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Abstract

Background: With the development of sequencing technologies, more and more sequence variants are available
for investigation. Different classes of variants in the human genome have been identified, including single
nucleotide substitutions, insertion and deletion, and large structural variations such as duplications and deletions.
Insertion and deletion (indel) variants comprise a major proportion of human genetic variation. However, little is
known about their effects on humans. The absence of understanding is largely due to the lack of both biological
data and computational resources.

Results: This paper presents a new indel functional prediction method HMMvar based on HMM profiles, which
capture the conservation information in sequences. The results demonstrate that a scoring strategy based on HMM
profiles can achieve good performance in identifying deleterious or neutral variants for different data sets, and can
predict the protein functional effects of both single and multiple mutations.

Conclusions: This paper proposed a quantitative prediction method, HMMvar, to predict the effect of genetic
variation using hidden Markov models. The HMM based pipeline program implementing the method HMMvar is
freely available at https://bioinformatics.cs.vt.edu/zhanglab/hmm.
Background
Genomic variability contributes to evolution and popula-
tion diversity. With the development of high throughput
technologies, a massive amount of variation data is avail-
able in online public databases, for example, dbSNP [1],
dbVar [2], Human Gene Mutation Database [3], Ensembl
[4], and Catalogue of Somatic Mutations in Cancer
(COSMIC) [5]. Different types of variation have been
identified, such as single nucleotide polymorphisms
(SNP), short sequence repeat, insertion/deletion poly-
morphism (indel), copy number variants (CNV), and in-
versions. Recent pilot studies from the 1000 Genomes
Project Consortium [6] and the International HapMap
Project [7] revealed that there are about 15 million
SNPs, one million short indels, and 20,000 structural
variants (SVs) harbored by the studied populations.
Indels, especially frame shifting insertions and dele-

tions, are expected to have large effects on protein func-
tions, since they may change the reading frame of a gene
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thus change amino acids and probably the functions of
proteins. It has been shown that indels cause more se-
vere functional changes in proteins than SNPs [8] and
also have significant influence on protein-protein inter-
action interfaces [9]. As revealed by the Human Gene
Mutation Database [3], approximately half (57%) of the
human (gene sequence level) disease variations are asso-
ciated with single nucleotide substitutions, and about a
quarter (22%) are associated with small indels [3,10].
Mill et al. [11] have shown that 42% of the nearly two
million indels they identified are mapped to human
genes and more than 2,000 indels affect coding exons
and likely disrupt protein function and cause phenotypic
change in humans. Moreover, they found that many of
the identified indels had a high level of linkage disequi-
librium (LD) with SNPs, which indicates the indels
might be the essential factors that cause diseases. Fur-
thermore, indel variants have profound functional im-
pact in human specific evolution and adaptation [12-14].
With an increasing amount of genomic variability

data, computational tools for prediction of the functional
impacts of these variants on proteins are needed to help
biologists select variants for experimental studies. So far,
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SNPs have been intensively studied and tools for predic-
ting SNP functional effects have been developed, while
little is known about the functional effects of indels,
the second most common type of genetic variation in
humans.
The protein sequence based prediction methods for

functional effects of different types of variants are typically
grouped into two classes [15], constraint based predictor
and trained classifier. Previous studies mainly concern
SNPs and there are a few dozen computer programs and
web servers devoted to predicting the effects of SNP va-
riants. For example, SIFT SNP [16] is a constraint based
predictor and PolyPhen [17] is a trained classifier, both
protein sequence based. There are also many nucleotide
sequence based prediction methods using evolutional in-
formation, such as GERP [18], SCONE [19], etc. In con-
trast, the efforts devoted to indel effect prediction are
limited. Recent indel prediction studies include an evolu-
tionary conservation based approach for both coding and
noncoding regions [20], a trained classifier method for
frameshift variants [21], and another evolutionary conser-
vation based method for multiple types of variation [22].
This paper proposes a profile hidden Markov model
(HMM) [23] based approach HMMvar, which differs from
previous approaches in having a formal probabilistic basis.
A profile HMM, named for the characteristic output

