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Abstract

Extracellular matrix (ECM) is a fundamental component of the heart, guiding vital cellular

processes during organ homeostasis. Most cardiovascular diseases lead to a remarkable

remodeling of the ECM, accompanied by the formation of a fibrotic tissue that heavily com-

promises the heart function. Effective therapies for managing fibrosis and promoting physio-

logical ECM repair are not yet available. The production of a decellularized extracellular

matrix (d-ECM) serving as a three-dimensional and bioactive scaffold able to modulate cel-

lular behavior and activities is considered crucial to achieve a successful regeneration. The

protocol represents a step-by-step method to obtain a decellularized cardiac matrix through

the combination of sodium dodecyl sulphate (SDS) and Triton X-100. Briefly, cardiac sam-

ples obtained from left ventricles of explanted, pathological human hearts were dissected

and washed to remove residual body fluids. Samples were then snap-frozen and sliced by a

cryostat into 350 μm thick sections. The sections obtained were decellularized using a solu-

tion containing 1% Triton X-100 and 1% SDS in combination, for 24 hours, until observing

the color change from brownish-red to translucent-white. As a result, the protocol shows effi-

ciency in preserving ECM architecture and protein composition during the whole process,

suggesting that it is worthwhile, highly reproducible and produces a well- preserved decellu-

larized extracellular matrix from cardiac samples. Notwithstanding, some limitations need to

be addressed, such as the risk for microbial contamination and the unpredictable trend of

the protocol when applied to decellularize samples other than myocardium, vessels, or skin.

These issues require antibiotics mixture supplement during the procedure followed by UV

sterilization, and appropriate adjustments for a tissue-specific utilization, respectively. The

protocol is intended to produce a cardiac d-ECM for cell settlement, representing the ideal

scaffold for tissue engineering purposes.
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Introduction

Regenerative medicine and cardiac tissue engineering are turning their attention on the appli-

cation of decellularized extracellular matrix (d-ECM) to remodel, replace and regenerate dam-

aged or impaired heart [1]. The production of a three-dimensional scaffold owning features

suitable to modulate cellular behavior and activities for an effective regeneration is pivotal, and

it is actually focused on the share of three major components: scaffold, cells and biosignals [2].

Extracellular matrix (ECM) is a three-dimensional network containing macromolecules such

as structural proteins like collagen, enzymes, growth factors and complex polysaccharides, syn-

thesized by cells to create a specialized microenvironment for their support, able to influence

their biology and conferring specific physical, chemical, and mechanical properties to the tis-

sue [3–9]. Cardiac ECM is typically composed of glycosylated proteins and polysaccharides,

including fiber proteins, laminin, tenascin, and fibronectin, each one playing a specific role.

The native ECM synthetized by resident cells represents a biological and naturally functiona-

lized support, responsible for cell-cell and cell-microenvironment crosstalk and interaction,

and affecting the fate of cell migration, differentiation, and apoptosis [10]. The high complex-

ity of natural ECM makes hard to reproduce it synthetically. Hence, many researchers focused

on the development of a biological ECM suitable for regenerative medicine by decellularizing

tissues, preserving as much as possible their complex architecture and removing immunogenic

components responsible for immune rejection [11]. ECM components are widely used; they

are commonly isolated and purified from natural tissues and employed, as a single component

or mixtures, for cardiac regeneration in the form of injectable hydrogels, or as cardiac patches

directly implanted into the infarcted myocardium, sometimes repopulated with selected cells,

and functionalized introducing bioactive compounds [12–14]. Although purified ECM com-

ponents are considered a promising tool for clinical application in the treatment of ischemic

heart disease, a major issue remains, as their structural integrity and biological activity are par-

tially or completely lost due to their purification and isolation processes, and they are not best

performing under biological and biomechanical profile when compared to native cardiac

ECM [15]. A novel natural ECM, composed of decellularized myocardium is intensively

researched for cardiac tissue engineering applications, as it may represent the ideal scaffold,

offering a preserved composition and architecture along with a biological activity suitable for

their further repopulation with cells [16–18]. ECM density, morphology and thickness can

vary from organ to organ, thus the set-up of decellularization protocol should be specific for

each type of tissue [19]. Several protocols describe a sequential or a combinatorial effect of

enzymatic, chemical, and physical techniques, although physical ones are not used alone, but

rather as a support to chemical and enzymatic techniques to boost tissue decellularization [20].

The ideal decellularization of cardiac tissues requires the complete removal of cells, leaving

pristine structural, biochemical, and mechanical properties of the ECM [21]. Several tech-

niques have been tuned to optimize the decellularization of cardiac tissue, including the use of

physical, biological, or chemical methods [22, 23]. The most popular physical methods for

decellularization are freeze-thawing cycles and the application of mechanical forces to disrupt

cell membranes. Even though they are effective in causing a complete lysis of cells, they could

result in damage to the ECM, due to ice crystals formation and mechanical stress, respectively.

