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Abstract

Introduction Positive pressure ventilation with large tidal
volumes has been shown to cause release of cytokines,
including macrophage inflammatory protein-2 (MIP-2), a
functional equivalent of human IL-8, and neutrophil infiltration.
Hyperoxia has been shown to increase ventilator-induced lung
injury, but the mechanisms regulating interaction between a
large tidal volume and hyperoxia are unclear. We hypothesized
that large tidal volume ventilation using hyperoxia would
increase MIP-2 production and neutrophil infiltration via the
serine/threonine kinase/protein kinase B (Akt) pathway and the
endothelial nitric oxide synthase (eNOS) pathway.

Methods C57BL/6 mice were exposed to large tidal volume (30
ml/kg) mechanical ventilation with room air or hyperoxia for 1–5
hours.

Results Large tidal volume ventilation using hyperoxia induced
neutrophil migration into the lung, MIP-2 production, and Akt
and eNOS activation in a time-dependent manner. Both the
large tidal volume ventilation of Akt mutant mice and the
pharmacological inhibition of Akt with LY294002 attenuated
neutrophil sequestration, MIP-2 protein production, and Akt and
eNOS activation.

Conclusion We conclude that hyperoxia increased large tidal
volume-induced MIP-2 production and neutrophil influx through
activation of the Akt and eNOS pathways.

Introduction
Acute respiratory distress syndrome (ARDS) is an inhomoge-
neous lung disease characterized by neutrophil influx into the
lungs, by increased expression of inflammatory cytokines or
chemokines, by loss of epithelial and endothelial integrity, and
by the development of interstitial pulmonary edema [1]. The
use of mechanical ventilation with high levels of oxygen to ade-
quately oxygenate vital organs further increased the
volutrauma and biotrauma of lungs supported by an increasing
number of experimental and clinical data [2-6]. Mechanical
ventilation with large tidal volume (VT) causes acute lung injury

(ventilator-induced lung injury (VILI)) characterized by an
inflammatory response morphologically and histologically
indistinguishable from that caused by bacterial lipopolysac-
charide [7,8]. Both large VT ventilation and hyperoxia alone can
lead to the production of inflammatory cytokines including
TNFα, IL-1β, and murine macrophage inflammatory protein-2
(MIP-2) [9-11], to airway apoptosis [12], to lung neutrophil
influx [12], and to capillary leak [12]. IL-8 is a member of the
cysteine–amino-cysteine chemokine family, and a potent che-
moattractant for neutrophil recruitment associated with VILI in
humans [13]. Murine MIP-2 is a functional homologue of
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human IL-8 in rodents and has been demonstrated to be a crit-
ical mediator in the pathogenesis of VILI [13]. The mecha-
nisms of ventilator-induced inflammation and airway apoptosis
with and without hyperoxia are complex, including activation of
mitogen-activated protein kinases [12], serine/threonine
kinase/protein kinase B (Akt), and endothelial nitric oxide syn-
thase (eNOS) [14,15].

High VT ventilation can also lead to activation of Akt and eNOS
[14,15]. Nitric oxide has been shown to be produced from L-
arginine by a family of nitric oxide synthase isoforms, including
inducible nitric oxide synthase and eNOS, which are
expressed in a wide variety of tissues and cells [16]. Nitric
oxide regulates smooth muscle cell relaxation, neurotransmis-
sion, macrophage-induced cytotoxicity, and induction of vas-
cular and epithelial hyperpermeability [17,18]. The expression
of eNOS may be induced by calcium-dependent binding of
calmodulin via proinflammatory cytokines or by serine phos-
phorylation through the Akt pathway [19]. eNOS may mediate
the systemic microvascular leak of VILI [20]. Phosphoinositide
3-OH kinase (PI3-K), a heterodimeric complex, and the down-
stream Akt have been shown to modulate neutrophil activation
involved in acute lung injury [15].