“profile” of a particular hidden Markov model (HMM), is
a finite state machine consisting of a series of nodes, each
of which corresponds roughly to a position (column) in
the alignment from which it was built. Most of the pre-
vious prediction methods are based on the principle that
important amino acids will be conserved in the protein
family, and so mutations occurring at well-conserved posi-
tions tend to be deleterious to the functions of the protein.
This is exactly the feature of profile HMMs. Basically, a
profile HMM is a probabilistic description of the consen-
sus of a multiple sequence alignment. Thus it is reason-
able to consider profile HMMs as a tool for predicting
functional effects of variants. A flowchart of profile HMM
based prediction is shown in Figure 1. The pipeline basi-
cally consists of five steps: 1) find “seed” proteins that are
associated with indels; 2) for each seed protein, find ho-
mologous sequences from a database; 3) do multiple
sequence alignment (MSA) for each set of homologous se-
quences; 4) build a profile HMM based on each MSA; 5)
predict the functional effects of indels using the profile
HMMs (see Methods for details).

Results
HMMvar prediction of indels
Indels were obtained from the database dbSNP Short
Genetic Variants [1], including human coding non-
synonymous mutations, such as nonsense, missense, and
frameshift indels. Nonsensemeans the mutation introduces
a stop codon, for example, the codon TCA changes to
TGA. Missense means the indels that add or remove
amino acids to or from the original protein sequence, for
example, the codon ACT changes to GCT, which alters
threonine (Thr) to alanine (Ala). The length of a missense
indel is always divisible by three, which means the se-
quence is still in frame with the variants. A missense SNP
is an SNP that leads to the replacement of the original
amino acid with a new one. Frameshift means the muta-
tion changes the open reading frame of protein translation.
The data is then classified into two groups: variants that
have Locus-specific Mutation Database (LSDB) [24] anno-
tation, which are expected to be disease associated and
have more harmful effects, and variants that do not have
LSDB annotation, which are expected to be nondisease
(or unknown) associated and have less harmful effects.
Since the amount of LSDB indel and nonLSDB indel in
the database is highly imbalanced, we randomly sampled
the same number of proteins that have indel mutations in
both categories. Table 1 lists the indel categories of the
dataset. The fractions (4% and 95.7%) of nonsense and
frameshift mutations in the LSDB group are higher than
those (1% and 95.1%) in the nonLSDB group, while there
are no missense indels in the LSDB group but 56 in the
nonLSDB group, suggesting that nonsense and frameshift
indels are more likely to cause diseases.
The effects of indels in these two groups (LSDB and

nonLSDB) were quantified by HMMvar. Figure 2(a) shows
the distributions of the HMMvar scores (the odds ratio, S,
described in the Methods section) in the disease asso-
ciated and nondisease associated groups. When the score
is small (typically S < 1.4), nondisease associated variants
dominate, while disease associated variants significantly
dominate the right side of the distributions (S ≥ 1.4). There
is a significant difference between the HMMvar score dis-
tributions of the two groups (Kolmogorov-Smirnov test,
p < 2.2e–16). The mean scores in the two groups were
compared by a one sided two sample t-test where 200
variants from each group were randomly sampled with re-
placement and the means of the sampled data from the
two groups were compared. This process was repeated
100 times, yielding two distributions of the sample means
as shown in Figure 2(b). The two vertical dashed lines rep-
resent the means of these two distributions, which are
significantly different (t test, p < 2.2e–16).
Different functional types of variants (nonsense, mis-

sense, and frameshift) were combined to give an overview
of the distributions of the HMMvar scores for different
groups (Figure 3). The most remarkable feature is that the
score of missense indels is much lower than the scores of
the other two types, consistent with the notion that mis-
sense mutations tend to have less deleterious effect than
frameshift indels and nonsense mutations. In each type of
indel, the median of the nondisease associated group is



Table 1 Dataset from dbSNP

LSDB NonLSDB Total

Nonsense 112 15 127

Missense 0 56 56

Frameshift 2519 1387 3906

Total 2631 1458 4089

Figure 1 A pipeline of variant prediction using HMMvar.
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lower than the median of the disease associated group,
demonstrating that the HMMvar score is effective in
measuring the deleteriousness of indel mutations.
To test the consistency of HMMvar scores with a

genome wide analysis, the indels with minor allele fre-
quency (MAF) in dbSNP were extracted, resulting in
447 indels to be scored. The less the allele frequency is
in a certain position of a genome, the more conserved
the site and the more deleterious the effect of a muta-
tion at this site, in terms of evolutionary theory. In this



Figure 2 HMMvar score distribution of the dbSNP dataset. (a) Histogram of HMMvar scores for disease associated indels and nondisease
associated indels. (b) Distribution of sample means of HMMvar scores from the two categories (LSDB and nonLSDB).

