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Abstract

Background: Popular circulation theory of hydrocephalus assumes that the brain is impermeable
to cerebrospinal fluid (CSF), and is therefore incapable of absorbing the CSF accumulating within
the ventricles. However, the brain parenchyma is permeable to water due to the presence of
specific ion channels as well as aquaporin channels. Thus, the movement of water into and out of
the ventricles may be determined by the osmotic load of the CSF. If osmotic load determines the
aqueous content of CSF in this manner, it is reasonable to hypothesize that hydrocephalus may be
precipitated by pathologies and/or insults that produce sustained elevations of osmotic content
within the ventricles.

Methods: We investigated this hypothesis by manipulating the osmotic content of CSF and
assaying the development of hydrocephalus in the rat brain. This was achieved by continuously
infusing artificial CSF (negative control; group |), fibroblast growth factor (FGF2) solution (positive
control; group Il) and hyperosmotic dextran solutions (10 KD and 40 KD as experimental
solutions: groups Il and IV) for 12 days at 0.5 pL/h. The osmolality of the fluid infused was 307, 664,
337 and 328 mOsm/L in Groups |, II, lll and IV, respectively. Magnetic resonance imaging (MRI) was
used to evaluate the ventricular volumes. Analysis of variance (ANOVA) with pairwise group
comparisons was done to assess the differences in ventricular volumes among the four groups.

Results: Group | had no hydrocephalus. Group Il, group Ill and group IV animals exhibited
significant enlargement of the ventricles (hydrocephalus) compared to group |. There was no
statistically significant difference in the size of the ventricles between groups Il, Ill and IV. None of
the animals with hydrocephalus had obstruction of the aqueduct or other parts of CSF pathways
on MRI.

Conclusion: Infusing hyperosmolar solutions of dextran, or FGF into the ventricles chronically,
resulted in ventricular enlargement. These solutions increase the osmotic load in the ventricles.
Water influx (through the choroid plexus CSF secretion and/or through the brain) into the
ventricles to normalize this osmotic gradient results in hydrocephalus. We need to revise the
popular theory of how fluid accumulates in the ventricles at least in some forms of hydrocephalus.
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Background

Hydrocephalus is a brain disorder which manifests as an
abnormal accumulation of cerebrospinal fluid (CSF) in
the ventricles. It affects patients of all ages and is associ-
ated with either congenital or acquired factors, including
brain trauma, infection, tumors, hemorrhage and stroke.
Hydrocephalus is generally harmful to brain tissues and
can result in both structural damage and cognitive impair-
ment [1]. In the United States, hydrocephalus accounts for
approximately 70,000 hospital admissions annually, with
associated health care costs estimated at over two billion
dollars [2].

Current strategies for diagnosing and treating hydroceph-
alus are based on our limited understanding of its under-
lying pathogenesis. Circulation theory states that CSF,
produced mainly by the choroid plexus, flows through the
ventricles along specific pathways to the subarachnoid
space, where it is absorbed through Pacchionian granula-
tions into venous sinuses. Obstruction of any part of this
CSF circulation causes an abnormal accumulation of CSF
in the ventricles resulting in hydrocephalus [3-5]. Further,
popular understanding does not consider alternate path-
ways of CSF absorption especially through nasal lymphat-
ics [6]. Diagnostic techniques are therefore focused
primarily on detecting increases in ventricle size and
blockages of CSF circulation, whereas treatment consists
of medical and/or surgical interventions aimed at prevent-
ing the buildup of CSF and the associated elevation of
intracranial pressure. However, hydrocephalus com-
monly occurs in the absence of demonstrable obstruc-
tions of CSF circulation and/or increases in intracranial
pressure [7-11].