In our previous work we have found that large VT ventilation
results in increased lung neutrophil sequestration and
increased MIP-2 production, which was, at least in part,
dependent on the apoptosis signal-regulated kinase 1, c-Jun
N-terminal kinase, and extracellular signal-regulated kinase 1/
2 pathways [21]. In the present article we explore the hypoth-
esis that large VT ventilation with hyperoxia induced MIP-2 pro-
duction, and that neutrophil infiltration is dependent on the
activation of the Akt and eNOS pathways.

Materials and methods
Experimental animals
Male C57BL/6 mice, either wild-type Akt+/+ or Akt+/- on a
C57BL/6 background, weighing between 20 and 25 g were
obtained from Jackson Laboratories (Bar Harbor, ME, USA)
and the National Laboratory Animal Center (Taipei, Taiwan).
Heterozygotes (+/-) are used because homozygotes exhibit
lower fertility and female homozygotes do not nurse well; up to
50% perinatal mortality can occur. Mice that are heterozygous
for the targeted mutation are viable and do not display any
gross behavioral abnormalities.

The construct Akt containing disrupted exons 4–7 and the 5'
end of exon 8 was electroporated into 129P2Ola/Hsd-derived
E14 embryonic stem cells. Chimeras are generated by inject-
ing these embryonic stem cells into C57BL/6 (B6) blasto-
cysts. The resulting chimeric male animals were crossed to
C57BL/6 mice, and then backcrossed to the same for 10 gen-
erations. Heterozygotes (+/-) are intercrossed to generate
homozygous mutant mice (-/-) [22].

The lower expressions of the Akt protein in Akt+/- mice were
confirmed using western blot analysis. The study was per-
formed in accordance with the animal experimental guidelines
of the National Institutes of Health and with approval of the
local research committee.

Experimental groups
Animals were randomly distributed into seven groups in each
experiment: group 1, control, nonventilated wild-type mice
with room air (n = 6 each for western blot, Evans blue dye
(EBD) assay, immunohistochemistry assay, and myeloperoxi-
dase (MPO)/MIP-2); group 2, control, nonventilated wild-type
mice with hyperoxia (n = 6 each for western blot, EBD assay,
immunohistochemistry assay, and MPO/MIP-2); group 3, VT
30 ml/kg wild-type mice with room air (n = 6 each for western
blot: 60 min, 120 min and 300 min, eNOS inhibitor L-NAME
(Sigma-Aldrich, St Louis, MO, USA), EBD assay, immunohis-
tochemistry assay, and MPO/MIP-2); group 4, VT 30 ml/kg
wild-type mice with hyperoxia (n = 6 each for western blot: 60
min, 120 min and 300 min, L-NAME, EBD assay, immunohis-
tochemistry assay, and MPO/MIP-2); group 5, VT 30 ml/kg
wild-type mice with LY294002 (n = 6); group 6, VT 30 ml/kg
Akt+/- mice with room air (n = 6 each for western blot, EBD
assay, immunohistochemistry assay, and MPO/MIP-2); and
group 7, VT 30 ml/kg Akt+/- mice with hyperoxia (n = 6 each for
western blot, EBD assay, immunohistochemistry assay, and
MPO/MIP-2).

Ventilator protocol
We used our established mouse model of VILI as previously
described [21]. In brief, mice were ventilated with 30 ml/kg at
65 breaths/min for 1 and 5 hours while breathing room air or
hyperoxia (>95% oxygen). Our previous work has shown that
changes in cytokine production and neutrophil infiltration
occur around 5 hours. Five hours of ventilation was therefore
used for collection of samples of MIP-2, MPO, EBD leak, and
immunohistochemical analyses [21]. At the end of the study
period, heparinized blood was taken from the arterial line for
analysis of arterial blood gas and the mice were sacrificed.
After sacrifice, the lungs were lavaged and lung tissue was
prepared for pathological examination or measurement of EBD
extravasation, MPO activity, and kinase activation. Oxygen was
fed into the inspiratory port of the ventilator when needed.
Spontaneously breathing animals were exposed to hyperoxia
in an enclosed chamber as previously described [2].

