximal surgical resection combined with transarterial chemoembolization, immunotherapy, chemotherapy, molecular 
targeted therapy, as well as radiotherapy if available. Owning to the inherent heterogeneity of HCC, patients show great differences in 
their response to immunotherapy and transarterial chemotherapy [2–5]. The prediction and assessment of immunotherapy and 
chemotherapy sensitivity in HCC patients has long been a prominent area of research interest. 

G protein-coupled receptors (GPCRs), which feature a seven-transmembrane receptor with an intracellular C-terminus and an 
extracellular N-terminus, are the largest superfamily of cell-surface receptors [6]. They serve as essential pivots to communicate 
between internal and external cellular environments and transduce extracellular signals into intracellular pathways and intricate 
downstream effectors. Thus, multiple cellular processes are mediated, including sensory, neural, endocrine and immune systems, etc 
[6]. Given the abundance of druggable sites and their involvement in a wide array of physiological and pathophysiological processes, 
GPCRs have emerged as highly valuable drug targets and have been the focus of research for decades. Of the current drugs approved by 
the Food and Drug Administration (FDA), 481 drugs target GPCRs, and take up 34 % of all approved drugs. Currently, approximately 
320 GPCR-targeted agents are being clinically tested [7]. Still and all, only less than 15 % of the discovered human GPCRs are targeted 
and more than half of the non-olfactory GPCRs encoded by genomes remain unexploited in terms of treatment [7]. With breakthroughs 
in structural biology, the expanded knowledge about the activation of receptors and the application of new methodologies [8], the 
pace of GPCR research and discovery of GPCR-targeted drugs has accelerated. These concepts lead to new opportunities for the 
identification of novel GPCR and GPCR-targeted drugs. 

About 800 GPCR members have been discovered in humans, and nearly 20 % of human tumors harbor mutations in GPCR-related 
genes [9,10]. Those mutations are identical in specific tumor types and vary widely among different tumors, which provides the 
possibility for the application of GPCR-targeted drugs in cancer treatments [9]. Mounting studies have demonstrated that aberrant 
GPCR expression has a direct relationship with the proliferation, apoptosis, invasion, migration and metastasis of tumor cells, tumor 
angiogenesis and the formation of the tumor microenvironment [10–13]. Around 70 GPCR somatic mutants were reported in HCC [14] 
and part of the role played by GPCRs in HCC was also investigated. It was found that some GPCRs exhibited elevated expression levels 
in HCC compared with normal liver tissues, such as C–C chemokine receptor type 9 (CCR9), chemokine (C-X-C motif) receptor 3 
(CXCR3), CXCR6 and G protein-coupled receptor 37 (GPR37). They were linked to tumor number, pathological differentiation and 
vascular invasion, and could serve as prognostic markers for HCC [15–18]. Some GPCRs were observed to be strongly associated with 
angiogenesis, including CCR6, CCR7, CXCR2, CXCR7, angiotensin II type 1 receptor (AT1R), AT2R, etc [19–22]. Some were 
demonstrated to induce epithelial–mesenchymal transition (EMT) and enhance HCC cell migration and invasion, such as CXCR2, 
CXCR4 and CXCR7 [19,20]. Regarding treatment and drug resistance, leucine-rich repeat-containing G protein-coupled receptor 5 
(Lgr5) could lead to doxorubicin resistance in HCC by regulating the programmed cell death protein 5 (PDCD5)/tumor protein 53 
(p53) signaling axis [23]. GPCRs were also found to assist in shaping the protumor microenvironment. CXCR6 was demonstrated to 
up-regulate interleukin-6 (IL-6) and IL-8 and increase the accumulation of neutrophils, which created an inflammatory environment 
and promoted HCC initiation and invasion [16]. G protein-coupled estrogen receptor (GPER) deficiency could enhance macrophage 
infiltration and liver fibrosis [24]. CCR4 could mediate regulatory T cells into the tumor microenvironment and promote immune 
escape in hepatitis B virus (HBV)+HCC [25]. 

As mentioned above, GPCRs are perfect drug targets and have been demonstrated to play an essential role in HCC development and 
metastasis, as well as the regulation of the HCC microenvironment. Therefore, we innovatively adopted bioinformatics analysis 
methods, using large samples from public databases to individually analyze GPCR-related genes in HCC, further exploring the role of 
GPCR-related genes in predicting the prognosis and treatment sensitivity of HCC. This study can provide a comprehensive and holistic 
perspective on potential GPCR-related targets and the use of GPCR-related drugs in HCC treatment. With the help of the extensive 
development of GPCR-related drugs, this study may potentially offer new insights for the treatment of HCC. 

Table 1 
Baseline information of TCGA-LIHC patients in the TCGA database.  

Characteristic levels Overall 

n  363 
Age, n (%) <60 165 (45.5 %)  

≥60 198 (54.5 %) 
Gender, n (%) female 118 (32.5 %)  

male 245 (67.5 %) 
Stage, n (%) not reported 24 (6.7 %)  

stage I 170 (46.8 %)  
stage II 84 (23.1 %)  
stage III 81 (22.3 %)  
stage IV 4 (1.1 %)  

Y. Wang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e29659

3

2. Materials and methods 

2.1. Data collection 

The HCC dataset The Cancer Genome Atlas (TCGA) was provided by University of California, Santa Cruz (UCSC) Xena (https:// 
xena.ucsc.edu). The gene expression sequencing data count and fragments per kilobase million (FPKM) values of patients (n =
424) were downloaded and further normalized to transcripts per million (TPM) values. Meantime, the clinical data of patients were 
downloaded, such as age, gender, tumor-node-metastasis (TNM) stage, survival time and information on survival status, and patients 
without clinical information were removed. Finally, 363 samples with complete clinical information were retained. Table 1 shows 
detailed clinical information. Meanwhile, the mutation data of patients (n = 415) were downloaded from Genomic Data Commons 
(GDC), selected as “Masked Somatic Mutation” and visualized by use of the maftools R package. In addition, the HCC dataset Liver 
Hepatocellular Carcinoma-Japan (LIRI-JP) was retrieved and downloaded from the LIRI-JP database, where LIRI-JP contained tran-
scriptomic data for 232 samples and survival data for 260 samples. After the two pieces of information were matched, 232 samples 
containing survival data were obtained for analysis. 