One of the fundamental assumptions of circulation the-
ory is that the brain parenchyma is impermeable to CSF,
and is therefore incapable of absorbing the CSF accumu-
lating within the ventricles. However, the brain paren-
chyma is permeable to water [12]. The molecular basis of
this permeability involves specific ion channels which
permit water movement with ions as well as aquaporin
channels, which permit the free movement of water with-
out changing the ionic environment [13]. Aquaporin
channels are membrane proteins that have an ion trap
and allow movement of water without allowing move-
ment of ions. Aquaporin 4 (AQP4) channels are found in
the ependymal cells lining the lateral ventricles, and on
the end feet of astrocytes that contact microvessels in the
periventricular white matter and the subpial region of the
cerebral cortex [14]. The distribution of AQP4 within the
brain suggests that the aqueous content of CSF may be
increased or decreased as water moves through the brain
parenchyma between the ventricles and vascular system.
Thus, the movement of water into and out of the ventri-
cles may be determined by the osmotic load of the CSF,
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which is a function of the presence, type, and amount of
non-diffusible macromolecules.

If osmotic load determines the aqueous content of CSF in
this manner, it is reasonable to hypothesize that hydro-
cephalus may be precipitated by pathologies and/or
insults that produce sustained elevations of osmolality
within the ventricles. Our experiments were designed to
test this hypothesis by experimentally manipulating the
osmotic content of CSF and assaying the development of
hydrocephalus in the normal rat brain. This was achieved
by continuously infusing solutions of different macro-
molecules with different osmolarities into the lateral ven-
tricle for 12 days, and assaying the associated enlargement
of the lateral and third ventricles [15]. The resulting
hydrocephalus evolved rapidly and reproducibly and was
monitored using magnetic resonance imaging (MRI).

Methods

Animals and experimental groups

Adult female Sprague-Dawley rats (220-250 g; Harlan,
Indianapolis, Indiana, USA) were housed in the animal
care facility during a 12-h light/dark cycle throughout the
protocol. All efforts were made to minimize the suffering
and the number of animals used. Animal care and surgical
procedures were carried out in accordance with protocol
approved by the Institutional Animal Care and Use Com-
mittee at Wayne State University.

Cannula implantation

After achieving a surgical plane of anesthesia (loss of cor-
neal, pupillary, and limb withdrawal reflexes) with a dose
of 87 mg/kg ketamine plus 13 mg/kg xylazine adminis-
tered intraperitoneally, rats (220-250 g body weight) were
secured in a stereotaxic head frame. The eyes were mois-
tened by the application of eye ointment. The skin was
incised along the midline and the dorsal surface of the
skull exposed. With a variable speed drill, a 1.5 mm diam-
eter craniotomy was performed over the right cerebral
hemisphere 0.9 mm caudal and 1.2 mm lateral to Bregma
leaving the dura intact. A stainless steel needle (27 gauge)
was advanced through the opening to a depth of 3.6 mm
below the level of the dura at 90° to the skull surface.
These coordinates place the tip of needle in the frontal
horn of the lateral ventricle. After slowly pulling out the
needle, a customized microcatheter that was connected to
an Alzet osmotic minipump was inserted through the nee-
dle track to reach the lateral ventricle. The microcatheter
had the same diameter as a 27 gauge needle and was made
by heating polyethylene tubing, PE 50. The microcatheter
was fixed in place by covering a piece of Surgicel
(ETHICON, Inc. Somerville, USA) with cyanoacrylate
adhesive (DURECT Corporation, Cupertino, USA). One
or two sutures were placed with the connecting tissue
around the catheter for further security. A minipump was
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then inserted into a subcutaneous pocket on the back in
the mid-scapular region. The skin incision was closed with
monofilament nylon suture. The Alzet osmotic min-
ipump (Model 2002, DURECT) was primed with the solu-
tion prior to implanting. The osmolality of solutions was
measured by osmometer before loading into the pump.
The solution was infused at 1 pg per day (0.5 pul/h) at a
concentration of 0.083 pg/uL, apart from the hypertonic
saline which had a concentration of 58.44 pg/pL.

After 2-3 hours, once the animal had regained conscious-
ness and had demonstrated normal feeding and drinking
behavior, it was returned to its cage and monitored peri-
odically for the duration of the experiments. Animals were
sacrificed by cardiac perfusion with saline followed by fix-
ative buffer after the 12 days of infusion and after the final
MRI scan and brain tissue was saved for further histologi-
cal analysis.