Immunoblot analysis
Crude cell lysates were matched for protein concentration,
resolved on a 10% bis-acrylamide gel, and electrotransferred
to Immobilon-P membranes (Millipore Corp., Bedford, MA,
USA). For assay of Akt and eNOS phosphorylation, western
blot analyses were performed with antibodies to phospho-Akt
and phospho-eNOS (New England BioLabs, Beverly, MA,
USA). For determination of total Akt and eNOS protein expres-
sion, western blot analysis was performed with the respective
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antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA).
Blots were developed by enhanced chemiluminescence (NEN
Life Science Products, Boston, MA, USA).

Immunohistochemistry
The lung tissues from control, nonventilated mice, mice
exposed to high VT ventilation for 5 hours while breathing room
air or hyperoxia were paraffin embedded, sliced at 4 μm,
deparaffinized, antigen unmasked in 10 mM sodium citrate
(pH 6.0), and were incubated with phospho-Akt or phospho-
eNOS primary antibody (1:100; New England BioLabs) and
biotinylated goat anti-rabbit secondary antibody (1:100)
according to the manufacturer's instruction of a immunohisto-
chemical kit (Santa Cruz Biotechnology). The specimens were
further conjugated with horseradish peroxidase–streptoavidin
complex, detected by diaminobenzidine substrate mixture, and
counterstained by hematoxylin. A dark-brown diaminobenzi-
dine signal indicated positive staining of damaged epithelial
cells, while shades of light blue signified nonreactive cells.

Pharmacologic inhibitor
PI3-K inhibitor (LY294002; Sigma-Aldrich) 5 μg/g was given
intraperitoneally 1 hour before ventilation, based on our dose–
response studies that showed 5 μg/g inhibited Akt activity
(data not shown). The eNOS inhibitor L-NAME (Sigma-
Aldrich) 15 mg/kg was given intraperitoneally 1 hour before
ventilation based on a previous in vivo study showing that 15
mg/kg inhibited eNOS activity [20].

Statistical evaluation
The western blots were quantitated using a National Institutes
of Health image analyzer (ImageJ 1.27z; National Institute of
Health, Bethesda, MD, USA) and are presented as the ratio of
phospho-Akt to Akt or of phospho-eNOS to eNOS (relative
phosphorylation) in arbitrary units. Values are expressed as the
mean ± standard error of the mean for at least three experi-
ments. The data of MIP-2, MPO, EBD, and immunohistochem-

ical analyses were analyzed using Statview 5.0 (Abascus
Concepts Inc. and SAS Institute, Inc., Cary, NC, USA).

All results of western blot and MPO assays were normalized
to control, nonventilated mice breathing room air. Analysis of
variance was used to assess the statistical significance of the
differences followed by multiple comparisons with a Scheffe'
s test, and P < 0.05 was considered statistically significant.

EBD analysis, MPO assay, and measurements of MIP-2 were
performed as previously described [12].

Results
Physiologic data
As we have shown previously [12], in the group of animals
used for these experiments there was no statistical difference
in pH, PaO2, PaCO2, mean arterial pressure, and peak inspir-
atory pressure found at the beginning versus at the end of 5
hours mechanical ventilation (Table 1). EBD analysis was used
to measure changes of microvascular permeability in VILI. EBD
was significantly higher in VT 30 ml/kg mice with room air or
hyperoxia compared with those of control, nonventilated mice
(Table 1). EBD was attenuated in Akt mutant mice: VT 30 ml/
kg, wild-type, with room air, 76.8 ± 6.8 ng/mg versus VT 30 ml/
kg, Akt+/-, with room air, 43.9 ± 5.3 ng/mg (P < 0.05); and VT
30 ml/kg, wild-type, with hyperoxia, 165.3 ± 8.4 ng/mg versus
VT 30 ml/kg, Akt+/-, with hyperoxia, 95.1 ± 6.0 ng/mg (P <
0.05).

