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Abstract: Sulfamates are widespread in numerous pharmacologically active molecules. In this paper,
Silver/Bathophenanthroline catalyzed the intramolecular selective amination of primary C(sp3)−H
bonds and secondary C(sp3)−H bonds of sulfamate esters, to produce cyclic sulfamates in good yields
and with a high site-selectivity. DFT calculations revealed that the interaction between sulfamates
and L10 makes the molecule more firmly attached to the catalyst, benefiting the catalysis reaction.
The in vitro anticancer activity of the final products was evaluated in MCF-7 breast cancer cells.
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1. Introduction

Sulfamates not only form the core of natural products but are essential scaffolds for
the development of medicinal chemistry [1–5]. In fact, the importance of sulfamate in the
pharmacophores can be gleaned from its appearance in biologically and pharmacologically
significant compounds, such as 2-Alkylpyrrole sulfamates isolated from the marine worm
Cirriformia tantalate [6], Avasimibe as an inhibitor of acyl coenzyme A:cholesterol acyltrans-
ferase (ACAT) [7], and the new drug Topiramate with anticonvulsant effects [8], as well as
many others [9]. More and more cyclic sulfamates have been synthesized, and they have
exhibited promising bioactivities, such as Haplosamates with HIV inhibitory activity [10],
GABAA receptor inhibitor [11], and calcium-sensing receptor agonists (Figure 1) [12].

Consequently, there have been a variety of strategies developed for the synthesis
of cyclic sulfamates, such as intramolecular aziridination reaction [13], hydrogenation of
cyclic sulfamate imines [14], alkyne metathesis [15], cyclizations of amino alcohols [16],
and most recently, metal-nitrenoid C–H insertions [17–20]. Among these methods, direct
selective amination of inert aliphatic C(sp3)–H bonds, which exists widely in nature, not
only meets the requirements of “atomic economy”, but is the most simple and efficient
strategy. Inexpensive metal-catalyzed nitrene transfer reactions have become an effective
C-N bond formation method, following the contributions of Schomaker [21–28], Liu [29–31],
White [32–34], Zhang [35–38], Che [39–41], and others [42–46].

To date, the selective amination of aliphatic C(sp3)–H bonds has mainly been limited
to the site-selectivity of unactivated substrates (e.g., tertiary alkyl C–H bonds and benzylic
γ-C–H bonds) and activated substrates (e.g., allylic and benzylic C–H bonds)23, [25,47–56].
Due to the similar high bond-dissociation energy of aliphatic C-H bonds, only a handful
of studies have been conducted to identify the selective amination of aliphatic C(sp3)–
H bonds. Pioneering work by Schomaker et al. successfully controlled the selective
amination of secondary C(sp3)−H bonds (activated substrates) and tertiary C(sp3)−H
bonds (Scheme 1a) [57]. In addition, the Du Bois group also studied a substrate containing
multiple reaction sites (benzylic C–H bonds and secondary C–H bonds), to investigate
the effect of substrate and catalyst structure on amination (Scheme 1b) [58]. Recently,
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Liu developed an iron-catalyzed selective amination of unactivated substrates, but only
demonstrated a 2.5:1 site-selectivity toward the amination (Scheme 1c) [59]. Although
those examples represent powerful methods, based on the challenge of inert C–H bond
activation, more catalytic systems need to be developed to study the selective amination of
unactivated substrates.
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To address this challenge, and aiming to explore the selective amination of secondary
C(sp3)−H bonds versus primary C(sp3)−H bonds, we report herein that a series of novel
sulfamates containing quaternary carbon centers were catalyzed using silver-complex, to
obtain cyclic sulfamates with a high yield and good site-selectivity (Scheme 1d). Moreover, a
computational study of ligand-substrate steric repulsions indicated the reason for selective
amination. The resulting structures possessed cyclic sulfamate fragments and exhibit
potential antitumor activities.

2. Results and Discussion

At the outset of our study, 2-methyl-2-phenylpropyl sulfamate ester 1 was selected
as the representative substrate to screen the optimal Ag/ligand (Table 1). We found that
unsubstituted bipyridine (L1) or bipyridine ligand bearing trifluoromethyl group (L2) are
inferior to electron-donating bipyridine derived ligands (L3–L4), reflecting that the effect
of the electron-donating ligands on the reaction outcome is beneficial (Entries 1–4). Ligand
L5 with a large steric hindrance (Entry 5) could also catalyze the reaction with moderate
yields (47%) and poor site-selectivity (5.6:1). Given that the substituted bis(oxazoline)
ligand (dmbox) are proven catalysts for the C–H amination of the γ-C–H bond28, we then
turned our attention to the examination of the dmbox ligand (entry 6). Unfortunately, a
trace product was obtained in the case of using the dmbox ligand. Screening of ligand
effects (Entries 7−11) revealed that phenanthroline ligands had a better response to the
intramolecular selective amination of sulfamate esters. Notably, L10-catalyzed C-H selective
amination resulted in exclusive formation of cyclic sulfamate 1a in a 53% yield and more
than 15:1 site-selectivity, which indicates a remarkably high level of reactivity for aliphatic
C(sp3)-H bond amination with this catalyst (Entry 10). Considering that the pyridine ligand
may play a key role in this reaction, the Schiff base ligand and terpyridine ligands were
examined. Screening of ligand effects (Entries 12−14) revealed that the Schiff base ligand
L12 and terpyridine ligands L13–L14 had a poor response to the intramolecular selective
amination of sulfamate esters. To summarize, the enhanced reactivity of the C-H amination
reaction may be attributed to a difference of steric hindrance and electronic properties
between these ligands, as evidence suggests that L10 is a significantly better ligand and
gave the best results, on the basis of the reaction yield and site-selectivity.