Lateral ventricle infusions
Rats were randomly divided into 4 primary groups.

Group [: Artificial cerebrospinal fluid (ACSF, n = 6): This
group served as negative control since artificial CSF has
the same osmolality as the CSF and is not expected to
result in hydrocephalus. The ACSF was prepared accord-
ing to a previously published method [16] and the osmo-
lality was 307 mOsm/L, measured using Micro Freezing
Point Osmometer (Model 3300; Advanced Instruments,
Inc., Norwood, MA, USA)

Group II: Fibroblast growth factor 2 (FGF-2, n = 4): This
group served as a positive control. The concentration of
FGF-2 (R&D systems, Minneapolis, USA) was 0.083 pg/uL
and the vehicle used was 20 mM Tris-HCl and 1.0 M NaCl
(pH = 7.0) [15]. The osmolality of the FGF-2 solution was
664 mOsm/L.

Group III: 10 KD dextran (n = 8): This solution was hyper-
osmotic and was expected to result in hydrocephalus if
our hypothesis was correct. The concentration of the 10
KD dextran in the solution was 0.083 pg/uL and the
osmolality was 337 mOsm/L.

Group IV: 40 KD dextran (n = 8): This solution was hyper-
osmotic and was also expected to result in hydrocephalus
if our hypothesis was correct. The concentration of the 40
KD was 0.083 pg/uL and the osmolality was 328 mOsm/
L.

Both the protein (FGF-2) as well as the vehicle used (1
Molar saline) contributed to the osmolality of FGF-2 solu-
tion (664 mOsm/L). Based on our hypothesis, both of
these hyperosmotic solutions should result in ventricular
enlargement. Hence, we investigated the effect of FGF-2
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and hypertonic saline separately and these groups were
not included with the primary groups due to the small
number of animals in each group.

Group V: FGF-2 solution with normal saline [FGF2(NS)],
(n = 2): We used dialysis tubing (10 KD) to dialyse this
FGF-2 against sterile saline over night and adjusted the
concentration to 0.083 ug/uL and re-measured the osmo-
lality, which was 326 mOsm/L. We used this solution to
investigate the effect of FGF-2 without its hyperosmolar
vehicle.

Group VI: Hypertonic saline solution (n = 3): This solu-
tion was prepared at a concentration of 58.44 pg/ul and
the osmolality was 910 mOsm/L. This solution was
expected to result in hydrocephalus if our hypothesis was
correct.

MRI scans and ventricular volume calculation

Anatomical MRI images were taken in the Magnetic Reso-
nance Research Facility at Wayne State University. MRI
scans were performed after 12 days of infusion. The ani-
mal was anesthetized with ketamine and xylazine admin-
istered intraperitoneally as described previously and was
placed into the MRI scanner. All MRI measurements were
performed on a 4.7-T horizontal-bore magnetic resonance
spectrometer (Bruker AVANCE) with an 11.6-cm-bore
actively shielded gradient coil set capable of producing a
magnetic field gradient of up to 250 mT/m. A whole-body
birdcage radiofrequency (RF) coil (inner diameter, 72
mm) was used as the transmitter for homogeneous RF
excitation, and a surface coil (30 mm diameter) was used
as the receiver, with active RF decoupling to avoid signal
interference. Coronal axial T2-weighted images (Rapid
Acquisition Relaxation Enhanced or RARE sequences
which minimize motion related artifacts) were acquired
using the following parameters: TR 5 sec, TE(eff) 57 ms,
FOV 32 x 32 mm?, 1 signal average, 1 mm slice thickness,
interleaved 24 slices, TA 2m40s.