Lung stretch induced Akt and eNOS activation
We measured the activity of Akt and eNOS for 1–5 hours of
mechanical ventilation to determine the time courses of
stretch-induced kinase phosphorylation (Figures 1a and 2a).
There were time-dependent increases in the phosphorylation
of Akt and eNOS but there was no significant change in the
expression of total nonphosphorylated proteins of Akt. Total

Table 1

Physiologic conditions at the beginning and end of ventilation

Nonventilated Tidal volume 30 ml/kg

Room air Hyperoxia Room air Hyperoxia

pH 7.40 ± 0.03 7.35 ± 0.01 7.33 ± 0.04 7.35 ± 0.03

PaO2 (mmHg) 98.7 ± 0.4 421.3 ± 5.3 86.1 ± 0.8 409.1 ± 4.1

PaCO2 (mmHg) 40.2 ± 0.3 39.1 ± 0.8 35.3 ± 1.4 43.1 ± 1.8

mean arterial pressure (mmHg)

Start 86 ± 1.3 85.3 ± 2.1 84.6 ± 1.6 83.0 ± 2.8

End 85.2 ± 0.7 84.8 ± 0.9 73.5 ± 5.0 71.9 ± 4.3

Evans blue dye (ng/mg lung weight) 14.1 ± 1.3 15.9 ± 2.1 76.8 ± 4.7* 165.3 ± 7.9*

Arterial blood gases, mean arterial pressure, and Evans blue dye analysis of normal nonventilated mice and of mice placed on either room air or 
hyperoxia for 5 hours (n = 10/group). *P < 0.05 versus control, nonventilated mice.
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nonphosphorylated eNOS increased, but less than that of
phosphorylated eNOS. Both Akt and eNOS phosphorylation
increased after 1 hour of mechanical ventilation with VT 30 ml/
kg and remained increased after 5 hours of mechanical venti-
lation as compared with control, nonventilated mice. This sug-
gested that increases in the Akt and eNOS specific activity
may be the mechanism of stretch-induced MIP-2 production
and neutrophil infiltration (Figure 3).

Inhibition of lung stretch-induced Akt and eNOS 
activation with LY294002
To define the effectiveness of LY294002, a PI3-K inhibitor, on
the stretch-induced Akt activation, we pretreated mice with
LY294002 and performed western blot analyses to measure
the phosphorylation of Akt and eNOS. LY294002 does not
decrease total protein expression of Akt and eNOS but did
significantly inhibit the large VT ventilation-induced activation
of Akt and eNOS (Figure 4), suggesting that Akt and eNOS
pathways may be involved in VILI.

Figure 1

High tidal volume ventilation caused a time-dependent increase on Akt activationHigh tidal volume ventilation caused a time-dependent increase on Akt activation. Western blot was performed using an antibody that recognizes the 
phosphorylated serine/threonine kinase/protein kinase B (Akt) expression ((a) and (b), top panel) and an antibody that recognizes total Akt protein 
expressions in lung tissue ((a) and (b), middle panel) from control nonventilated mice and from mice ventilated with tidal volume 30 ml/kg breathing 
room air or hyperoxia at indicated time periods. RA, mice with room air; O2, mice with hyperoxia. Arbitrary units are expressed as relative Akt phos-
phorylation ((a) and (b), bottom panel) (n = 6/group). *P < 0.05 versus control, nonventilated mice.
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Effects of hyperoxia on lung stretch-induced Akt and 
eNOS activation
To determine the effects of hyperoxia on Akt and eNOS acti-
vation in VILI, we measured the activity of Akt and eNOS in
mice exposed to VT 30 ml/kg mechanical ventilation for 1–5
hours while breathing room air or hyperoxia (Figures 1b and
2b). Phosphorylation of both Akt and eNOS increased signifi-
cantly after 1 hour of mechanical ventilation with VT 30 ml/kg
and remained sustained after 5 hours of mechanical ventilation
as compared with control, nonventilated mice using hyperoxia.
Mechanical ventilation with hyperoxia significantly augmented
the activation of Akt and eNOS at 1 hour of ventilation as com-
pared with mechanical ventilation with normoxia (Figure 5). No

significant change was found in the expression of total non-
phosphorylated proteins of Akt.