The temperature did not have a significant impact on the site-selectivity but impacted
the yields (Table 2 Entries 1−7). The screening of several different temperatures revealed
that 55 ◦C was more suitable for the reaction, with a 72% yield and more than 15:1 site-
selectivity being achieved (Entry 3). Among the tested metal salts, AgBF4 and AgSbF6 had
poor catalytic effect on selective amination (Entry 8 and 11). Moreover, AgClO4 gave the
best results, in terms of the reaction yield and site-selectivity.

After determining the optimal catalytic conditions, we compared this catalytic system
with other catalytic systems reported in the literature for selective amination (Table 3).
The catalyst of Fe(OTf)2 and [Rh(OAc)2]2 gave 1a with high yield but a markedly reduced
site-selectivity (Entry 2 and 4). However, the intramolecular selective amination could not
be catalyzed by [FeIII(Pc)]SbF6 and Cu(OTf)2 (Entry 3 and 5).

Under the optimized conditions, we explored the scope of this silver catalysis, em-
ploying a broad variety of unactivated substrates in intramolecular selective amination
(Figure 2). To our delight, sulfamates with electron-donating and electron-withdrawing
groups on the phenyl ring all served as excellent substrates for the selective amination,
in up to 80% yield and >15:1 site-selectivity (1–5). Unfortunately, the diastereoselectivity
of sulfamates bearing meta- and para-substituents on phenyl groups was poor, affording
the cyclic sulfamates 1.8:1 to 3.8:1 dr (3–5). The 2-methyl-2-phenylpentyl sulfamate (6)
exhibited good reactivity, forming the corresponding cyclic sulfamate in 70% yield and
>15:1 site-selectivity. Surprisingly, sulfamates containing a large steric hindrance (7 and 8)
could also obtain cyclic sulfamates, in up to 75% yield and >15:1 site-selectivity.
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Table 1. Optimization of Ag/ligand a.
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Entry Ligand Silver Salts Ag:L Yield b(%) 1a:1b c dr(1a) 

1 L1 AgOTf 1:3 Trace - - 

2 L2 AgOTf 1:3 ND - - 

3 L3 AgOTf 1:3 30 2.5:1 4.4:1 

4 L4 AgOTf 1:3 29 3.7:1 4.7:1 

Entry Ligand Silver Salts Ag:L Yield b (%) 1a:1b c dr(1a)

1 L1 AgOTf 1:3 Trace - -
2 L2 AgOTf 1:3 ND - -
3 L3 AgOTf 1:3 30 2.5:1 4.4:1
4 L4 AgOTf 1:3 29 3.7:1 4.7:1
5 L5 AgOTf 1:3 47 5.6:1 3.7:1
6 L6 AgOTf 1:1 Trace - -
7 L7 AgOTf 1:1 ND - -
8 L8 AgOTf 1:3 Trace - -
9 L9 AgOTf 1:3 30 6.3:1 3.3:1
10 L10 AgOTf 1:3 53 >15:1 5.1:1
11 L11 AgOTf 1:3 33 8.1:1 4.4:1
12 L12 AgOTf 1:3 ND - -
13 L13 AgOTf 1:3 35 5:1 3.2:1
14 L14 AgOTf 1:3 ND - -

a Reaction condition: L (0.117 mmol), AgOTf (0.039 mmol), 2-methyl-2-phenylpropyl sulfamate ester 1 (0.39 mmol),
dry CH2Cl2 (9.75 mL), PhIO (1.365 mmol), and 4 Å MS (0.37 g), rt, 24 h. b Isolated yield. c Determined by
crude NMR.

Given the high reactivity of the 2-methyl-2-phenylbutyl sulfamate 1, we next examined
the scope of this selective amination with regard to the substitution at the secondary C(sp3)-
H bond (Figure 3). The effect of the electron-donating group on the secondary C(sp3)-H
bond was explored with 9–10. Generally, good to excellent yields and site-selectivities were
obtained in the presence of electron-donating substituents on secondary C(sp3)−H bonds
(9–10). Next, differences in the preference for amination of propargylic and allylic C-H
bonds over primary C(sp3)-H bonds using L10/AgClO4 were briefly explored (11–12). As
expected, substrates containing a propargylic substituent showed an improved preference
for insertion at the allylic C-H bond, activated by a neighboring π-system. Regrettably, the
expected results were not obtained in 13.
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Table 2. The effects of reaction conditions on selective amination a.
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After determining the optimal catalytic conditions, we compared this catalytic sys-
tem with other catalytic systems reported in the literature for selective amination (Table 
3). The catalyst of Fe(OTf)2 and [Rh(OAc)2]2 gave 1a with high yield but a markedly re-
duced site-selectivity (Entry 2 and 4). However, the intramolecular selective amination 
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Entry Ligand Silver Salt Temperature (◦C) Yield b (%) 1a:1b c dr(1a)