GPCRs bind chemicals in the extracellular environment and activate multiple intracellular signaling pathways, which finally causes 
cellular changes. A total of 870 GPCR genes were obtained on the basis of the Molecular Signatures Database (MSigDB) (https://www. 
gsea-msigdb.org/gsea/msigdb/), of which 770 were matched with TCGA and LIRI-JP datasets. 

2.2. Subtype analysis of patients with HCC based on GPCR genes 

According to TCGA-LIHC expression data and GPCR genes, R package ‘ConsensusClusterPlus’ [26] was adopted to perform un-
supervised clustering analysis and identify GPCR subtypes in HCC patients. This consistent clustering algorithm was utilized for 
identifying cluster numbers, and the analysis included 1000 iterations to make sure the classification was stable. Principal component 
analysis (PCA) was performed on patients with grouped subtypes, to see sample differences, and the associations of different subtypes 
with prognosis were determined using survival analysis. 

2.3. GPCR-related prognostic gene screening and risk score model construction 

To assess the prognostic value of GPCR genes in HCC patients, a univariate Cox analysis was first used to screen GPCR genes that 
have a threshold value of P < 0.05. To further identify independent prognostic factors, least absolute shrinkage and selection operator 
(LASSO) regression [27] and multivariate Cox proportional-hazards models were explored for the screening of independent prognostic 
factors. A prognostic GPCR-related model was established after 10-fold cross-validation. Below is the computational formula for the 
risk score. 

riskScore=
∑

i
Coefficient (genei) ∗ mRNA Expression (genei)

Patients were categorized into groups with high and low risks in accordance with the median of GPCR risk scores. Receiver 
operating characteristic (ROC) curves were plotted for one, three and five years by time-dependent ROC curves for the purpose of 
determining accuracy. Additionally, LIRI-JP, an external test set, was used to validate the model. Based on the gene regression co-
efficients in the model, model accuracy was evaluated by plotting time-dependent ROC curves. 

2.4. Analysis of DEGs and functional enrichment in the GPCR-related risk score model 

DESeq2 package in R [28] was utilized for identifying DEGs in both groups of HCC patients in TCGA. differentially expressed genes 
(DEGs) were defined to be genes with adj. P-value <0.05 and an absolute value of LogFC >1. Heat and volcano maps were used to 
visually display the results. 

Gene Ontology (GO) analysis [29] is a frequently used approach to performing large-scale research on functional enrichment, 
including biological processes (BPs), molecular functions (MFs) and cellular components (CCs). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [30] is a database widely used for storing information about genomes, drugs, diseases and biological pathways. 
ClusterProfiler package in R [31] was adopted to conduct GO and KEGG pathway enrichment analyses. It was considered that a critical 
value of <0.05 for the false discovery rate (FDR) showed statistical significance. 

For the purpose of investigating the differences in BPs between all subgroups, GSEA [32] was used to perform a gene set enrichment 
analysis based on the HCC patients’ gene expression profile dataset. As a computational method of analyzing the statistical difference 
between two biological states in a particular gene set, GSEA is frequently used for estimating the pathway and changes in BP activity. 
The effect of groups with high and low risks on tumor KEGG was assessed by downloading the “c2.cp.kegg.symbols.gmt” gene set from 
the MSigDB database for GSEA. FDR <0.25 was taken into account in the results. 

2.5. Protein-protein interaction (PPI) and regulatory networks 

The STRING database [33] was used to analyze the interactions between DEG-encoded proteins, and the results were exported to 
further screen hub genes through the plugin CytoHubba in Cytoscape. Based on the prediction of the mirTarbse database (https:// 
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mirtarbase.cuhk.edu.cn/), possible regulatory micro ribonucleic acids (miRNAs) were predicted based on the evidence of “luciferase 
reporter gene assay”, and related long non-coding RNAs (lncRNAs) were further predicted. The Cytoscape software was used to 
visualize the results of competitive endogenous RNA (ceRNA) analysis. 

2.6. Identification and correlation analysis of tumor immune infiltrating cells 

The estimation of stromal and immune cells in malignant tumor tissues using the expression data (ESTIMATE) package for R [34] 
was used to assess the immunoreactivity of the tumor microenvironment. ESTIMATE analysis quantified immunoreactivity (immune 
infiltration level) in tumor samples based on gene expression profiles, and an immune score was obtained for each tumor sample. A 
comparison was made between the differences in the immune infiltration characteristics of patients with HCC in both groups. 

To clarify the specific infiltration level of immune cells, the CIBERSORT algorithm [35] was used for deconvoluting the HCC 
transcriptome expression matrix, which thus estimated immune cell composition and abundance in mixed cells. Data of the gene 
expression matrix were uploaded to CIBERSORT, and the output of samples with p < 0.05 was filtered to obtain the matrix of immune 
cell infiltration. The ggplot2 package in R was used to draw histograms showing how 22 immune cell infiltrates were distributed in 
each sample. 

2.7. Analysis of single nucleotide polymorphisms and copy number variation 

Maftools package was utilized for analyzing the high-frequency mutated genes of patients in groups with high and low risks to 
analyze single nucleotide polymorphisms (SNPs). Then, the Masked Copy Number Segment data were downloaded through GDC. The 
analysis of the downloaded copy number variation (CNV) segments was completed by GenePattern with Genomic Identification of 
Significant Targets in Cancer (GISTIC) 2.0. GISTIC 2.0 analysis was performed using default parameters. 