The targeted mutation gene of the Akt mutant is Akt1, and the
Akt antibody used for the western blot assay reacted with
Akt1, Akt2, and Akt3. The masking of specific Akt gene reduc-
tion by other isoforms explained the similar Akt expression lev-
els in Akt+/- mice and wild-type mice. The total
nonphosphorylated eNOS increased but by less than that of
phosphorylated eNOS. This suggests the addition of oxygen
augmented the increases of the Akt and eNOS specific activ-
ity early (1 hour of ventilation) in the course of mechanical ven-
tilation and may be involved in the mechanism of stretch-

Figure 2

High tidal volume ventilation caused a time-dependent increase on endothelial nitric oxide synthase activationHigh tidal volume ventilation caused a time-dependent increase on endothelial nitric oxide synthase activation. Phosphorylated endothelial nitric 
oxide synthase (eNOS) expressions ((a) and (b), top panel), total eNOS protein expressions ((a) and (b), middle panel), and relative phosphorylation 
quantitation by arbitrary units ((a) and (b), bottom panel) were obtained from control nonventilated mice and from mice ventilated with tidal volume 30 
ml/kg using room air or hyperoxia at indicated time periods (n = 6/group). RA, mice with room air; O2, mice with hyperoxia. *P < 0.05 versus control, 
nonventilated mice.
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Figure 3

Effects of hyperoxia on stretch-induced infiltration of macrophage inflammatory protein-2 production and neutrophil influxEffects of hyperoxia on stretch-induced infiltration of macrophage inflammatory protein-2 production and neutrophil influx. (a) Macrophage inflamma-
tory protein-2 (MIP-2) production in bronchoalveolar lavage (BAL) fluid from control, nonventilated mice and from mice ventilated for 5 hours at tidal 
volume of 30 ml/kg with room air (RA) or hyperoxia (n = 6/group). (b) Myeloperoxidase (MPO) assay of lung tissue from control, nonventilated mice 
and from mice ventilated for 5 hours at tidal volume of 30 ml/kg with RA or hyperoxia (n = 6/group). L-NAME was given intraperitoneally (15 mg/kg) 
1 hour before ventilation. *P < 0.05 versus control, nonventilated mice; †P < 0.05 versus all other groups. Akt, serine/threonine kinase/protein kinase 
B; OD, optical density; WT, wild-type.
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induced neutrophil infiltration (Figure 5). Mechanical ventila-
tion for 1 hour was used in the rest of the experiments. The
augmentation in eNOS activation is significantly less than that
in Akt activation, suggesting the other pathway may be
involved in the Akt activation using hyperoxia.

Inhibition of Akt activation with Akt knockout mice 
reduced effects of hyperoxia on large tidal volume-
induced eNOS activation
To determine the role of Akt activation in ventilation-induced
Akt and eNOS activation, we used Akt mutant mice. Hetero-
zygous Akt mutant mice were ventilated at VT 30 ml/kg for 1

hour. We confirmed the results of the western blot assay using
immunohistochemistry, and identified the cell types in which
large VT ventilation activated Akt and eNOS (Figures 6 and 7).
Hyperoxia increased positive staining of phospho-Akt and
phospho-eNOS in the airway epithelium of mice ventilated at
VT 30 ml/kg for 5 hours (Figures 6 and 7). The increases in
positive staining of phospho-Akt and phospho-eNOS on the
airway epithelium were reduced in Akt mutant mice. This
added further evidence that hyperoxia-augmented lung
stretch-induced lung inflammation was dependent, in part, on
the Akt–eNOS pathway.