Figure 3 Distributions of HMMvar scores for different types
of variants.
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experiment, the MAF shows a negative Pearson cor-
relation with the HMMvar score (r = –0.03), which is
consistent with the common indication of MAF (the
lower the MAF, the higher the significance of the site),
though the correlation is not significant.

Comparison with other tools
This section compares HMMvar with SIFT Indel [21], a
tool recently proposed for predicting indel effects, and
two commonly used effect prediction tools for SNPs only,
SIFT SNP [16] and PolyPhen [17]. SIFT Indel uses a
trained classifier (decision tree) method to predict the ef-
fect of indels. Four features were extracted for each indel:
1) fraction of affected conserved DNA bases; 2) indel loca-
tion relative to a transcript, taking the maximum across
all transcripts; 3) fraction of affected conserved amino
acids, taking the maximum across all transcripts; and
4) minimum distance of indel to the exon boundary of all
affected transcripts. The classifier was then trained based
on the training data. Though easy to interpret due to the
nature of a decision tree, the predictive power is limited
because the classifier only applies to frameshift indels,
which account for a tiny proportion (~ 0.05%) of all indels,
and it provides only a coarse grained qualitative predic-
tion, either “damaging” or “neutral”, rather than a quanti-
tative measurement. Figure 4 shows the distributions of
HMMvar scores of two groups, “damaging” and “neutral”,
predicted by SIFT Indel on all the frameshift indels shown
in Table 1. They have significantly different distributions
(Kolmogorov-Smirnov test, p = 2.273e–09), indicating that
the HMMvar score is able to predict the two different
functional effects using SIFT Indel prediction as a re-
ference. When the score is small (typically S < 2), the fre-
quency of neutral indels is higher than the frequency of
damaging indels. On the other hand, when the score is
large S ≥ 2, the frequency of damaging indels dominates.
Three Fisher’s exact tests were done: 1) HMMvar predic-
tion vs. SIFT Indel prediction, 2) HMMvar prediction vs.
database annotation, and 3) SIFT Indel prediction vs. data-
base annotation. The p-values are 7.778e-05, 3.456e-12,
and 0.4863, respectively, showing that HMMvar prediction
has higher correlation with database annotation. The sen-
sitivity, specificity, and accuracy comparisons between
HMMvar and SIFT indel are shown in Table 2. SIFT Indel
prediction has higher sensitivity but very much lower spe-
cificity than HMMvar prediction.
Both SIFT SNP and PolyPhen are prediction tools for

nonsynonymous SNPs only. To compare with these two
programs, SNPs were downloaded from the database
ENSEMBL (version: Variation 69, GRCh37.p8), along



Figure 4 Compare HMMvar prediction with SIFT Indel
prediction on dbSNP indel dataset. Distributions of HMMvar of
indels that are predicted as damaging (left) and neutral (right) by
SIFT Indel.
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with precomputed scores and predictions. Among the
more than one million SNPs downloaded, only about
80,000 SNPs have Polyphen and/or SIFT predictions.
There are two SIFT SNP prediction categories, deleterious
and tolerated, and three PolyPhen prediction categories,
benign, possibly damaging, and probably damaging. Since
prediction for SNPs is very time consuming due to the
PSIBlast database searching, 393 SNPs were randomly
selected as shown in Table 3. To balance the data, Poly-
Phen’s possibly damaging and benign categories are com-
bined together. Fisher’s exact test for the HMMvar
prediction (cutoff 1.002) vs. the SIFT SNP prediction has
p-value 5.626e-05, HMMvar prediction vs. PolyPhen pre-
diction has p-value 0.2285, and SIFT SNP prediction vs.
PolyPhen prediction has p-value 0.8788. The HMMvar
prediction has a high correlation with the SIFT SNP pre-
diction, but the HMMvar and SIFT SNP predictions both
have a weak correlation with the PolyPhen prediction,
based on this dataset.