In order to calculate the ventricular volumes, we used the
semi-automated method as reported by previous studies
[17,18]. The edge of the ventricles (region of interest) for
all transverse slices was manually outlined, and the sur-
face area was determined by counting the number of pix-
els enclosed by the edge automatically by the software.
Segmental volume was calculated by multiplying slice
area by slice thickness, and total T2-weighted MRI volume
was determined by summation of the segmental volumes.
Internally developed MR SPIN (Signal Processing in MR)
software written in Visual C++ on the Microsoft Windows
platform was used for MRI and ventricular volume calcu-
lation. Some animals died during the experiment (n = 2)
but were not included in the analysis.
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Statistical methods

ANOVA with pair-wise group comparisons was done to
assess the differences in ventricular volumes among the
four groups. A log transformation was used to reduce the
variability across the groups. A p value of less than 0.05
was considered to be significant.

Results

Animals in group I (ACSF) had no hydrocephalus. Group
II (FGF2), group III (10 KD) and group IV (40 KD) ani-
mals exhibited significant enlargement of the ventricles
(hydrocephalus) compared to group I (I vs I p = 0.002, 1
vs III p = 0.009, and I vs IV p = 0.023; Figures 1 and 2).
There was no statistically significant difference in the size
of the ventricles between any of the groups II, III and IV.
The ventricular volumes for animals in all groups are
listed in the Table 1. The osmolality of the fluid infused
was 307 mOsm/L(Group I:ACSF), 337 mOsm/L (Group
1I: 10 KD)and 328 mOsm/L (Group IV; 40 KD). Addi-
tional two sample t-tests were done to compare group I
(ACSF) to group V (FGF2 with normal saline) and VI
(Hypertonic saline). Group V FGF-2-infused animals had
significant hydrocephalus compared to Group I (mean
(SD) 42.4 (1.5) vs 23.6 (8.6) pL; p = 0.04). Group VI
hypertonic saline-infused animals also showed a trend to
induced hydrocephalus when compared to Group I
(mean (SD) 33.9 (3.9) uL vs 23.6 (8.6) pL) although it
was not significant.

http://www.cerebrospinalfluidresearch.com/content/6/1/16

Ventriculomegaly was moderate and was consistent
throughout the lateral and the third ventricles but not
apparent in the fourth ventricle. The ventricular enlarge-
ment was asymmetric in some animals with the larger
ventricle on the side of infusion. There were two animals
which had ventricular size that were much larger than the
rest of the group. One of them was in the ACSF group and
the other was in the 10 KD group. This was probably due
to variability in the size of the ventricles prior to infusion,
rather than an effect of the infusing solutions. We do not
know the exact reason in this set of experiments as we did
not perform MRI scans prior to infusing the solutions.
However, in the experiments that we have done since, we
have seen such variability in the pre-infusion scans. None
of the animals with hydrocephalus had obstruction of the
aqueduct or other parts of CSF pathways on MRI (Figure
3).

Discussion

We hypothesized that osmotic load in the ventricles deter-
mines the aqueous content of CSF. Our experiments were
designed to test this hypothesis by experimentally manip-
ulating the osmotic load of CSF and assaying the develop-
ment of hydrocephalus in the normal rat brain. This was
achieved by continuously infusing hyperosmolar solu-
tions of FGF-2, 10 KD and 40 KD dextrans into the lateral
ventricle for 12 days. There was significant enlargement of
ventricles on the MRI in all these groups compared to

Table I: Ventricular volumes (pL) in animals for the different infusion groups.

Group | Group Il Group Il Group IV Group V Group VI
ACSF FGF2 10 KD 40 KD FGF2 (NS) Hypertonic Saline
Dextran Dextran
17.95 51.52 40.82 38.02 41.40 29.64
16.43 33.17 43.55 34.60 43.46 37.29
25.85 43.16 31.18 20.33 3471
39.58 34.82 35.74 25.95
18.39 30.77 38.10
23.48 41.78 39.00
96.54 36.67
2481 35.53
Mean 23.61 40.67 43.15 33.53 4243 33.88
Median 20.94 38.99 38.28 36.10 4243 34.71
SD 8.6l 8.45 2251 6.74 1.46 3.89
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Artificial CSF

FGF-2
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10 KD Dextran 40 KD Dextran

Figure |

Representative examples of MRI images of animals after 12 days of infusion of artificial CSF (negative control),
FGF-2 (positive control), 10 KD and 40 KD dextran (experimental) solutions. Note that the ventriculomegaly pro-

duced by FGF-2, 10 KD and 40 KD dextrans were similar.

infusing iso-osmolar ACSF. The MRI scan did not show
any obstruction of the aqueduct or other parts of the CSF
pathways on MRI.