2.8. TMB, MSI and predictive analysis of tumor immunotherapy response 

The maftools R package was used to calculate the data on the TMB of HCC patients. MSI-Sensor data were gathered from the 
cBioportal database (https://www.cbioportal.org). The underlying tumor treatment response of immune checkpoint blockade (ICB) 
was predicted by the tumor immune dysfunction and exclusion (TIDE) score [36], a computational algorithm based on gene expression 
profiles (http://tide.dfci.harvard.edu). Differences between both groups were compared with the TIDE analysis results. 

2.9. Analysis of drug sensitivity 

The database GDSC (www.cancerrxgene.org/) [37] was utilized for finding data on oncology drug response and sensitive genome 
markers. The pRRophetic algorithm [38] was used for the construction of a ridge regression model on the basis of gene expression 
profiles to forecast the sensitivity of high- and low-risk groups to commonly used anticancer drugs by half maximal inhibitory con-
centration (IC50) values. Moreover, common oncological chemotherapeutic agents were extracted, including cisplatin, etoposide, 
paclitaxel, cyclophosphamide, etc. Differences in chemotherapeutic drug sensitivity between different subgroups were clarified. 

2.10. Clinical prognosis prediction model construction based on GPCR risk scores 

The individualized evaluation of GPCR risk scores in combination with the clinicopathological characteristics of patient prognosis 
was demonstrated by performing a multivariant Cox analysis and constructing a nomogram. The predicted values of the model were 
compared with the actual observed survival to generate calibration curves and assess performance. Based on the rms R package 
(https://cran.r-project.org/web/packages/rms/), the model was resampled 1000 times using the bootstrap method to ensure that the 
nomogram was accurate. 

2.11. Statistical analysis 

R software (version 4.1.3) was used to perform all data processing and analysis. To compare the continuous variables of both 
groups, independent Student t-tests were used to estimate whether normally distributed variables were statistically significant. 
Additionally, the Mann-Whitney U test (i.e. Wilcoxon rank sum test) was utilized to analyze the differences between non-normally 
distributed variables. A chi-square or Fisher exact test was utilized for comparing and analyzing whether the categorical variables 
of both groups were statistically significant. Survival analysis was performed using the survivor package of R. Survival differences were 
shown using Kaplan-Meier (KM) survival curves. A log-rank test was utilized to assess whether both groups showed significant dif-
ferences in survival time. Then, pROC package in R was applied to plot time-dependent ROC curves, and the calculation of areas under 
the curve (AUCs) [39] was conducted to evaluate the accuracy of risk scores and thus estimate prognosis. Each statistical P value was 
two-sided and showed statistical significance at P < 0.05. 
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3. Results 

3.1. Expression and mutational alterations of GPCR-associated genes in HCC patients 

The research workflow is shown in Fig. 1. First, 770 GPCR-related genes were extracted from the RNA-sequencing (RNA-seq) data 
of TCGA-LIHC, and a comparison was made between the expression differences of HCC and normal liver tissues. After a univariant Cox 
regression analysis, 38 of these 770 GPCR-related genes were observed to be differentially expressed, and almost all of them were 
overexpressed in HCC (Fig. 2A), which suggested that these genes may play an essential role in HCC tumorigenesis. Then, the mutation 
information of those 38 GPCR-related genes was extracted by maftools package, and their SNP mutation frequencies were found to be 
generally low (Fig. 2B). The above results revealed that these GPCR-related genes may play a major role at the transcriptional or post- 
transcriptional level. 

3.2. Identification of HCC GPCR subtypes 

On the basis of the above DEGs related to GPCRs, consistent clustering was used for the clustering of HCC samples. When k = 2, the 
best clustering distribution was obtained, and subgroups 1 and 2 were identified (Fig. 2C and D). HCC transcriptome data were 
downscaled by PCA, and principal components PC1 and PC2 were obtained. The PCA results of the two groups were plotted, and it was 
found that both groups were clearly distinguished (Fig. 2E). After that, the prognostic characteristics of the two subgroups were 
analyzed by KM curves, but the results revealed no significant prognostic differences (Fig. 2F). The above results suggested that 
differentially expressed GPCR-related genes could well guide the subtyping of HCC patients. Nevertheless, subtyping could not yet 
assess prognostic differences. 

3.3. Construction and evaluation of GPCR-related risk scores 

LASSO and multivariant Cox regression analyses were performed among 38 genes (Fig. 3A and B). Eight genes with the optimal 
prognostic value were obtained, namely atypical chemokine receptor 3 (ACKR3), CCR3, CCR7, frizzled homolog 5 (FZD5), metabo-
tropic glutamate receptor 8 (GRM8), hydroxycarboxylic acid receptor 1 (HCAR1), 5-hydroxytryptamine receptor 5A (HTR5A) and 
nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6) (Fig. 3C). Meanwhile, the co-
efficients of key characteristic genes computed by the multivariate Cox analysis were obtained. Gene expression was multiplied with 
corresponding coefficients and summed to set up a GPCR-related risk score. The final risk scores of all samples were calculated. 

riskScore=ACKR3 × 0.213 + CCR3 × 0.386 + CCR7 × 0.409 + FZD5 × 0.201 + GRM8 × 0.295 + HCAR1 × 0.689 + HTR5A

× 0.866 − NLRP6 × 0.268 

Patients were divided into groups with high and low risks on the basis of the median expression values of risk scores in the TCGA 
dataset, and a heatmap was plotted (Fig. 3D). KM curves demonstrated a significantly worse prognosis in the high-risk group of pa-
tients and a great difference in survival between high- and low-risk groups of patients (p < 0.001) (Fig. 3E). Additionally, time- 

Fig. 1. Flow chart of the whole research work.  
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dependent ROC curve analysis demonstrated that the risk score had excellent predictive power for the overall survival (OS) of HCC 
patients, where AUCs were 0.804, 0.787 and 0.750 for one-, three- and five-year OS, respectively (Fig. 3E). In the external validation 
dataset LIRI-JP, the high-risk group of patients were also found to have a significantly worse prognosis (p < 0.01), and ROC curves had 
an AUC of 0.764, 0.704 and 0.746 for one-, three- and five-year OS, respectively. This indicated that the model performed well in the 
external dataset as well (Fig. 3F). 