Figure 4

LY294002 reduced lung stretch-induced Akt and endothelial nitric oxide synthase activationLY294002 reduced lung stretch-induced Akt and endothelial nitric oxide synthase activation. Mice ventilated at a tidal volume (VT) of 30 ml/kg for 1 
hour were pretreated with 5 μg/g LY294002 intraperitoneally 1 hour before ventilation. Phosphorylated serine/threonine kinase/protein kinase B 
(Akt) or endothelial nitric oxide synthase (eNOS) expression ((a) and (b), top panel), total Akt or eNOS protein expression ((a) and (b), middle panel), 
and relative phosphorylation quantitation by arbitrary units ((a) and (b), bottom panel) (n = 6/group). *P < 0.05 versus control, nonventilated mice; †P 
< 0.05 versus ventilation with LY294002.
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Inhibition of Akt activation with Akt knockout mice 
reduced effects of hyperoxia on large tidal volume-
induced infiltration of neutrophils and cytokine 
production
To determine the effects of hyperoxia on the upregulation of
chemokines for neutrophils, and to determine the neutrophil
content in the vasculature, in lung parenchyma, and in the alve-

oli, we measured MIP-2 protein production and MPO activity
for 5 hours of mechanical ventilation (Figure 3). The MIP-2 and
MPO levels in mice ventilated with hyperoxia at VT 30 ml/kg
were significantly elevated compared with control, nonventi-
lated mice, and compared with mice ventilated with room air at
VT 30 ml/kg. Using Akt mutant mice receiving room air or
hyperoxia at VT 30 ml/kg mechanical ventilation, we found sig-

Figure 5

Akt mutants protected from hyperoxia effects on stretch-induced Akt and endothelial nitric oxide synthase activationAkt mutants protected from hyperoxia effects on stretch-induced Akt and endothelial nitric oxide synthase activation. Phosphorylated serine/threo-
nine kinase/protein kinase B (Akt) or endothelial nitric oxide synthase (eNOS) expressions ((a) and (b), top panel), total Akt or eNOS protein expres-
sions ((a) and (b), middle panel), and relative phosphorylation quantitation by arbitrary units ((a) and (b), bottom panel) were obtained from control 
nonventilated mice and from mice ventilated with tidal volume 30 ml/kg while breathing room air or hyperoxia for 1 hour (n = 6/group). L-NAME was 
given intraperitoneally (15 mg/kg) 1 hour before ventilation. WT, wild-type C57BL/6 mice; RA, mice with room air; O2, mice with hyperoxia. *P < 
0.05 versus control, nonventilated mice; †P < 0.05 versus all other groups.
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nificantly decreased levels of MIP-2 and MPO in the Akt
mutant mice. This observation suggested that addition of oxy-
gen may be involved in large VT-induced neutrophil influx and
MIP-2 production, and was dependent, in part, on the Akt–
eNOS pathway.

Discussion
Large VT in normal animals has been used to mimic the overd-
istention of the less injured and thus more compliant areas of
the lung found in ARDS patients. These animal models,
including our previous work, have shown that simply overdis-
tending lung tissue, in the absence of any other stimuli, causes

production of cytokines and chemokines, but the mechanisms
have been unclear [1,8,21,23-25]. In a previous in vivo mouse
study, we found that hyperoxia increased high VT-induced lung
neutrophil sequestration and increased MIP-2 production,
which was, at least in part, dependent on the c-Jun N-terminal
kinase and extracellular signal-regulated kinase pathways
[12]. We now show that activation of the Akt and eNOS path-
ways was also involved in ventilator-induced neutrophil infiltra-
tion and cytokine production with and without hyperoxia. With
hyperoxia, however, the Akt and eNOS pathways were acti-
vated earlier in the course of high VT ventilation, and may have