1 L10 AgOTf 75 58 >15:1 3.4:1
2 L10 AgOTf 65 68 >15:1 3.8:1
3 L10 AgOTf 55 72 >15:1 4.1:1
4 L10 AgOTf 45 59 >15:1 4.3:1
5 L10 AgOTf 35 55 >15:1 4.4:1
6 L10 AgOTf 25 53 >15:1 4.7:1
7 L10 AgOTf 0 25 >15:1 4.8:1
8 L10 AgBF4 55 Trace - -
9 L10 AgClO4 55 76 >15:1 5.1:1

10 L10 AgN(SO2CF3)2 55 35 >15:1 4.9:1
11 L10 AgSbF6 55 ND - -
12 L10 AgOAc 55 32 >15:1 4.8:1

a Reaction condition: L3 (0.117 mmol), silver salt (0.039 mmol), 2-methyl-2-phenylpropyl sulfamate ester
1 (0.39 mmol), dry CH2Cl2 (9.75 mL), PhIO (1.365 mmol), and 4 Å MS (0.37 g), temperature, 24 h. b Isolated yield.
c Determined by NMR.

Table 3. The effects of metals on the reaction a.
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Figure 2. Selective amination of unactivated substrates a. 

Entry Catalyst Oxidant Yield b (%) 1a:1b c

1 AgClO4/L10 PhIO 76 >15:1
2 Fe(OTf)2/bipyridine PhI(OCOCF3)2 75 2.5:1
3 [FeIII(Pc)]SbF6 PhI(OPiv)2 Trace -
4 [Rh(OAc)2]2 PhI(OAc)2 80 3:1
5 Cu(OTf)2/bipyridine - Trace -

a Reaction condition: L (10%), 2-methyl-2-phenylpropyl sulfamate ester 1 (0.39 mmol), dry CH2Cl2 (9.75 mL),
Oxidant (1.365 mmol) and 4 Å MS (0.37 g). b Isolated yield. c Determined by NMR.

A possible reaction pathway was proposed (Figure 4). Treatment of substrate 1 with
PhIO generates iminoiodinane, which reacts with the silver catalyst, leading to the forma-
tion of an metallonitrene species together with iodobenzene. Then, direct C-H insertion or
H-atom abstraction/radical recombination of oxathiazinanes yielded the desired product
and regenerated the catalyst [23]. Importantly, the C-H bond cleavage was calculated as the
HAT step, with TS-methylene having a 3.06 kcal/mol lower free energy than TS-methyl.
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Subsequently, an in vitro anticancer activity test was conducted on cyclic sulfamate
compounds towards MCF-7 breast cancer cells, using an MTT assay method (Table 4). All
tested compounds (10 µM) exhibited some degree of inhibitory activity on breast cancer
cells. It was determined that compounds 7a had the best anticancer activity. We are in
the process of investigating the anti-tumor activity of cyclic sulfamates in vivo and their
mechanism of action.

Table 4. Cell survival rate of tested cyclic sulfamates (10 µM) against MCF-7 cells.

Entry Products Survival (%)

1 - 100%
2 1a 8.83%
3 2a 6.69%
4 3a 9.38%
5 6a 8.34%
6 7a 6.51%
7 8a 8.10%
8 9a 13.07%
9 12a 17.71%
10 13a 17.46%

3. Experimental Section
3.1. General Procedures

Unless otherwise stated, all experiments were carried out in oven-dried glassware
under argon with dry solvents. All the reagents were purchased commercially and used
without further purification. Dry solvents were purchased commercially. All reactions
were monitored by thin-layer chromatography (TLC). TLC was performed using Huanghai
8 ± 0.2-µm precoated silica gel glass plates (0.2 ± 0.03 mm) and visualized under a UV
fluorescence lamp and quenched by KMnO4 or phosphomolybdic acid staining. Flash
chromatography was performed using Huanghai silica gel (particle size 200~300). 1H NMR
spectra were recorded at 500 MHz, and 13C NMR spectra were recorded at 125 MHz using
a Bruker Avance 500M spectrometer. Mass spectra were recorded on an Ultima Global
spectrometer with an ESI source.

3.2. General Procedure for the Preparation of 4,5-Dimethyl-5-Phenyl-1,2,3-Oxathiazinane
2,2-Dioxide (1a and 1b)

After a suspension of the L3 (38 mg, 0.117 mmol) and AgClO4 (8 mg, 0.039 mmol) in
dry CH2Cl2 (1 mL) was stirred in a Schlenk tube for 1 h at room temperature, protected
from light with aluminum foil, a solution of the 2-methyl-2-phenylpropyl sulfamate ester
1 (0.1 g, 0.39 mmol) in dry CH2Cl2 (8.75 mL) was added. PhIO (0.3 g, 1.365 mmol) and
4 Å MS (0.37 g) were added, and the resulting solution was stirred at 55 ◦C for 24 h. After
that, saturated aqueous NH4Cl (0.2 mL) was added, and the organic layer was separated
and evaporated, to remove solvent under reduced pressure. The residue was subjected to
column chromatography on silica gel (200–300 mesh) using PE/EA = 10/1 to 4/1 as an
eluent, to produce 4,5-dimethyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide.