3.4. Analysis of DEGs in patients with GPCR-related risk scores in high- and low-risk groups 

To analyze the association between GPCR-related risk scores and HCC development, PCA was explored and plots demonstrated an 
obvious distinction between both groups of patients (Fig. 4A). Later, a differential expression analysis was conducted on both groups of 
patients. The results showed that 1976 significant DEGs were obtained, including 1371 up-regulated DEGs and 605 down-regulated 
DEGs (Fig. 4B and C). 

Next, a functional enrichment analysis was performed on these 1976 DEGs. The GO analysis suggested that DEGs were associated 
with nuclear division, mitotic nuclear division and mitotic sister chromatid segregation in BPs. In addition, they were related to 
synaptic and basolateral plasma membranes, kinesin complex and condensed nuclear chromosome kinetochore in CCs, and substrate- 

Fig. 2. Differential expression of GPCR genes and the identification of subtypes in TCGA-LIHC patients. (A) Differential expression of GPCR genes in 
tumor and tumor groups. (B) Alternation in the somatic mutation of GPCR genes in the group with LIHC patients. (C) Heatmap of K = 2 sample 
clustering by use of consistent clustering. (D) The plot of sample tracking when K = 2–9, where different colors stand for the distribution of various 
cluster samples, and vertical and horizontal coordinates represent K values and samples, respectively. (E) PCA plot for subgroups 1 and 2. (F) KM 
method for comparing the difference between subgroups 1 and 2 in survival; both subtypes of patients were not statistically and significantly 
different. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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specific channel, channel, passive transmembrane transporter and ion channel activities in MFs (Fig. 4D). The KEGG functional 
analysis results indicated that DEGs principally affect bile secretion and neuroactive ligand- and extracellular matrix (ECM)-receptor 
interactions (Fig. 4E). Tables 2 and 3 show detailed GO and KEGG results. 

GSEA was further explored, and the results of the pathway database were summarized on the basis of the KEGG results. The results 
showed the significant enrichment of fatty acid, glycine, serine, threonine and retinol metabolism, primary bile acid biosynthesis and 
other hallmarks in the group with high risk (Fig. 5A). Additionally, the results indicated the significant enrichment of ECM- and 
neuroactive ligand-receptor interactions, o-glycan biosynthesis and cell cycle in the group with low risk (Fig. 5B). Table 4 presents the 
detailed GSEA results of metabolism-associated pathways. 

3.5. Analysis of PPI and regulation networks 

Hub genes playing a key role were further clarified, and an attempt was made to reveal their potential molecular interaction 
mechanisms. The STRING database was used for analyzing the PPI mechanism. It can be seen from Fig. 6A that the number of PPI nodes 
(proteins) was 38 after confidence = 0.400 screening; the number of linkages (edges) was 48; the average connectivity per node was 
2.53; the whole PPI had an enrichment statistic P value of below 1.0e-16. 

Fig. 3. GPCR-related risk score model construction. (A–B) LASSO regression analyses with the best lamda value corresponding to the number of 
seven variables. (C) Results of multifactorial Cox stepwise regression (direction = “both”) analysis; eight genes were finally identified as inde-
pendent prognostic factors. (D) Risk score distribution, patient survival and heatmap of characteristic gene expression in LIHC patients. (E) The left 
side is the KM curve of patients in both groups in the training dataset, which demonstrates a greatly worse prognosis in the high-risk group of 
patients; the right side shows the time-dependent ROC curve of TCGA-LIHC patients. (F) The left side is the KM curve of patients in both groups in 
the validation dataset LIRI-JP, which indicates a greatly worse prognosis in high-risk group patients; the right side shows the time-dependent ROC 
curve analysis of LIRI-JP. 
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Afterwards, the plugin CytoHubba in Cytoscape was utilized for further clarifying the proteins in which interactions occur to serve 
as hub genes. After calculation, it was found that GPR119, cannabinoid receptor 1 (CNR1), arginine vasopressin receptor 1B 
(AVPR1B), 5-hydroxytryptamine receptor 1A (HTR1A) and thyrotropin-releasing hormone receptor (TRHR) were the highest scoring 
interacting proteins (Fig. 6B). After that, miRNA molecules potentially regulating these hub genes were analyzed using the mirTarbase 
database, and Cytoscape was employed for constructing miRNA-target gene regulatory networks (Fig. 6C). 

3.6. Immune infiltration analysis of groups with high and low risks 

Next, the associations of GPCR-related risk scores with the level of different immune cell infiltrates and overall immune charac-
teristics in HCC patients were evaluated. When a comparison was made between the immune cell infiltration in groups with high and 
low risks, it was found that only naive B cells were significantly different in both groups, but any other immune cells were not sta-
tistically and significantly different (Fig. 7A). The analysis of correlation between immune cells showed that macrophages, monocytes 
and B cells accountable for antigen presentation were not significantly correlated with CD4 and CD8 T cells responsible for killing 
(Fig. 7B). According to the ESTIMATE results, groups with high and low risks were statistically and significantly different in the cellular 
infiltration level of the tumor microenvironment and immune correlation scores; the immune and stromal cell infiltration of the high- 

Fig. 4. DEG and functional enrichment analyses on the basis of the GPCR-related risk score model. (A) PCA plots of the overall differences between 
the high and low-risk groups of TCGA. (B–C) Volcano and heatmap demonstrating the expression of DEGs between LIHC patients with high and low 
risks in the TCGA dataset. (D) GO analysis results between TCGA-LIHC patients in both groups. (E) KEGG analysis results between TCGA-LIHC 
patients in both groups. 
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risk group was significantly lower than that of the low-risk group; the high-risk group exhibited higher tumor purity than the low-risk 
one (Fig. 7C). Further, the correlation of patients’ risk scores with immune cells was compared. It was discovered that risk scores 
presented a positive trend with cells like M0 macrophages and memory B cells and a negative trend with M1 macrophages, CD8 T and 
naive B cells, etc. Nonetheless, the degree of these correlations was low and not statistically significant (Fig. 7D). Subsequently, a 
comparison was made between the expression of immune checkpoint-related genes in both groups. It was noted that a number of 
important immune checkpoint genes, including a cluster of differentiation 8a (CD8A), hepatitis A virus cellular receptor 2 (HAVCR2), 

Table 2 
Top 20 significant genes in GO analysis.  