Validation on individual proteins TP53
This section addresses whether the HMMvar score can
reflect the degree of mutation effects on two extensively
Table 2 Comparison between HMMvar prediction and
SIFT Indel prediction with dbSNP indel dataset

Sensitivity Specificity Accuracy

HMMvar 77.8% 68.6% 77.7%

SIFT Indel 95.7% 5.9% 94.0%
studied disease related proteins, TP53 and CFTR. TP53
(known as tumor protein 53) acts as a tumor suppressor,
and regulates cell division by keeping cells from growing
and dividing too fast or in an uncontrolled way. Single
nucleotide variations that cause amino acid changes were
divided into 15 functional classes in terms of the median
transactivation level of eight different promoters as mea-
sured by Kato et al. [25]. For each mutant, the median of
the eight promoter-specific activities (expressed as a per-
cent of the wild type protein) is calculated and mutations
are classified as "nonfunctional" if the median is < =20,
"partially functional" if the median is >20 and < =75,
"functional" if the median is >75 and < =140, and "super-
trans" if the median is >140. The SNPs are separated into
15 classes in terms of the median values with a increments
of 10. The results are also compared with those from
another prediction method called Provean [22]. Provean is
a recently proposed evolutionary conservation based indel
and SNP effects prediction method, which collects a set of
homologous sequences to the gene or protein of interest,
and then clusters them into different supporting sets to
calculate the Provean score based on the delta alignment
score. Figure 5(a) and 5(b) show the HMMvar scores and
Provean scores vs. the transactivity level, respectively.
With respect to the transactivity level, the HMMvar score
shows a negative relationship, and the Provean score has a
positive relationship, especially in the nonfunctional and
partially functional regions. Figure 5(c) and 5(d) show the
average scores and error bars for each functional class for
the similarity trending HMMvar and Provean scores, re-
spectively. The HMMvar score shows a strong linear rela-
tionship with the Provean score (Pearson correlation
coefficient r = –0.733). The HMMvar score has a slightly
lower correlation with the transactivity level (r = – 0.523)
than the Provean score (r = –0.552) but a slightly higher
correlation than the SIFT SNP score (r=–0.493). Figure 6(a)
shows the receiver operating characteristic (ROC) curve
for the comparison between HMMvar and Provean in dis-
tinguishing “nonfunctional” and “partly functional” classes
from “functional” and “supertrans” classes. HMMvar ob-
tained higher AUC (area under the curve) than Provean.
To better distinguish between different functional classes,
it is highly desirable that a prediction metric exhibits small
variance for mutations within the same functional class.
Hence consider the variance of HMMvar and Provean
scores within each functional class. The standard error of

the mean for each functional class is SE ¼ Sffiffi
n

p , where S is

the standard deviation of the scores for a functional class
and n is the size of the class. The HMMvar score has much
less variance for each functional class as shown by the whis-
ker plots in Figure 5(a,b) and in Figure 6(b), indicating that
the HMMvar prediction is more stable than the Provean
prediction. There are also SIFT SNP predictions for TP53



Table 3 Dataset from ENSEMBL

SIFT

Deleterious Tolerated Total

Polyphen Probably damaging 91 87 178

Benign + Possibly damaging/PolyPhen 107 108 215

Total 198 195 393
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variants available in the dataset; comparing the HMMvar
score with the SIFT SNP prediction shows that the medians
of the HMMvar scores in the two SIFT SNP predicted
groups are significantly different (Figure 7).
Methods
Dataset description
Insertion and deletion variant data, limited to coding re-
gions, was downloaded from dbSNP Build 137 (http://
www.ncbi.nlm.nih.gov/projects/SNP/) and grouped into
two categories, indels with records of disease association
Figure 5 HMMvar and Provean score distributions and mean/error ba
transactivity level. (a) HMMvar score distribution of the 15 classes (x-axis
(b) Provean score distribution of the 15 classes. (c) Mean along with error
Provean scores in each class.
in the Locus-specific Mutation Database (LSDB) [24]
and those without LSDB records. There are 2631 indels
with LSDB annotation and 1458 indels without such re-
cords (Table 1). The first disease associated indel group
is assumed to be more deleterious than the second one.
393 coding SNPs, for which there are either SIFT SNP
or PolyPhen prediction records in Ensembl (Table 3),
were used for comparison with the current HMMvar
scoring method. For the human tumor suppressor pro-
tein TP53, a set of 2,565 SNP mutants and correspon-
ding biological activity levels were obtained from the
database IARC TP53 [26]. The mutants associated with
rs of TP53 mutations binned into 15 classes in terms of
represents the 15 classes based on the median of transactivity levels).
bar of HMMvar scores in each class. (d) Mean along with error bar of