3.3. General Procedure for the Cytotoxicity Test of Products

Cell culture: the MCF-7 cells used in this experiment were cultured in a humidified at-
mosphere (37 ◦C, 5.0% CO2) and grown in serum medium at a density of 6 × 105 cells/dish
in 25 cm2 cell culture flasks. MCF-7 cells were cultured in DMEM containing 10% premium
fetal bovine serum (FBS) and 1% penicillin-streptomycin.

Cytotoxicity test: We investigated the cytotoxicity of the products for the MCF-7 cells
using an MTT assay. The cell viability was evaluated based on the reduction of MTT to
formazan crystals using mitochondrial dehydrogenases. Typically, 1 × 103 MCF-7 cells in
50 µL washing buffer (Dulbecco’s phosphate buffered saline, PBS, Gibco, Shanghai, China)
were pre-seeded to each test well in a 96-well plate and then incubated with DMEM for 24 h.
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Next, the culture medium was taken out and fresh culture medium with different products
(10 µM) was added. The cells were incubated for 24 h, and then 90 µL fresh DMEM and
10 µL MTT solution were added into each well and incubated for another 0.5 h. Finally,
the absorbance intensity at 490 nm was recorded using a Bio-Tek Multi-Mode Microplate
Reader (Winooski, VT, USA) to assess the cell viability. All the experiments were conducted
at least 3 times. In this way, cell viability measurements in MCF-7 cells were performed.

3.4. Density Functional Theory (DFT) Calculations

Density functional theory (DFT) calculations were performed with the Gaussian
software package. We used semi-empirical methods (PM6) to calculate the probable
structures for all the complexes, followed by DFT calculations to estimate their structure.
Geometries were optimized using the PBEPBE functional and a mixed basis set of Lanl2DZ
for Ag and 3-21G(d) for other atoms. All atoms in dichloromethane (DCM) used the SMD
solvation model.

2-methyl-2-phenylbutyl sulfamate (1)
97% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.37 (s, 2H), 7.29–7.22 (m, 4H),

7.14 (m, 1H), 4.04 (d, J = 9.4 Hz, 1H), 3.98 (d, J = 9.5 Hz, 1H), 1.67 (dt, J = 14.7, 7.3 Hz, 1H),
1.54 (m, 1H), 1.22 (s, 3H), 0.55 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 142.25,
126.62, 124.77, 124.53, 74.19, 39.73, 29.11, 20.04, 6.47.; HRMS (ESI-TOF+): m/z Calcd. for
C11H18NO3S [(M+H)+]: 244.1007. Found: 244.1011.

2-(2-chlorophenyl)-2-methylbutyl sulfamate (2)
91% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.40 (s, 2H), 7.31 (m, 2H),

7.21 (m, 2H), 4.50 (d, J = 9.4 Hz, 1H), 4.11 (d, J = 9.5 Hz, 1H), 2.13 (dd, J = 14.2, 7.3 Hz, 1H),
1.64 (dd, J = 14.1, 7.3 Hz, 1H), 1.37 (s, 3H), 0.53 (t, J = 7.5 Hz, 3H). 13C NMR (126 MHz,
DMSO-d6) δ 139.27, 132.28, 131.68, 130.46, 128.42, 127.18, 73.68, 43.12, 22.65, 8.28.; HRMS
(ESI-TOF+): m/z Calcd. for C11H17ClNO3S [(M+H)+]: 278.0618. Found: 278.0615.

2-(3-chlorophenyl)-2-methylbutyl sulfamate (3)
87% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.38 (d, J = 2.3 Hz, 2H), 7.29 (dd,

J = 5.0, 3.4 Hz, 2H), 7.24 (dt, J = 8.0, 1.5 Hz, 1H), 7.22–7.20 (m, 1H), 4.06 (d, J = 9.5 Hz, 1H),
3.97 (d, J = 9.9 Hz, 1H), 1.67 (m, 1H), 1.52 (dd, J = 14.1, 7.3 Hz, 1H), 1.22 (s, 3H), 0.55
(t, J = 7.4 Hz, 3H). 13C NMR (126MHz, DMSO-d6) δ 146.65, 133.09, 129.99, 126.44, 126.20,
125.24, 75.44, 41.58, 30.53, 7.95.; HRMS (ESI-TOF+): m/z Calcd. for C11H17ClNO3S
[(M+H)+]: 278.0618. Found: 278.0619.

2-(4-chlorophenyl)-2-methylbutyl sulfamate (4)
91% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.38 (s, 2H), 7.29 (d, J = 2.4 Hz,

4H), 4.05 (d, J = 9.7 Hz, 1H), 3.96 (d, J = 9.3 Hz, 1H), 1.65 (m, 1H), 1.52 (m, 1H), 1.21 (s, 3H),
0.54 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 142.90, 130.83, 128.43, 128.05,
75.55, 41.21, 30.57, 21.40, 7.93.; HRMS (ESI-TOF+): m/z Calcd. for C11H17ClNO3S [(M+H)+]:
278.0618. Found: 278.0618.

2-(4-(tert-butyl)phenyl)-2-methylbutyl sulfamate (5)
87% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.36 (s, 2H), 7.28–7.24 (m,

3H), 7.19 (s, 1H), 4.01 (d, J = 9.4 Hz, 1H), 3.96 (d, J = 9.4 Hz, 1H), 1.65 (dd, J = 14.0, 7.3 Hz,
1H), 1.53 (dt, J = 13.8, 7.2 Hz, 1H), 1.20 (s, 3H), 1.19 (s, 9H), 0.56 (t, J = 7.4 Hz, 3H). 13C
NMR (126 MHz, DMSO-d6) δ 148.18, 140.76, 125.97, 124.91, 75.72, 40.84, 33.97, 31.10, 30.59,
21.68, 8.12.; HRMS (ESI-TOF+): m/z Calcd. for C15H26NO3S [(M+H)+]: 300.1633. Found:
300.1634.