ONTOLOGY ID Description GeneRatio pvalue qvalue Count 

BP GO:0140014 mitotic nuclear division 51/1334 5.5297E-11 2.6409E-07 51 
BP GO:0000280 nuclear division 66/1334 2.6889E-10 6.4208E-07 66 
BP GO:0000070 mitotic sister chromatid segregation 34/1334 1.4812E-09 2.3579E-06 34 
BP GO:0048285 organelle fission 67/1334 6.7362E-09 8.0427E-06 67 
BP GO:1902850 microtubule cytoskeleton organization involved in mitosis 30/1334 8.8873E-09 8.4888E-06 30 
BP GO:0000819 sister chromatid segregation 37/1334 1.6462E-08 1.301E-05 37 
BP GO:0007052 mitotic spindle organization 26/1334 1.9069E-08 1.301E-05 26 
BP GO:0030198 extracellular matrix organization 57/1334 2.4111E-08 1.4394E-05 57 
BP GO:0007059 chromosome segregation 50/1334 1.4519E-07 7.7043E-05 50 
BP GO:0043062 extracellular structure organization 60/1334 2.3461E-07 0.00010762 60 
BP GO:0098813 nuclear chromosome segregation 43/1334 2.4788E-07 0.00010762 43 
BP GO:0051783 regulation of nuclear division 34/1334 4.4798E-07 0.00017829 34 
BP GO:0048562 embryonic organ morphogenesis 45/1334 5.5201E-07 0.00020279 45 
BP GO:0099177 regulation of trans-synaptic signaling 60/1334 7.7998E-07 0.00024928 60 
BP GO:0016266 O-glycan processing 17/1334 7.8294E-07 0.00024928 17 
BP GO:0048568 embryonic organ development 59/1334 8.4259E-07 0.0002515 59 
BP GO:0042445 hormone metabolic process 38/1334 1.2818E-06 0.00036009 38 
BP GO:0050804 modulation of chemical synaptic transmission 59/1334 1.5535E-06 0.00039072 59 
BP GO:0051480 regulation of cytosolic calcium ion concentration 51/1334 1.6155E-06 0.00039072 51 
BP GO:0007088 regulation of mitotic nuclear division 30/1334 1.6362E-06 0.00039072 30 
CC GO:0016323 basolateral plasma membrane 41/1391 5.8276E-09 2.6868E-06 41 
CC GO:0097060 synaptic membrane 63/1391 2.9299E-08 6.7541E-06 63 
CC GO:0005871 kinesin complex 17/1391 1.2539E-07 1.6497E-05 17 
CC GO:0000778 condensed nuclear chromosome kinetochore 9/1391 1.4313E-07 1.6497E-05 9 
CC GO:0000779 condensed chromosome, centromeric region 25/1391 5.8004E-07 4.3583E-05 25 
CC GO:0000775 chromosome, centromeric region 34/1391 6.3612E-07 4.3583E-05 34 
CC GO:0098793 presynapse 65/1391 6.617E-07 4.3583E-05 65 
CC GO:0000793 condensed chromosome 37/1391 9.553E-07 5.5056E-05 37 
CC GO:0000940 condensed chromosome outer kinetochore 8/1391 1.2298E-06 6.2999E-05 8 
CC GO:0000776 kinetochore 26/1391 2.36E-06 0.00010881 26 
CC GO:0099572 postsynaptic specialization 49/1391 2.77E-06 0.00011553 49 
CC GO:0098978 glutamatergic synapse 49/1391 3.0069E-06 0.00011553 49 
CC GO:0000777 condensed chromosome kinetochore 22/1391 3.2962E-06 0.0001169 22 
CC GO:1902495 transmembrane transporter complex 46/1391 4.4261E-06 0.00014576 46 
CC GO:0000780 condensed nuclear chromosome, centromeric region 10/1391 5.515E-06 0.00016951 10 
CC GO:0016324 apical plasma membrane 45/1391 6.1116E-06 0.00017611 45 
CC GO:0034702 ion channel complex 43/1391 7.6656E-06 0.00019618 43 
CC GO:0042734 presynaptic membrane 28/1391 7.7805E-06 0.00019618 28 
CC GO:0005604 basement membrane 20/1391 8.4264E-06 0.00019618 20 
CC GO:1990351 transporter complex 46/1391 8.51E-06 0.00019618 46 
MF GO:0022838 substrate-specific channel activity 66/1314 1.0166E-08 3.1517E-06 66 
MF GO:0015267 channel activity 69/1314 1.0332E-08 3.1517E-06 69 
MF GO:0022803 passive transmembrane transporter activity 69/1314 1.1313E-08 3.1517E-06 69 
MF GO:0005216 ion channel activity 63/1314 4.3919E-08 9.1768E-06 63 
MF GO:0008509 anion transmembrane transporter activity 52/1314 1.3809E-07 2.3083E-05 52 
MF GO:0022836 gated channel activity 52/1314 6.3595E-07 7.6378E-05 52 
MF GO:0046873 metal ion transmembrane transporter activity 62/1314 6.3969E-07 7.6378E-05 62 
MF GO:0022839 ion gated channel activity 49/1314 3.4496E-06 0.00036039 49 
MF GO:0005261 cation channel activity 46/1314 1.0766E-05 0.00099982 46 
MF GO:0008017 microtubule binding 38/1314 1.2906E-05 0.00107865 38 
MF GO:0008514 organic anion transmembrane transporter activity 34/1314 1.4699E-05 0.00111687 34 
MF GO:1901618 organic hydroxy compound transmembrane transporter activity 12/1314 6.0364E-05 0.00420433 12 
MF GO:0008146 sulfotransferase activity 13/1314 8.0923E-05 0.00499379 13 
MF GO:0015631 tubulin binding 45/1314 8.3649E-05 0.00499379 45 
MF GO:0003777 microtubule motor activity 17/1314 0.00012412 0.0069158 17 
MF GO:0005201 extracellular matrix structural constituent 26/1314 0.00016952 0.00885503 26 
MF GO:0004222 metalloendopeptidase activity 19/1314 0.00018593 0.00903072 19 
MF GO:0005249 voltage-gated potassium channel activity 17/1314 0.00019449 0.00903072 17 
MF GO:0005267 potassium channel activity 21/1314 0.00026951 0.01185541 21 
MF GO:0022843 voltage-gated cation channel activity 23/1314 0.00031315 0.01308632 23  
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chemokine (C-X-C motif) ligand 10 (CXCL10), CXCL9, Perforin 1 (PRF1), etc., were differentially expressed in both groups (Fig. 7E). 
The above results suggested that GPCR risk scores were not significantly associated with the tumor microenvironment, which highly 
indicated that the expression of GPCR-related DEGs mainly affects the changes in the tumor itself and has less effect on immune or 
stromal cells. 