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/


Figure 6 ROC curve and standard error of the HMMvar score and the Provean score. (a) ROC curve of the Provean score and the HMMvar
score to distinguish “nonfunctional” and “partly functional” classes from “functional” and “supertrans” classes. (b) Standard error of the mean of
Provean and HMMvar scores in the 15 transactivity level classes.

Figure 7 The HMMvar score of TP53 variants grouped by SIFT
SNP prediction.
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TP53 were partitioned into four classes: nonfunctional,
partially functional, functional (wildtype), and supertrans
(higher activity than wildtype) [25]. Transactivity level
was measured by eight promoter-specific activity levels
and the classification was made in terms of the median
of these eight levels. The dataset CFTR was obtained
from the Human Gene Mutation Database (HGMD Pro-
fessional 2012.3); only SNP mutants were included. The
CFTR gene mutants have typical phenotypes, such as
cystic fibrosis (CF), congenital absence of vas deferens
(CAVD), pancreatitis, etc. This work used only the two
largest groups CF (732 single point mutants) and CAVD
(98 single point mutants) to test the profile HMM pre-
diction method.

HMMvar prediction
According to the theory of natural selection, different re-
gions of a functional sequence are subject to different se-
lective pressures. Multiple sequence alignment reveals this
by residual conservation in certain positions. Some posi-
tions are more conserved than others, and some regions
are more tolerant to insertion and deletion variants than
others. Mutants occurring at highly conserved residuals
are more likely to be deleterious, whereas mutants occur-
ring at lowly conserved residuals are more likely to be
neutral or less deleterious. A profile HMM is a nondeter-
ministic finite state machine consisting of a series of
states, each of which corresponds roughly to a position
(column) in the multiple sequence alignment from which
the HMM was built [23]. Scoring (computing the pro-
bability of generation by a given Markov process) a wild
type sequence or mutated sequence with the profile
HMM gives one an idea how far the given sequence is
away from the original population. A profile HMM cap-
tures the characteristics of a multiple sequence alignment,
from which quantitative conservation information (a prob-
ability) is obtained. Thus, a high score of the probability of
generation from the profile HMM for the wild type se-
quence and a low HMMvar score for the mutant sequence
probably mean that the mutation has deleterious effect.
The five-step prediction pipeline (Figure 1) receives a

set of indels (or other types of variants) as input. The
first step identifies all unique proteins associated with
these indels as wild type sequences (seeds). Since there
may be multiple indels associated with one protein and
multiple proteins may be involved with one indel, it is
more computationally efficient to first identify all the
proteins involved. The mutant sequences for a given
wild type sequence are obtained by inserting the indels
into the wild type sequence. The second step, using the
identified proteins as seeds, invokes PSIblast [27] on the
nonredundant protein sequence (nr) database to find a
set of homologous sequences for each seed protein. The



Figure 8 The relationship between the HMMvar score and the
position of an artificially introduced variant.
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e-value and iteration limits were 0.01 and five, respect-
ively. Only homologous sequences with an identity per-
centage higher than 90% are used in the next step. The
third step invokes ClustalW2 [28] with the BLOSUM62
matrix and the word size three for multiple sequence
alignment for each homologous sequences set. The next
step builds profile hidden Markov models with
HMMER3 [29] using the multiple sequence alignments
as training data (one HMM per seed protein). All mu-
tant type sequences derived from the same seed se-
quence will use the same HMM for functional effect
prediction. The last step uses all the constructed HMMs
for functional predictions. Precisely, given an input indel
(mutant type) corresponding to seed protein i (wild
type), the ith profile HMM is used to compute the
HMMvar score S, as defined below.
The bit score from HMMER3 measures the similarity

of a query sequence with the set of homologous se-
quences used to define the profile HMM. The HMMER3
bit score is a base 2 logarithm of ratio of probabilities
(homology hypothesis over the null hypothesis),