2-methyl-2-phenylpentyl sulfamate (6)
80% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.36 (s, 2H), 7.26 (d, J = 6.5 Hz,

4H), 7.13 (m, 1H), 4.03 (d, J = 9.4 Hz, 1H), 3.97 (d, J = 9.3 Hz, 1H), 1.60 (m, 1H), 1.48 (td,
J = 13.4, 12.9, 4.6 Hz, 1H), 1.24 (s, 3H), 1.05-0.96 (m, 1H), 0.86 (ddd, J = 19.6, 9.8, 6.0 Hz,
1H), 0.71 (t, J = 7.2 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 144.12, 128.18, 126.20, 126.07,
75.98, 41.13, 40.61, 22.11, 16.60, 14.46.; HRMS (ESI-TOF+): m/z Calcd. for C12H20NO3S
[(M+H)+]: 258.1164. Found: 258.1165.

2,4-dimethyl-2-phenylpentyl sulfamate (7)
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90% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.36 (s, 2H), 7.32–7.27 (m, 2H),
7.25 (t, J = 7.8 Hz, 2H), 7.17–7.10 (m, 1H), 4.02–3.91 (m, 2H), 1.59 (dd, J = 14.0, 6.1 Hz, 1H),
1.46 (dd, J = 14.0, 5.4 Hz, 1H), 1.39-1.32 (m, 1H), 1.28 (s, 3H), 0.66 (d, J = 6.6 Hz, 3H), 0.47
(d, J = 6.6 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 144.17, 128.07, 126.41, 126.11, 76.46,
46.97, 41.35, 24.75, 24.28, 23.82, 22.23.; HRMS (ESI-TOF+): m/z Calcd. for C13H22NO3S
[(M+H)+]: 272.1320. Found: 272.1322.

3-cyclopropyl-2-methyl-2-phenylpropyl sulfamate (8)
88% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.37 (s, 2H), 7.33–7.29 (m, 2H),

7.25 (t, J = 7.8 Hz, 2H), 7.14 (d, J = 7.1 Hz, 1H), 4.15 (d, J = 9.4 Hz, 1H), 4.06 (d, J = 9.4 Hz,
1H), 1.62 (dd, J = 14.0, 5.9 Hz, 1H), 1.39 (dd, J = 14.0, 6.9 Hz, 1H), 1.32 (s, 3H), 0.34–0.15
(m, 3H), −0.04–−0.13 (m, 1H), −0.13–−0.21 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ
144.61, 128.11, 126.24, 126.05, 75.44, 43.51, 42.11, 22.50, 6.04, 4.79, 4.06.; HRMS (ESI-TOF+):
m/z Calcd. for C13H20NO3S [(M+H+]: 270.1164. Found: 270.1165.

3-methoxy-2-methyl-2-phenylpropyl sulfamate (9)
89% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.39 (s, 2H), 7.34–7.28 (m, 2H),

7.25 (dd, J = 8.5, 6.8 Hz, 2H), 7.18–7.09 (m, 1H), 4.17 (d, J = 9.5 Hz, 1H), 4.08 (d, J = 9.5 Hz,
1H), 3.40 (s, 2H), 3.15 (s, 3H), 1.23 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 147.97, 133.38,
131.65, 82.50, 78.29, 63.91, 47.73, 25.94.; HRMS (ESI-TOF+): m/z Calcd. for C11H18NO4S
[(M+H)+]: 260.0957. Found: 260.0957.

3-ethoxy-2-methyl-2-phenylpropyl sulfamate (10)
91% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.39 (s, 2H), 7.32 (d, J = 7.8 Hz,

2H), 7.27–7.23 (m, 2H), 7.15 (d, J = 7.5 Hz, 1H), 4.19 (d, J = 9.4 Hz, 1H), 4.09 (d, J = 9.4 Hz,
1H), 3.43 (s, 2H), 3.33 (dd, J = 7.0, 2.1 Hz, 2H), 1.23 (s, 3H), 0.99 (t, J = 7.0 Hz, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 142.80, 128.11, 126.41, 126.37, 74.97, 73.12, 66.06, 42.43, 20.70, 14.87.;
HRMS (ESI-TOF+): m/z Calcd. for C12H20NO4S [(M+H)+]: 274.1113. Found: 274.1112.

2-methyl-2-phenylhex-4-yn-1-yl sulfamate (11)
88% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.41 (s, 2H), 7.34 (d, J = 7.5 Hz,

2H), 7.26 (t, J = 7.8 Hz, 2H), 7.15 (t, J = 7.2 Hz, 1H), 4.15 (d, J = 9.4 Hz, 1H), 4.06 (d, J = 9.4 Hz,
1H), 2.51-2.40 (m, 2H), 1.60 (t, J = 2.6 Hz, 3H), 1.31 (s, 3H). 13C NMR (500 MHz, DMSO-d6) δ
143.42, 128.12, 126.41, 126.26, 78.21, 75.68, 74.66, 41.09, 28.34, 22.59, 3.14.; HRMS (ESI-TOF+):
m/z Calcd. for C13H18NO3S [(M+H)+]: 268.1007. Found: 268.1007.