3.7. Effect of GPCR-related risk scores on genomic changes in HCC patients 

Later, the effect of GPCR-related risk scores on changes in the level of genetic variation was further evaluated, like SNPs and CNVs. 
The SNP mutation analysis results of driver genes in common tumorigenesis revealed that both groups of patients demonstrated similar 
mutation levels (Fig. 8A-B). In the comparison of TMB and MSI, TMB showed no significant difference (Fig. 8C), while MSI exhibited an 
elevation in the high-risk group (Fig. 8D). The study of CNV alteration frequency showed widespread CNV in both groups of patients 
but was not significantly different (Fig. 8E-F). 

3.8. Differences in drug sensitivity between both groups of patients 

Then, the sensitivity phenotypes of commonly used antitumor drugs between groups with high and low risks were evaluated via the 
GDSC database. Firstly, GDSC data were taken as a training set, and the pRRophetic package was used to construct a ridge regression 
model. After that, the data of the TCGA-LIHC dataset were input for testing. As revealed by the test results, 51 out of 138 input drugs 
were observed to show statistical differences between both groups. Then, boxplots were used to plot the six most statistically different 
drugs and small molecule compounds. Among these drugs and small molecule compounds, BIRB.0796 and all-trans retinoic acid 
(ATRA) showed higher sensitivity to the high-risk group of patients, while AZD8055, EHT.1864, PF.4708671 and GW.441756 showed 
higher sensitivity to the low-risk group of patients (Fig. 9A–F). 

Considering that immunotherapy plays a vital part in HCC treatment currently, the TIDE algorithm was adopted to evaluate the 

Table 3 
KEGG analysis results.  

ONTOLOGY ID Description GeneRatio BgRatio pvalue 

KEGG hsa04080 Neuroactive ligand-receptor interaction 47/572 341/8076 6.3794E-06 
KEGG hsa04512 ECM-receptor interaction 19/572 88/8076 9.2739E-06 
KEGG hsa04976 Bile secretion 19/572 90/8076 1.3074E-05 
KEGG hsa00830 Retinol metabolism 14/572 68/8076 0.00023607 
KEGG hsa04974 Protein digestion and absorption 18/572 103/8076 0.00028894 
KEGG hsa04911 Insulin secretion 16/572 86/8076 0.00029839 
KEGG hsa04110 Cell cycle 20/572 124/8076 0.00040995 
KEGG hsa05030 Cocaine addiction 11/572 49/8076 0.00050003 
KEGG hsa04060 Cytokine-cytokine receptor interaction 35/572 295/8076 0.00167833 
KEGG hsa04918 Thyroid hormone synthesis 13/572 75/8076 0.00211463 
KEGG hsa04724 Glutamatergic synapse 17/572 114/8076 0.002612 
KEGG hsa04024 cAMP signaling pathway 27/572 216/8076 0.00264907 
KEGG hsa00591 Linoleic acid metabolism 7/572 29/8076 0.00340721  

Fig. 5. GSEA analysis. (A) Significant enrichment of primary bile acid biosynthesis, fatty acid, glycine, serine, threonine and retinol metabolism, 
etc. in the high-risk group. (B) Significant enrichment of ECM- and neuroactive ligand-receptor interactions, o-glycan biosynthesis, cell cycle, etc. in 
the low-risk group. 
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sensitivity of patients in both groups to immunotherapy. As shown in Fig. 9G–I, the high-risk group exhibited lower TIDE scores than 
the low-risk one, which indicated that patients in the high-risk group might have better responsiveness to immunotherapy than those 
in the low-risk group. Dysfunction and exclusion scores were combined, which demonstrated immune dysfunction and possibly 
stronger immune escape in the group with high risk. Through the combination of previous analyses that the high-risk group exhibited 
an MSI score, it was inferred that the responsiveness of patients in the group with high risk to immunotherapy might be better. 

3.9. Clinical prediction model construction based on GPCR-associated risk scores 

To further examine the potential clinical significance of GPCR-associated risk scores, the composition of gender, age and TNM stage 
among both groups of patients in the TCGA-LIHC dataset was analyzed first. It was noticed that the age and gender composition of 
patients in both groups were not significantly different, but the results of the staging comparison demonstrated that the low-risk group 
had a higher proportion of stage I patients than the high-risk one (Fig. 10A–C). 

Subsequently, a prognostic model was built based on the GPCR-associated risk scores and clinicopathological features (gender, age 
and TNM stage) of HCC patients and visualized in the nomogram (Fig. 10D). Calibration curves were used for assessing model ac-
curacy, and the modeled one-, three- and three-year OS estimates were found to well agree with the actual observations of patients 
(Fig. 10E). 