B ¼ log
PðO1O2⋯OnjNMMÞ
P O1O2⋯ NULLÞ ;���

where O1O2…On is the observed protein sequence and
“HMM” is the trained profile HMM. “NULL” is the “null
model”, which is a one-state HMM configured to gene-
rate “random” sequences of the same length as the target
sequence, with each residue drawn from a background
frequency distribution. In HMMER3, for proteins, the
frequencies of the 20 amino acids are set to the amino
acid composition of SWISS-PROT 34 [30]. Since this
logarithm score B has no direct statistical interpretation,
the constituent probabilities are extracted and used to
define the HMMvar score as the odds ratio

S ¼ Pw= 1−Pwð Þ
Pm= 1−Pmð Þ ;

where Pw (Pm) is the probability that the wild type (mu-
tated type) protein sequence could have been generated
by the profile HMM trained on a seed protein homolo-
gous sequence set. Usually, this probability is calculated by
the Viterbi algorithm. Here, this probability is derived
from the bit score obtained from the HMMER3 package.
Given a protein sequence, the probability that it was gen-
erated under the null model is

Pnull ¼ exp l�logP1 þ log 1−P1ð Þð Þ;
where l is the length of the sequence and P1 is set to
350/351 in the architecture of plan 7 null model [31].
From the null model and bit score equation, the prob-
ability Pw or Pm can be derived as P = P null *e

B given a
wild type sequence or mutated type sequence.
Each wild type sequence (or seed protein) corresponds
to one HMM model. Theoretically, the wild type sequence
bit score could be less than or equal to zero, however, it
makes no sense to compare the mutant type sequences
with this wild type sequence, because the wild type itself
does not match with the HMM model. Consequently, we
consider only the HMMs whose wild type sequence bit
scores are greater than zero and compute the odds ratio
for mutant type sequences that derive from these wild
type sequences. The odds ratio is expected to be greater
than 1, indicating the wild type sequence is more likely to
occur in the HMM presented family. However, in practice,
this is not always the case, which indicates that the mutant
type sequence better fits the homology set profile. This
situation may result from the nucleotide level mutation
causing the amino acid level changes to be more compa-
tible [30] with the homologous sequences than the wild
type protein.
If the HMMvar score S is less than a threshold t, the

indel is considered as neutral, otherwise deleterious.
Fisher’s exact test was used to choose the threshold,
using SIFT indel prediction as the reference method, by
minimizing the exact test p-value, giving the optimal
threshold t = 2.0 for the data sets used.
Instead of the odds ratio S, one could use the

HMMER3 bit scores directly in the difference

D ¼ Bw−Bm;

which is the base 2 logarithm of the relative risk (prob-
ability of generating the wild type sequence over the
probability of generating the mutant type sequence).
This was done for the TP53 and CFTR datasets, but the
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prediction results using D were not better than for S,
and hence are not reported here.

Parameter selection
The selection of homologous sequences is key to building
a high quality profile HMM. The nonredundant protein
sequence (nr) database was used with PSIblast [27] to
collect homologous sequences for each seed protein, using
e-value 0.01, and iteration limit five. All sequences above
90% identity were selected as homologous sequences for a
certain seed protein. Attempts to improve diversity in the
homologous sequence set by including the sequences
below 10% identity or using instead all sequences from
60% identity to 95% identity did not produce better
HMMvar score distributions. SIFT SNP prediction is used
as a reference to determine HMMvar score thresholds
of 2.

Discussion
Most existing methods for variant effect prediction are
based on evolutionary conservation theory, which pre-
dicts that highly conserved sites experience strong puri-
fying selection and mutations in these sites are most
likely to be deleterious to protein function. However,
these methods take each site independent of other sites
and do not consider the impact of surrounding sites.
Moreover, most of these methods are designed only for
SNP variants. In contrast, a profile HMM serves as a
representation of a set of homologous sequences, rela-
ting all sites through a Markov process. Consequently,
the present method HMMvar can provide functional
predictions for the effects of all types of sequence varia-
tions besides SNPs, and can predict the effect of multiple
variants simultaneously. The latter is especially useful as
when multiple variants occur in a protein, each one of
them may have deleterious effects on protein function,
but the combination of them may have less harmful ef-
fect due to the possibility of compensatory effect. Profile
HMMs, used as proposed, have the capability to predict
the total effect of multiple mutations along the gene
given a specific haplotype.