Popular CSF circulation theory explaining the genesis of
hydrocephalus fails to consider various clinical observa-
tions and also fails to consider some experimental find-
ings [19-27]. In addition, current diagnostic and
therapeutic strategies that are based on this framework of
thinking fall short in helping to treat patients with hydro-
cephalus effectively. One such clinical example is the cur-
rent algorithm wused for diagnosing hydrocephalus.
Hydrocephalus is diagnosed by computed tomography
(CT) examination or MRI scan and correlated with clinical
symptoms, to determine treatment. Although radiological
diagnosis is effective for most patients, there are several
situations that pose problems. The size of the ventricles
alone does not determine whether a patient has symp-
toms of hydrocephalus [28]. Further, ventricle size has no
relationship to the pressure inside the ventricle; examples
include pseudotumor cerebri (small ventricles with high
pressure), normal pressure hydrocephalus (NPH, large
ventricles with normal pressure), and stiff non-compliant
ventricles (small ventricles with low, normal or high pres-
sures). Pressure-volume relationships have been used to
evaluate the need for treatment of hydrocephalus from
different conditions [29,30]. Intracranial pressure record-

ing is more helpful but does not always predict who will
benefit from surgery to relieve hydrocephalus [31]. In fact,
a recent paper on treatment of NPH highlights the limita-
tions of current diagnostic methods in diagnosing hydro-
cephalus and predicting outcomes following surgery [32].
Clinical practice becomes subjective and varies widely as
a consequence of uncertainties in interpretation of clinical
and radiological data even among experts in the field.
Clinical decision making would definitely benefit from a
better understanding of pathophysiology of hydrocepha-
lus. This is the motivation for revisiting the current con-
cept of pathogenesis of hydrocephalus.

There is circumstantial evidence to the role played by the
osmotic gradients. It is well known clinically that osmotic
gradients play a role in the brain tissues (excluding the
ventricular space) in normal and abnormal states. For
example, in brain edema, osmotic diuretics like mannitol
are used intravenously to draw water away from the extra-
cellular space of the brain. Brain swelling can result in
conditions where there is hyponatremia which permits
water movement into the tissues of the brain resulting in
brain edema [33]. Clinically, high protein levels in the
CSF have been detected in hydrocephalus irrespective of
radiologic obstruction to the CSF pathways. Higher levels
of thrombopoietin [34], ferritin [35], nerve growth fac-
tor[36], chondroitin sulfate proteoglycan [37] transform-
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Ventricular Volumes In Different Groups
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Figure 2

Box plot showing the ventricular volumes in pL for the different infusion groups. The center line of the boxplot is
the median value with the upper and the lower margins of the box representing the upper quartile (75t percentile) and the
lower quartile representing (25t percentile). The upper and lower fences represent the value equal to 1.5 times the difference
between the lower and upper quartiles (interquartile ratio). The outliers are represented by a mark outside the box plot. Note
that all the infusions resulted in enlarged ventricles except for ACSF, and were significantly different from the ACSF group (I vs
Il p=0.002, 1 vslll p=0.009,and | vs IV p = 0.023). Note: Two outlying symbols represent ventricular size of animals in the
ACSF and 10 KD dextran group that were much larger than the rest of the group.