4. Discussion 

Systemic therapy benefits a small proportion of patients despite having made significant advancements and playing an increasingly 
crucial role in treating HCC. The lack of direct targets may be one of the reasons for low response rates, which thus makes it critical to 
identify potential target drugs. GPCRs, the most prominent drug targets among FDA-approved drugs, have played a significant role in 
HCC development and progression. Nevertheless, specific mechanisms have not been extensively studied, which hence offers signif-
icant potential and research value. 

In the present study, the focus was placed on the association of GPCRs with HCC. The clinical and expression data of 595 HCC 
patients were obtained from TCGA and LIRI-JP databases, and the focus was put on GPCR-related gene expression with the assistance 
of GPCR gene sets downloaded from MsigDB. LASSO and multivariant Cox regression analyses were followed by the identification of 
eight GPCR-related genes and the establishment of a GPCR-related risk score. Among these eight genes, NLRP6 was the only gene 
whose expression level was negatively related to the risk score. HCC patients were categorized into groups with high and low risks. 
Patients in the high-risk group showed a significantly worse prognosis. Differential expression analyses were performed, and signif-
icant differences in cell proliferation and differentiation, cell membrane channel activity, and metabolism were found. This conclusion 
further confirmed the effectiveness of the risk score model. PPI mechanisms were further explored. Hub genes and miRNA-target gene 
regulatory networks were constructed to see protein interactions. Five miRNAs including miR-155-5p, miR-135a-5p, miR-494-3p, 
miR-34a-5p and miR-410-3p were predicted as potentially regulating miRNAs, of which four [40,41] (miR-155-5p, miR-135a-5p, 
miR-494-3p and miR-34a-5p) had already proved to act as regulators in HCC. In addition, miR-410-3p was demonstrated to pro-
mote or suppress tumor progression in prostate [42] and breast [43] as well. This further validated the accuracy of the risk model 

Table 4 
GSEA analysis results.  

ID setSize NES p.adjust qvalue 

KEGG_FATTY_ACID_METABOLISM 39 4.362864 8.75E-09 7.00E-09 
KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS 16 3.427042 8.75E-09 7.00E-09 
KEGG_RETINOL_METABOLISM 49 3.066979 1.42E-07 1.14E-07 
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 29 3.084273 2.24E-06 1.79E-06 
KEGG_PRIMARY_IMMUNODEFICIENCY 25 3.061342 4.80E-06 3.84E-06 
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 143 − 1.66461 3.12E-05 2.50E-05 
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 39 2.542273 8.39E-05 6.71E-05 
KEGG_ECM_RECEPTOR_INTERACTION 66 − 1.8386 8.58E-05 6.86E-05 
KEGG_LINOLEIC_ACID_METABOLISM 22 2.678666 0.000336 0.000269 
KEGG_TRYPTOPHAN_METABOLISM 32 2.503453 0.000414 0.000331 
KEGG_PROPANOATE_METABOLISM 27 2.385105 0.001341 0.001073 
KEGG_BUTANOATE_METABOLISM 28 2.401353 0.001459 0.001167 
KEGG_TYROSINE_METABOLISM 30 2.27098 0.002981 0.002385 
KEGG_RENIN_ANGIOTENSIN_SYSTEM 14 2.110067 0.008246 0.006597 
KEGG_STEROID_HORMONE_BIOSYNTHESIS 43 1.985456 0.012971 0.010377 
KEGG_ASTHMA 15 1.965837 0.015989 0.012791 
KEGG_O_GLYCAN_BIOSYNTHESIS 23 − 1.77524 0.015989 0.012791 
KEGG_BETA_ALANINE_METABOLISM 20 2.002323 0.021878 0.017502 
KEGG_HISTIDINE_METABOLISM 25 1.977649 0.026026 0.02082 
KEGG_PROTEASOME 37 1.8651 0.026026 0.02082 
KEGG_DRUG_METABOLISM_OTHER_ENZYMES 47 1.840722 0.026026 0.02082 
KEGG_CELL_CYCLE 121 − 1.40341 0.029283 0.023427 
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 42 1.811271 0.045285 0.036228 
KEGG_ARACHIDONIC_ACID_METABOLISM 45 1.765372 0.045285 0.036228  
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indirectly. Immune infiltration level was evaluated, and the number of immune and stromal cells was found to be lower in the high-risk 
group. The high-risk group exhibited lower TIDE scores as well. Together, these suggested that patients in the high-risk group tended to 
respond to immunotherapy. The sensitivity of common HCC treatment drugs was evaluated. BIRB.0796 (p38 mitogen-activated 
protein kinase (MAPK) inhibitor) and ATRA showed higher sensitivity to the high-risk group of patients. However, AZD8055 
(mammalian target of rapamycin (mTOR) inhibitor), EHT.1864 (Ras-related C3 botulinum toxin substrate (Rac1) inhibitor), 
PF.4708671 (ribosomal protein S6 kinase beta-1 (S6K1) inhibitor), and GW.441756 (tyrosine kinase-A (TrkA) inhibitor) demonstrated 
higher sensitivity to the low-risk group of patients. Finally, a clinical prediction model on the basis of GPCR-related risk scores was 
established, with excellent predictive power for the OS of patients with HCC. 

Subsequently, in-depth research was conducted on eight genes in the predictive model. It was confirmed that six of the eight genes 
played a part in the occurrence, development, immune regulation or prognosis prediction of HCC. Also called CXCR, ACKR3 mainly 
serves as a scavenger receptor for CXCL12 [44]. Research has shown that CXCR7 overexpression was linked to the differentiation [45] 
and proliferation of HCC, and regulated the expression of vascular endothelial growth factor A (VEGFA) and galectin-3 to result in 
tumor angiogenesis, cell invasiveness, as well as metastasis [46,47]. Additionally, ACKR3 controlled the secretion of various in-
flammatory factors and induced immune escape by regulating M2 macrophage migration in HCC [47]. Primarily expressed on the 
surface of eosinophils, CCR3 binds and responds to CCL11, CCL24 and CCL26, respectively [48]. It was observed that CCL26 showed a 
strong relationship with HCC proliferation, migration, invasion and angiogenesis [49], and CCL24 caused metastasis and neo-
vascularization through the RhoB-VEGFA-VEGFR2 pathway and demonstrated a poor prognosis in HCC [50]. CCR7 mainly binds to 