Factors affecting the prediction of indel effect
The experiments show several factors that affect the pre-
diction score, such as the location of indels in the protein
(Figure 8), and different types of indels (nonsense, mis-
sense, or frameshift, Figure 3). It is expected that frame-
shift indels close to the 5’ end of the sequence are more
likely to have deleterious effect than indels occurring close
to the 3’ end of the sequence as the former may affect a
larger number of amino acids. (Extensive simulation of
indels or SNPs introduced at different positions along
proteins and subsequent HMMvar predictions confirm
this expectation, for brevity, results are not shown here.
Figure 8 displays the relationship between HMMvar score
and the position of an artificially introduced stop codon to
a random protein). Nonsense variants introduce a stop
codon at the mutation resulting in the termination of
mRNA translation, which brings a greatly deleterious
effect if occurring close to the 5’ end of the sequence. A
missense mutation may change some amino acids locally,
thus may have a relatively smaller effect compared to
frameshift or nonsense variants.
It is expected that the quality of multiple sequence

alignment is another factor that can potentially affect
the prediction of indel effect. Comparing the HMMvar
scores based on different multiple sequence alignment
programs, ClustalW [28] and MUSCLE [32], for the
TP53 transitivity level dataset, showed that HMMvar
scores based on the MUSCLE sequence alignment de-
creases more smoothly and shows lower variance within
the same functional classes than scores based on the
ClustalW sequence alignment. This suggests that having
high quality sequence alignment is important for accur-
ate indel effect prediction.

Conclusion
With the dramatic increase of the number of genetic va-
riations discovered in human and other species’ popula-
tions, much effort is required in order to fully understand
their effect on species. This paper proposed a quantitative
prediction method, HMMvar, to predict the effect of gen-
etic variation, both indels and SNPs, using hidden Markov
models. Results show that HMMvar can achieve good per-
formance in identifying deleterious or neutral variants for
different datasets, and can predict the protein functional
effects of both single and multiple mutations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contribution
ML, LTW, and LZ wrote the paper. ML performed the computational
experiments. LTW proposed the HMMvar S and D scores. LZ proposed the
use of HMMs for variant effect prediction. All authors read and approved the
final manuscript.

Acknowledgements
The work was partially supported by a NIH grant to Zhang.

Author details
1Department of Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, VA, USA. 2Department of Mathematics, Virginia
Polytechnic Institute and State University, Blacksburg, VA, USA.

Received: 2 September 2013 Accepted: 2 January 2014
Published: 9 January 2014

References
1. Sherry S, Ward M, Kholodov M: dbSNP: the ncbi database of genetic

variation. Nucleic Acids Res 2001, 29(1):308–311.
2. MacDonald JR, et al: The database of genomic variants: a curated

collection of structural variation in the human genome. Nucleic Acids Res
2013, 42:D986–D992.



Liu et al. BMC Bioinformatics 2014, 15:5 Page 10 of 10
http://www.biomedcentral.com/1471-2105/15/5
3. Stenson P, Mort M, Ball E: The human gene mutation database:
2008 update. Genome Med 2009, 22(1):13.

4. Flicek P, Amode M, Barrell D: Ensembl 2012. Nucleic Acids Res 2012,
40:D84–D90.

5. Forbes S, Bindal N, Bamford S: Cosmic: mining complete cancer genomes
in the catalogue of somatic mutations in cancer. Nucleic Acids Res 2010,
39:D945–D950.

6. 1000 Genomes Project Consortium: A map of human genome variation
from population-scale sequencing. Nature 2010, 467:1061–1073.

7. The International HapMap 3 Consortium: Integrating common and rare
genetic variation in diverse human populations. Nature 2010, 467:52–58.

8. Schönhuth A, et al: Towards improved assessment of functional similarity
in large-scale screens: a study on indel length. J Comput Biol 2010,
17(1):1–20.

9. Hormozdiari F, et al: The effect of insertions and deletions on wirings in
protein-protein interaction networks: a large-scale study. J Comput Biol
2009, 16(2):159–167.