ing growth factor f1 [38,39], transforming growth factor
B2 [37], S-100 protein [40,41], and vascular endothelial
growth factor [42] have been found in ventricular CSF in
patients with hydrocephalus resulting from intraventricu-
lar hemorrhage. Even in patients without any intraven-
tricular blood, elevated proteins have been found in
ventricular CSF in hydrocephalus resulting from intracra-
nial schwannomas [7], a few cases of spinal schwannomas
[8,9], and in about 4% of patients with Guillain-Barre'
syndrome [10,11]. In a review of potential biomarkers for
chronic hydrocephalus, Tarnaris et al concluded that
tumor necrosis factor, tau protein, lactate, sulfatide and
neurofilament triple protein are elevated in chronic

hydrocephalus to make them the most promising CSF
markers [43]. In addition to proteins, increased levels of
lactate [43,44] and lactic dehydrogenase (LDH) [45] have
been found in hydrocephalus. Increased levels of ions
(calcium, magnesium and phosphate) found in congeni-
tal hydrocephalus correlated with elevated protein levels
[46]. An extensive summary of changes in the composi-
tion of CSF in hydrocephalus was reviewed by Del Bigio
[47]. It is unclear whether these changes in proteins or
peptides are a cause or a consequence of hydrocephalus.

The importance of the role played by excess macromole-

cules in the ventricle in hydrocephalus is strengthened by
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Figure 3

T2-weighted MRI of animal with hydrocephalus induced by 10 KD dextran. Note the periventricular edema (arrow
top row last figure from the left) in the corpus callosum and external capsule and the patent cerebral aqueduct (arrow labeled
Aq). Note that the ventricular enlargement was asymmetric with the larger ventricle on the side of infusion.

the relief of hydrocephalus in situations that decrease the
amount of macromolecules in the CSF. Decreasing levels
of protein and blood products with removal of CSF
through an Ommaya ventricular reservoir is associated
with resolution of hydrocephalus in about 17% of
neonates with intraventricular hemorrhage [48,49]. The
elimination of blood and blood products decreases the
incidence of hydrocephalus due to aneurysmal subarach-
noid hemorrhage [50]. One explanation of how elimina-
tion of macromolecules results in relief of hydrocephalus
is the decrease in the osmotic load in addition to reduc-
tion of their biological effect on the brain and CSF secre-
tion.

In addition to the clinical evidence, some experimental
evidence suggests that osmolality plays a role in the gene-

sis of hydrocephalus, although there have been no studies
focusing primarily on this mechanism. Wald et al found
that increasing the ventricular fluid osmolality in a per-
fusate increased the volume of CSF produced [51] and
increasing the serum osmolality decreased CSF produc-
tion in normal cats [52]. These experiments led the
authors to conclude that CSF production is influenced by
the osmotic gradient between the serum and the ventricu-
lar CSF. In other experiments, infusion of protein (FGF-2)
into the lateral ventricles of experimental animals caused
dilatation of the ventricles [15].

The strongest argument against circulation theory comes
from experiments focusing on the development of ventri-
cles in embryos. It is well known that brain ventricles are
a highly conserved system of cavities that form early dur-
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ing brain morphogenesis in vertebrates and are required
for normal brain function [53]. In a series of elegantly
done experiments, Lowery and Sive were able to show that
initial ventricle expansion occurs independently of circu-
lation and is related to cellular proliferation in zebrafish
embryos [54]. Although onset of circulation contributed
to continued expansion of the ventricles, ventricular
expansion occurred in silent heart mutant zebrafish
embryos which do not have a beating heart [54].

The neural tube is a single cell layer tube that is permeable
to water. Expansion of this tube involves changes in the
osmolality of the neural tube fluid. As another example,
Alonso et al, during an investigation of the underlying
mechanism of neural tube expansion in chick embryos
found that increasing the neural tube fluid osmolality
resulted in hydrocephalus [53]. These studies clearly sug-
gest that osmolality of the fluid in the ventricles plays a
role in the regulation of the size of the ventricles at least in
the embryonic stage.

Conclusion

Continuous infusion of large molecules such as FGF and
dextran into the lateral ventricles resulted in ventricular
enlargement (hydrocephalus). It is concluded that
increasing the osmotic load results in water influx
(through choroid plexus CSF secretion and/or through the
brain) into the ventricles to normalize the osmotic gradi-
ent. The popular theory of how fluid accumulates in the
ventricles may need to be revised, at least in some forms
of hydrocephalus. It is important to note that our concept
does not affect the pressure, volume and compliance
changes seen in hydrocephalus.
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