Fig. 6. Analysis of PPI regulatory network. (A) PPI regulatory network with specific information on its nodes, connecting lines and all sub-networks. 
(B) Calculation of hub gene regulatory network on the basis of CytoHubba. (C) Prediction of miRNA-hub gene regulatory network using the 
mirTarbase database. 
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CCL19 and CCL21 [51], whose axis often recruits regulatory T cells and tumor-infiltrating lymphocytes into the tumor niche and 
contributes to the improvement of prognosis [51]. The research results of CCR7 in HCC signified that CCR7 facilitated the progression 
of EMT, enhanced the invasion and proliferation of tumor cells, and demonstrated a relationship with lymphatic and intrahepatic 
dissemination [52,53]. It also increased levels of IL-10 and transforming growth factor-β1 (TGF-β1), decreased levels of IL-12 and 
interferon-gamma (IFN-γ), and played a role in shaping the tumor microenvironment [53]. FZD5 (Frizzled-5) belongs to one of the 
Frizzled receptor subtypes, namely wingless (Wnt) receptors, mediates the Wnt/β-catenin signaling pathway, activates liver cancer 
stem cells, and facilitates the progression [54] and metastasis of HCC [55]. HCAR1 is also called HCA1 or GPR81 and is viewed as a 
lactate receptor. It has been found that HCAR1 is overexpressed in HCC, and regulates angiogenesis and growth induced by tumor 
lactate [56,57]. NLRP6, a novel member of the nucleotide binding domain and leucine-rich repeat-containing (NLR) family, shows 
abundant expression in the liver and intestine and plays an essential role in regulating inflammation and shaping intestine microbiota 
[58]. It is demonstrated that NLRP6 drives the progression of liver diseases by causing dysbiosis of the intestine, and its expression level 
is strongly related to the prognosis of HCC by regulating the progress of pyroptosis [59,60]. GRM8 modulates glutamatergic and 
gamma-aminobutyric acid (GABA) neurotransmission, and HTR5A belongs to the 5-HT receptor family and is deeply involved in 
regulating the nervous system [61,62]. 

Most of the GPCRs included in the risk score model used in this study are either FDA-approved drug targets or drug targets in the 
phase of clinical trials. Small molecule inhibitors of ACKR3 were manufactured, including CCX771, CCX754 and CCX733 [63], among 
which the former two had already shown the capability of reducing nearly half of colorectal carcinoma lung metastases in vivo [64]. 
Maraviroc, including CCR5 and CCR3 antagonists, has been approved for the treatment of human immunodeficiency virus (HIV) 
infection [65]. CCR3 antagonist GW766994 showed safety and efficacy in asthma and eosinophilic bronchitis [66]. HTR5A antagonist 
SB-699551 has been proven to reduce the survival of breast tumor-initiating cells [67]. UCSF678, an arrestin-biased partial agonist, 

Fig. 7. Relationships between GPCR-related risk scores with different infiltration levels of immune cells. (A) Analysis of differences in the levels of 
22 different immune cell infiltrates between both groups. (B) Panoramic analysis of immune cell infiltration and immune cell correlation analysis in 
the LIHC dataset. (C) Differences in stromal cells and ESTIMATE and immune scores between both groups. (D) Bar chart of the correlation analysis of 
GPCR-related risk scores with immune cell infiltration. (E) Differential expression analysis of different immune checkpoint genes between both 
subgroups (*P < 0.05, **P < 0.01 and ***P < 0.001). 
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was developed with a deeper understanding of the HTR5A structure. MSOP, microtubule-associated protein 4 (MAP4), 
(RS)-α-Cyclopropyl-4-phosphonophenylglycine (CPPG), UBP111 and LY341495 were manufactured as GRM8 antagonists recently. 
The crystal structure of CCR7 was elucidated. Thiazole-dioxide, thiadiazole-dioxide or cyclobutene-dione motifs are crucial for 
interaction with a conservative transmembrane helix 7-helix 8 (TM7-H8) protein patch in the binding site of Gi protein in chemokine 
receptors like CCR7 [68]. 

Some limitations exist in this study. Firstly, validation and training datasets had no large sample sizes, which may limit the sta-
tistical power of data analysis. Secondly, it is necessary to conduct extra experimental validations to expound the mechanisms of DEGs 
identified. Further studies in diverse populations or settings would be beneficial to validating and extending the scope of the research 
results. 

It must be admitted that GPCRs in oncology are a relatively new topic and many underlying mechanisms remain unclear and need 
much further exploration compared with GPCRs in metabolic and physical disorders, as well as infectious diseases. Currently, some 
drugs for upstream or downstream targets have already been from GPCRs although not many GPCR-targeted drugs are directly used for 

Fig. 8. Impact of GPCR-related risk score groupings on immunotherapy and genetic variation in patients with HCC. (A–B) Common tumorigenic 
driver gene mutation profiles of patients in both groups. The information on the mutation of genes in samples is illustrated in the waterfall plot, in 
which a variety of colors indicate different types of mutation; the mutational load is denoted by the vignettes above the legend. (C–D) Differences in 
TMB and MSI levels between patients in both groups; the high-risk group has significantly higher TMB and MSI levels than the low-risk one. (E–F) 
Copy number levels of genes in patients in both groups; red represents genes with a significant increase in copy number and blue stands for genes 
with a significant decrease in copy number; more copy number amplification and missing fragments are seen in the low-risk group (*P < 0.05, **P 
< 0.01 and ***P < 0.001). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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antitumor therapy [69]. New avenues for the discovery of GPCR drugs have appeared thanks to recent advancements in receptor 
pharmacology, biotechnological innovations and breakthroughs in structural biology. Therefore, investigating the relationship be-
tween GPCRs and HCC further provides insights into both GPCR and GPCR downstream targets, which thus expands the repertoire for 
future HCC treatments. 
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