10. Stenson P, Ball E, Mort M: Human gene mutation database (HGMD):
2003 update. Hum Mutat 2003, 21(6):577–581.

11. Mills R, Pittard W, Mullaney J: Natural genetic variation caused by small
insertions and deletions in the human genome. Genome Res 2011,
21:830–839.

12. Chen C, Chuang T, Liao B: Scanning for the signatures of positive
selection for human-speci¯c insertions and deletions. Genome Biol Evol
2009, 1:415–419.

13. Chen C, Chen F, Li W: Human-specific insertions and deletions inferred
from mammalian genome sequences. Genome Res 2007, 17(1):16–22.

14. Wetterbom A, Sevov M, Cavelier L: Comparative genomic analysis of
human and chimpanzee indicates a key rol for indels in primate
evolution. J Mol Evol 2006, 63:682–690.

15. Cooper G, Shendure J: Needles in stacks of needles: finding disease-causal
variants in a wealth of genomic data. Nat Rev Genet 2011, 12:628–640.

16. Pauline C, Henikoff S: Predicting Deleterious amino acid substitutions.
Genome Res 2001, 11:863–874.

17. Ramensky V, Bork P, Sunyaev S: Human non-synonymous SNPs: server and
survey. Nucleic Acids Res 2002, 30(17):3894–3900.

18. Cooper G, Stone E, Asimenos G: Distribution and intensity of constraint in
mammalian genomic sequence. Genome Res 2005, 15(7):901–913.

19. Asthana S, Roytberg M, Stamatoyannopoulos J: Analysis of sequence
conservation at nucleotide resolution. PLOS Comput Biol 2007, 3:e254.
doi:10.1371/journal.pcbi.0030254.

20. Zia A, Moses A: Ranking insertion, deletion and nonsense mutations
based on their effect on genetic information. BMC Bioinforma 2011,
12:299.

21. Hu J, Pauline C: Predicting the effects of frameshifting indels. Genome Biol
2012, 13:R9.

22. Choi Y, Sims G, Murphy S: Predicting the functional effect of amino acid
substitutions and indels. PLoS One 2012, 7(10):e46688. doi:10.1371/journal.
pone.0046688.

23. Eddy S: Profile hidden Markov models. Bioinformatics 1998, 14(9):755–763.
24. Soussi T, Ishioka C, Claustres M: Locus-specific mutation databases: pitfalls

and good practice based on the p53 experience. Nat Rev Cancer 2006,
6:83–90.

25. Kato S, Han S, Liu W: Understanding the function-structure and function-
mutation relationships of p53 tumor suppressor protein by high-
resolution missense mutation analysis. Proc Natl Acad Sci USA 2003,
100(14):8424–8429.

26. Petitjean A, Mathe E, Kato S: Impact of mutant p53 functional properties
on TP53 mutation patterns and tumor phenotype: lessons from recent
developments in the IARC TP53 database. Hum Mutat 2007, 28:622–629.

27. Stephen F, LM T, Alejandro A: Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res 1997,
25(17):3389–3402.

28. Larkin M, Blackshields G, Brown N: Clustal W and Clustal X version 2.0.
Bioinformatics 2007, 23(21):2947–2948.

29. Finn R, Clements J, Eddy S: HMMER web server: interactive sequence
similarity searching. Nucleic Acids Res 2011, 39(2):W29–W37.
30. Bairoch A, Apweiler R: The SWISS-PROT protein sequence data bank and
its supplement TrEMBL. Nucl Acids Res 1997, 25(1):31–36.

31. Barrett C, Hughey R, Karplus K: Scoring hidden Markov models.
Comput Applic Biosci 1997, 13:191–199.

32. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucl Acids Res 2004, 32(5):1792–1797.

doi:10.1186/1471-2105-15-5
Cite this article as: Liu et al.: Quantitative prediction of the effect of
genetic variation using hidden Markov models. BMC Bioinformatics
2014 15:5.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	HMMvar prediction of indels
	Comparison with other tools
	Validation on individual proteins TP53

	Methods
	Dataset description
	HMMvar prediction
	Parameter selection

	Discussion
	Factors affecting the prediction of indel effect

	Conclusion
	Competing interests
	Authors’ contribution
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