Figure 6

Effects of hyperoxia on stretch-induced Akt activation of airway epithelium in Akt mutant miceEffects of hyperoxia on stretch-induced Akt activation of airway epithelium in Akt mutant mice. Representative photomicrographs (×400) with phos-
phorylated serine/threonine kinase/protein kinase B (Akt) staining of the lung sections after 5 hours of mechanical ventilation with room air or hyper-
oxia (n = 6/group). (a) Control wild-type mice with room air. (b) Control wild-type mice with hyperoxia. (c) Tidal volume 30 ml/kg wild-type mice with 
room air. (d) Tidal volume 30 ml/kg wild-type mice with hyperoxia. (e) Tidal volume 30 ml/kg Akt+/- mice with room air. (f) Tidal volume 30 ml/kg Akt+/

- mice with hyperoxia. A dark-brown diaminobenzidine signal indicates positive staining of lung epithelium, while lighter shades of bluish tan signify 
nonreactive cells.

Magnification X400

A B

C D
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Page 9 of 13
(page number not for citation purposes)



Critical Care    Vol 11 No 4    Li et al.
contributed to the increased lung injury seen in hyperoxia with
high VT ventilation compared with high VT ventilation alone.

Large VT ventilation using hyperoxia has previously been
shown in rat models to induce neutrophil migration into the
alveoli and was dependent on MIP-2 production, a functional
homologue of human IL-8 [2,11]. Hyperoxia alone had minimal
effects on IL-8 production [9]. We found hyperoxia increased
high VT-induced interstitial pulmonary edema of acute lung
injury as measured by EBD (Table 1), neutrophil sequestration,

and MIP-2 production (Figure 3). We explored further the
pathways and cell types involved in this exacerbation of non-
cardiogenic pulmonary edema and lung inflammation.

The physical forces of mechanical ventilation are sensed and
converted into the reactions of intracellular signal transduction
via stress failure of the plasma membrane, stress failure of epi-
thelial and endothelial barriers, mechanical stain, or shear
stress [26]. Activation of PI3-K was demonstrated in endothe-
lial cells by shear stress and in cardiac myocytes by stretch

Figure 7

Effects of hyperoxia effects on stretch-induced endothelial nitric oxide synthase activation of airway epitheliumEffects of hyperoxia effects on stretch-induced endothelial nitric oxide synthase activation of airway epithelium. Representative photomicrographs 
(×400) with phosphorylated endothelial nitric oxide synthase staining of the lung sections after 5 hours of mechanical ventilation with room air or 
hyperoxia (n = 6/group). (a) Control wild-type mice with room air. (b) Control wild-type mice with hyperoxia. (c) Tidal volume 30 ml/kg wild-type mice 
with room air. (d) Tidal volume 30 ml/kg wild-type mice with hyperoxia. (e) Tidal volume 30 ml/kg Akt+/- mice with room air. (f) Tidal volume 30 ml/kg 
Akt+/- mice with hyperoxia. A dark-brown diaminobenzidine signal indicates positive staining of lung epithelium, while lighter shades of bluish tan sig-
nify nonreactive cells. Akt, serine/threonine kinase/protein kinase B.

Magnification X400
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[27]. PI3-K and the downstream Akt play important roles in
regulating neutrophil influx and chemotaxis [28,29]. Using
mechanical ventilation, we found the addition of hypoxia aug-
mented phosphorylation of Akt in a time-dependent manner
(Figures 1 and 2). The contribution of Akt was further explored
using a highly specific competitive inhibitor of PI3-K,
LY294002, binding to the ATP-binding site (Figure 4) [30].
Using immunohistochemistry, we confirmed that large VT ven-
tilation induced Akt activation in bronchial epithelial cells but
not in endothelial cells and that Akt activation was augmented
by adding hyperoxia (Figure 6). The discrepancies of cell types
involved may be due to the different physical forces of
mechanical strain and immunohistochemistry method limita-
tions. Neutrophil sequestration to cysteine–amino-cysteine
chemokines, such as IL-8, is dependent on PI3-K, apparently
through mechanisms involving cytoskeletal reorganization
[31].