2-methyl-2-phenylpent-4-yn-1-yl sulfamate (12)
93% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.42 (s, 2H), 7.38–7.31 (m, 2H),

7.26 (t, J = 7.8 Hz, 2H), 7.19–7.12 (m, 1H), 4.14 (d, J = 9.5 Hz, 1H), 4.06 (d, J = 9.6 Hz, 1H),
2.72 (t, J = 2.6 Hz, 1H), 2.59 (dd, J = 16.9, 2.7 Hz, 1H), 2.48 (dd, J = 16.8, 2.7 Hz, 1H), 1.32
(s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 148.28, 133.40, 131.77, 131.55, 86.22, 79.80, 78.83,
46.23, 33.10, 27.64.; HRMS (ESI-TOF+): m/z Calcd. for C12H16NO3S [(M+H)+]: 254.0851.
Found: 254.0852.

2-methyl-2-phenylpent-4-en-1-yl sulfamate (13)
61% yield, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.39 (s, 2H), 7.32–7.28 (m, 2H),

7.27–7.24 (m, 2H), 7.14 (t, J = 7.1 Hz, 1H), 5.39 (ddt, J = 17.2, 10.1, 7.3 Hz, 1H), 5.01–4.84 (m,
2H), 4.05 (d, J = 9.5 Hz, 1H), 4.00 (d, J = 9.5 Hz, 1H), 2.46–2.42 (m, 1H), 2.29 (dd, J = 13.9,
7.6 Hz, 1H), 1.23 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 143.74, 133.73, 128.18, 126.31,
126.23, 118.23, 75.44, 42.63, 41.01, 22.04.; HRMS (ESI-TOF+): m/z Calcd. for C12H18NO3S
[(M+H)+]: 256.1007. Found: 256.1007.

4,5-dimethyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide (1a)
76% yield, dr = 5.1:1, yellow oil. Major product: 1H NMR (500 MHz, DMSO-d6) δ 7.77

(d, J = 9.8 Hz, 1H), 7.43–7.30 (m, 5H), 4.63 (dd, J = 11.4, 0.9 Hz, 1H), 4.11 (d, J = 11.4 Hz,
1H), 4.10–4.02 (m, 1H), 1.43 (d, J = 0.8 Hz, 3H), 0.76 (d, J = 6.8 Hz, 3H). 13C NMR (101 MHz,
DMSO-d6) δ 140.46, 129.25, 127.79, 127.16, 81.00, 58.11, 40.01, 14.93, 13.86.; Minor product:
1H NMR (400 MHz, DMSO-d6) δ 7.61 (d, J = 8.3 Hz, 1H), 7.52–7.45 (m, 2H), 7.29 (m, 3H),
4.75 (d, J = 12.0 Hz, 1H), 4.54 (d, J = 12.0 Hz, 1H), 4.06-4.03 (m, 1H), 3.75–3.69 (m, 1H), 1.28
(s, 2H), 0.92 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 140.93, 128.51, 128.21,
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127.26, 79.81, 59.09, 38.60, 22.26, 16.29.; HRMS (ESI-TOF+): m/z Calcd. for C11H15NNaO3S
[(M+Na)+]: 264.0670. Found: 264.0678.

5-(2-chlorophenyl)-4,5-dimethyl-1,2,3-oxathiazinane 2,2-dioxide (2a)
70% yield, dr > 20:1, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.56 (dd, J = 7.1,

2.2 Hz, 1H), 7.50 (dd, J = 7.3, 2.2 Hz, 1H), 7.40 (ddd, J = 6.9, 4.6, 2.0 Hz, 3H), 5.17 (d, J =
13.1 Hz, 1H), 4.80 (d, J = 13.1 Hz, 1H), 3.92 (t, J = 5.5 Hz, 1H), 1.67 (s, 3H), 1.23 (d, J = 10.3 Hz,
3H) 13C NMR (126 MHz, DMSO-d6) δ 139.78, 132.52, 131.84, 129.29, 128.09, 127.45, 74.44,
54.47, 36.30, 34.94, 22.82.; HRMS (ESI-TOF+): m/z Calcd. for C11H14ClNNaO3S [(M+Na)+]:
298.0281. Found: 298.0283.

5-(3-chlorophenyl)-4,5-dimethyl-1,2,3-oxathiazinane 2,2-dioxide (3a)
78% yield, dr = 2:1, yellow oil. Major product: 1H NMR (500 MHz, DMSO-d6) δ

7.84 (d, J = 9.8 Hz, 1H), 7.49 -7.39 (m, 5H), 4.63 (d, J = 11.4 Hz, 1H), 4.19 (d, J = 11.5 Hz,
1H), 4.13-4.05 (m, 1H), 1.45 (s, 3H), 0.81 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, DMSO-
d6) δ 142.72, 133.57, 130.56, 127.44, 126.90, 125.51, 80.09, 57.38, 39.47.14.50, 13.38.; Minor
product: 1H NMR (500 MHz, DMSO-d6) δ 7.68 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 1.9 Hz, 1H),
7.42-7.36 (m, 3H), 4.78 (d, J = 12.2 Hz, 1H), 4.57 (d, J = 12.1 Hz, 1H), 4.10–4.04 (m, 1H), 3.76
(dd, J = 8.4, 6.6 Hz, 1H), 1.30 (s, 2H), 0.96 (d, J = 6.9 Hz, 3H). 13C NMR (126 MHz, DMSO-d6)
δ 132.88, 129.64, 127.98, 126.86, 79.31, 58.48, 38.34, 21.27, 15.65.; HRMS (ESI-TOF+): m/z
Calcd. for C11H14ClNNaO3S [(M+Na)+]: 298.0281. Found: 298.0284.

5-(4-chlorophenyl)-4,5-dimethyl-1,2,3-oxathiazinane 2,2-dioxide (4a)
80% yield, dr = 3.8:1, yellow oil. Major product: 1H NMR (500 MHz, DMSO-d6) δ 7.80

(d, J = 9.8 Hz, 1H), 7.45-7.41 (m, 4H), 4.63-4.57 (m, 1H), 4.12 (d, J = 11.4 Hz, 1H), 4.07-4.00
(m, 1H), 1.45-1.37 (m, 3H), 0.76 (d, J = 6.8 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 139.52,
132.57, 129.30, 129.13, 80.64, 57.97, 39.89, 14.91, 13.84.; Minor product: 1H NMR (400 MHz,
DMSO-d6) δ 7.56 (d, J = 8.7 Hz, 1H), 7.53–7.49 (m, 2H), 7.43–7.39 (m, 2H), 4.72 (d, J =
12.0 Hz, 1H), 4.53 (d, J = 12.1 Hz, 1H), 4.03 (dq, J = 9.9, 6.8 Hz, 1H), 3.72 (dd, J = 8.7, 6.9 Hz,
1H), 1.25 (s, 2H), 0.91 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 139.64, 132.14,
130.46, 79.90, 58.99, 16.14.; HRMS (ESI-TOF+): m/z Calcd. for C11H14ClNNaO3S [(M+Na)+]:
298.0281. Found: 298.0281.

5-(4-(tert-butyl)phenyl)-4,5-dimethyl-1,2,3-oxathiazinane 2,2-dioxide (5a)
50% yield, dr = 1.8:1, yellow oil. Major product: 1H NMR (500 MHz, DMSO-d6) δ

7.77 (d, J = 9.8 Hz, 1H), 7.45-7.34 (m, 5H), 4.63 (d, J = 11.5 Hz, 1H), 4.13 (d, J = 11.4 Hz,
1H), 4.07 (dd, J = 9.8, 6.7 Hz, 1H), 1.44 (s, 3H), 1.27 (s, 9H), 0.79 (d, J = 6.8 Hz, 3H). 13C
NMR (126 MHz, DMSO-d6) δ 149.56, 136.92, 126.96, 126.33, 125.50, 57.57, 37.86, 31.00, 14.53,
13.43.; Minor product: 1H NMR (500 MHz, DMSO-d6) δ 7.59 (d, J = 8.4 Hz, 1H), 7.39–7.33
(m, 4H), 4.75 (d, J = 11.9 Hz, 1H), 4.54 (d, J = 11.9 Hz, 1H), 4.07 (dd, J = 9.8, 6.7 Hz, 1H),
3.72 (dd, J = 8.2, 6.7 Hz, 1H), 1.29 (s, 9H), 1.25 (s, 2H), 0.96 (d, J = 6.9 Hz, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 148.84, 137.39, 127.47, 124.75, 79.49, 58.66, 34.07, 21.77, 15.81, 14.53,
13.43.; HRMS (ESI-TOF+): m/z Calcd. for C15H23NNaO4S [(M+Na)+]: 320.1296. Found:
320.1293

4-ethyl-5-methyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide (6a)
70% yield, dr > 20:1, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.68 (d, J = 10.1 Hz,

1H), 7.43–7.35 (m, 4H), 7.31–7.26 (m, 1H), 4.61 (dd, J = 11.4, 0.8 Hz, 1H), 4.08 (d, J = 11.4 Hz,
1H), 3.78 (m, 1H), 1.42 (s, 3H), 1.28-1.19 (m, 1H), 0.97–0.89 (m, 1H), 0.75 (t, J = 7.3 Hz, 3H).
13C NMR (500 MHz, DMSO-d6) δ 140.58, 129.28, 127.78, 127.16, 81.00, 64.78, 21.76, 14.48,
11.14.; HRMS (ESI-TOF+): m/z Calcd. for C12H17NNaO3S [(M+H)+]: 256.1007. Found:
256.1026.