Nitric oxide synthase can be induced in many cell types,
including neutrophils and type II epithelial cells. eNOS has
been shown to be a target of Akt, and inhibition of the PI3-K

and Akt pathway or mutation of the Akt site on eNOS protein
(at serine 1,177) attenuated the serine phosphorylation and
prevented the activation of eNOS [19]. We found large VT ven-
tilation increased eNOS phosphorylation in bronchial epithelial
cells, neutrophil infiltration, and MIP-2 protein production (Fig-
ures 1, 2, and 7). These effects were augmented after adding
hyperoxia but were blocked in Akt mutant mice (Figures 3 and
5).

Findings in other studies support our findings that neutrophil
infiltration and the development of acute lung injury involve the
PI3-K and Akt pathway in an isolated mouse model of endotox-
emia [14,15]. Dimmeler and colleagues exposed human
umbilical vein endothelial cells to shear stress in a cone-plate
viscometer [19], and found activation of eNOS in endothelial
cells by Akt-dependent phosphorylation via a Ca2+-independ-
ent mechanism. Other workers in our research group have
found that eNOS but not inducible nitric oxide synthase may
mediate the systemic microvascular leak in a rat model of VILI
[20]. We found mechanical ventilation to cause phosphoryla-
tion of eNOS and the upstream regulator of Akt with or without

Figure 8

Differences in signaling pathway activation of mechanical ventilation with and without hyperoxiaDifferences in signaling pathway activation of mechanical ventilation with and without hyperoxia. In previous in vitro and in vivo studies we found ven-
tilation-induced activation of apoptosis signal-regulated kinase 1 (ASK1), nuclear factor-κB-inducing kinase (NIK), c-Jun N-terminal kinase (JNK) and 
extracellular signal-regulated kinase (ERK) pathways [12,25,32]. In the present study, we found that activation of the serine/threonine kinase/protein 
kinase B (Akt) and endothelial nitric oxide synthase (eNOS) pathways was also involved in ventilator-induced neutrophil infiltration, cytokine produc-
tion, and microvascular permeability with and without hyperoxia. MIP-2 = macrophage inflammatory protein-2; NF = nuclear factor.
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hyperoxia; however, hyperoxia augmented activation of Akt/
eNOS early in the course of ventilation (Figure 8).

In the clinical daily practice of ARDS, patients receive a longer
duration of hyperoxia than in this experiment; further experi-
ments using an ex vivo or in vitro model may therefore explore
more about the effects of hyperoxia. Furthermore, significantly
less augmentation of eNOS than that in Akt and the discrep-
ancy of cell types involved in our study suggested the use of a
single model may be limiting in terms of providing adequate
generalizable information.

Conclusion
Using an in vivo mouse model, we have found that hyperoxia
increased high VT-induced epithelial cell injury, resulted in
increased pulmonary neutrophil sequestration, and increased
MIP-2 production, which was, at least in part, dependent, on
the Akt and eNOS pathways. In subjects with severe ARDS
the VT cannot be lowered to the recommended 6 ml/kg, and
hyperoxia is required to maintain oxygenation. These data have
added to the understanding of the mechanism involved in the
effects of mechanical forces in the lung with hyperoxia, and
have advanced the growing knowledge of the biochemical
pathways involved in the pathogenesis of biotrauma with
hyperoxia.
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Key messages

• Hyperoxia augments VILI.

• Hyperoxia augmentation of VILI depends on Akt and 
eNOS activation.

• Inhibition of Akt and eNOS may offer new treatment 
options for patients with severe ARDS.
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