4-isopropyl-5-methyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide (7a)
75% yield, dr > 20:1, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.48–7.40 (m, 4H),

7.38–7.33 (m, 1H), 4.86 (d, J = 11.7 Hz, 1H), 4.38 (s, 1H), 4.08 (dd, J = 11.3, 4.8 Hz, 1H), 3.93
(d, J = 11.8 Hz, 1H), 1.63 (s, 3H), 1.29 (s, 1H), 0.97 (d, J = 6.7 Hz, 3H), 0.66 (d, J = 6.8 Hz,
3H). 13C NMR (126 MHz, Chloroform-d) δ 139.73, 129.04, 127.86, 126.66, 81.94, 67.16, 40.71,
28.95, 22.33, 18.65, 14.74.; HRMS (ESI-TOF+): m/z Calcd. for C13H19NNaO3S [(M+H)+]:
270.1164. Found: 270.1166.
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4-cyclopropyl-5-methyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide (8a)
80% yield, dr > 20:1, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 7.84 (d, J = 9.7 Hz,

1H), 7.47-7.28 (m, 5H), 4.72 (d, J = 11.5 Hz, 1H), 4.10 (d, J = 11.4 Hz, 1H), 3.24 (t, J = 9.3 Hz,
1H), 1.59 (s, 3H), 0.71 (m, 1H), 0.36-0.23 (m, 1H), 0.16 (dd, J = 9.8, 5.0 Hz, 1H), 0.06–−0.06
(m, 1H), −0.62 (dd, J = 9.7, 4.9 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 138.10, 126.24,
124.99, 124.74, 77.74, 64.84, 38.13, 12.26, 8.40, 1.66.; HRMS (ESI-TOF+): m/z Calcd. for
C13H17NNaO4S [(M+H)+]: 290.0827. Found: 290.0828.

4-methoxy-5-methyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide (9a)
81% yield, dr>20:1, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 8.23–8.12 (m, 1H),

7.52–7.44 (m, 2H), 7.40 (dd, J = 8.7, 6.8 Hz, 2H), 7.35–7.27 (m, 1H), 4.99 (dd, J = 8.3, 2.0 Hz,
1H), 4.50 (d, J = 12.0 Hz, 1H), 4.37 (d, J = 11.8 Hz, 1H), 3.34 (s, 3H), 1.40 (s, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 139.56, 127.99, 127.89, 126.62, 126.11, 91.00, 75.60, 55.35, 40.70, 14.90;
HRMS (ESI-TOF+): m/z Calcd. for C11H15NNaO4S [(M+Na)+]: 280.0619. Found: 280.0613.

4-ethoxy-5-methyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide (10a)
85% yield, dr > 20:1, yellow oil. 1H NMR (500 MHz, Chloroform-d) δ 7.32 (d, J = 6.1

Hz, 4H), 7.25 (m, 1H), 4.97 (d, J = 9.3 Hz, 1H), 4.67 (d, J = 12.0 Hz, 1H), 4.38 (s, 1H), 4.12 (d,
J = 11.9 Hz, 1H), 3.75 (m, 1H), 3.37 (m, 1H), 1.45 (s, 3H), 0.93 (t, J = 7.1 Hz, 3H). 13C NMR
(126 MHz, Chloroform-d) δ 137.96, 127.83, 126.78, 125.45, 90.11, 64.27, 40.57, 13.54, 13.04.
HRMS (ESI-TOF+): m/z Calcd. for C12H17NNaO4S [(M+Na)+]: 294.0776. Found: 294.0754.

5-methyl-5-phenyl-4-(prop-1-yn-1-yl)-1,2,3-oxathiazinane 2,2-dioxide (11a)
78% yield, dr > 20:1, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 8.25 (d, J = 9.5 Hz,

1H), 7.44-7.34 (m, 2H), 7.31 (dd, J = 8.5, 6.9 Hz, 2H), 7.26-7.16 (m, 1H), 4.74 (dd, J = 9.6, 2.5
Hz, 1H), 4.50 (d, J = 11.7 Hz, 1H), 4.17 (d, J = 11.7 Hz, 1H), 1.59 (d, J = 2.4 Hz, 3H), 1.51
(s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 139.35, 128.61, 127.48, 126.76, 82.51, 78.88, 73.62,
55.13, 15.44, 3.00.; HRMS (ESI-TOF+): m/z Calcd. for C13H15NNaO3S [(M+Na)+]: 288.0670.
Found: 288.0671.

4-ethynyl-5-methyl-5-phenyl-1,2,3-oxathiazinane 2,2-dioxide (12a)
75% yield, dr > 20:1, yellow oil. 1H NMR (500 MHz, DMSO-d6) δ 8.50 (d, J = 9.7 Hz,

1H), 7.53-7.47 (m, 2H), 7.41 (dd, J = 8.6, 6.9 Hz, 2H), 7.34 (dd, J = 7.7, 1.6 Hz, 1H), 4.92 (dd,
J = 9.6, 2.5 Hz, 1H), 4.63 (d, J = 11.6 Hz, 1H), 4.30 (d, J = 11.7 Hz, 1H), 3.38 (d, J = 2.4 Hz,
1H), 1.63 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 138.40, 128.11, 127.06, 126.31, 78.42,
77.42, 76.89, 54.23, 14.79.; HRMS (ESI-TOF+): m/z Calcd. for C12H13NNaO3S [(M+Na)+]:
274.0514. Found: 274.0533.

4. Conclusions

In conclusion, we developed a silver/bathophenanthroline-catalyzed intramolecular
amination with sulfamate esters, giving cyclic sulfamates with high site-selectivities and
good yields. A variety of substrates bearing inert secondary and primary C(sp3)−H bonds
were tolerated by this catalyst. DFT calculations further validated that the Ag/L10 can
effectively differentiate between secondary and primary C(sp3)−H bonds. Several in vitro
experiments were conducted to evaluate the anti-tumor activity of the products. Further
research of the site-selective amination of other C(sp3)−H bond is currently in progress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196174/s1, 1H-NMR and 13C-NMR spectra for all
new compounds.
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