Biological procedures leverage enzymatic reactions for tissue decellularization. The enzymes

commonly used are nucleases and proteases, worthy to degrade RNA and DNA by cleaving off

specific bonds within or at the end of nucleic acids, or by denaturing proteins. The application

of this method usually causes a cellular and even ECM disruption [24]. Chemical methods are

essentially based on the use of non-ionic or ionic detergents for cellular removal. Chemical

techniques are also used in combination with physical methods to reach a whole tissue
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decellularization. The most used non-ionic detergent is Triton X-100 which targets lipid-lipid and

lipid-protein interactions, leaving protein-protein interactions intact [25, 26]; Sodium Dodecyl

Sulphate (SDS) is an example of ionic detergent widely used in decellularization protocols, effec-

tive to remove cells by solubilizing their membranes. Prolonged exposures to SDS can cause pro-

tein denaturation, and ECM structure alteration [27]. To prevent ECM from chemical damages, it

could be recommendable to shorten the incubation time to obtain a decellularized matrix with a

well-preserved architecture [28]. Here, we describe a novel protocol to produce decellularized

ECM from human heart, through the combinatorial effect of SDS and Triton X-100, with a short

incubation time of the sample, aiming at minimizing the disruption of the matrix.

The proposed protocol has been successfully used, with minor adjustments, to prepare scaf-

folds from human skin, showing a high cytocompatibility, supporting cell adhesion, migration,

differentiation, and survival in vitro, and also tested in stretch bioreactor to develop more mature

and performing 3D supports for cardiac regeneration [28–31]. Although the procedure allows to

obtain a d-ECM with minimal mechanical and chemical disruption, during the entire process

microbial contaminations could affect the biological quality of the decellularized tissue, therefore,

in addition to the use of antibiotics, a sterilization cycle under UV is mandatory prior to use [32].

However, it should be noted that the procedure has been optimized for decellularization of skin,

myocardium, and vessels only, thus, it is likely that the trend of decellularization is different based

on the tissue source and needs further adaptation of the protocol proposed in this study [11].

Materials and methods

The protocol described in this peer-reviewed article is published on protocols.io, https://dx.

doi.org/10.17504/protocols.io.4r3l2o22xv1y/v2 and is included for printing as S1 File with

this article. All cardiac tissue samples were obtained from explanted hearts of patients (n = 10,

mean age 49.5 ± 4.7) undergoing heart transplantation because of end-stage heart failure asso-

ciated with ischemic cardiomyopathy.

Methods for quantitative measurement of DNA content, quantitative measurement of col-

lagen and sGAG, immunohistochemistry and Real-time PCR are described in details in sup-

porting info (S1 Text).

Ethics statement

Patients provided written informed consent for use of heart tissue for experimental studies

and specimens were collected, without patient identifiers, following protocols approved by

Comitato Etico University of Naples Federico II.

Results

The proposed protocol provides a fast and reproducible method to obtain decellularized extra-

cellular matrix from cardiac tissue as reported in Table 1.

The combination of Triton X-100 and SDS and the short time of exposure during the decel-

lularization procedure allows the preservation of the three-dimensional architecture and pro-

tein composition of the samples.

At the end of the decellularization procedure the macroscopic observation of myocardial

sections, shows an intact tissue architecture and the typical color shift from brownish-red to

translucent-white, as a result of a complete decellularization (Fig 1).

Hematoxylin and Eosin (HE) staining reveals the absence of any cellular debris or nuclei in

d-ECM (Fig 2B) when compared to the native tissue (Fig 2A), proving the effectiveness of the

procedure. Appropriately decellularized tissue is defined by the literature [21] as having a

DNA content below 50 ng/mg tissue. Analyzed d-ECM according to AllPrep DNA/RNA Mini
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Kit (Qiagen, Hilden, Germany) instructions, showed a removal of dsDNA of 97.90 ± 0.86%

confirming the efficacy of the decellularization (Fig 2D). The absence of residual DNA frag-

ments was also checked out by the electrophoresis on agarose gel, showing no DNA band for

d-ECM (Fig 2C).

Minimal data set are available in Supporting information (S1 Data).

Additionally, the content and the distribution of the specific ECM proteins appears unal-

tered, as showed by the histochemical analysis.

Masson’s and Mallory’s trichrome and Sirius Red stainings showed the preservation of col-

lagen fibers as well, while PAS Morel-Maronger and Gomori’s stainings make evident the

retention of non-collagenous proteins and elastic fibers, respectively (Fig 3).

Additional images are available in Supporting information (S1 Fig).

The content of collagen and sulfated glycosaminoglycan (sGAG) was investigated by Sircol

or Blyscan quantitative dyebinding assay, respectively. The quantitative measurements of col-

lagen and sGAG in d-ECM demonstrates a high retention of both components. Accordingly,

collagen residual content resulted 56.55 ± 8.07%, while sGAG showed a retention of

59.30 ± 3.85% (Fig 4).

Minimal data sets are available in supporting information (S2 and S3 Data).

Immunohistochemistry also highlights the retention of fibronectin, laminin, and tenascin

in the decellularized extracellular cardiac matrix, supporting that the decellularizing method is

conservative for the structural proteins as well (Fig 5).

Additional images are available in Supporting information (S2 Fig).

Real-Time PCR revealed that d-ECM obtained with the described protocol supports cell liv-

ing through and differentiation towards cardiac lineages. Bioconstructs were prepared by

Table 1. Protocol steps scheme.

DAY 1 DAY 2 DAY 3

T TIME BUFFER/REAGENT T TIME BUFFER/REAGENT T TIME BUFFER/

REAGENT

RT 24 hrs 1% SDS, 1% Triton X-100 in double-

distilled water

RT 24 hrs 0.25 μg/ml Amphotericin B, 100 U/ml Penicillin, 50 U/ml

Streptomycin in 1x PBS

RT 30

min

Double-distilled

water

https://doi.org/10.1371/journal.pone.0276224.t001

Fig 1. Sections of left ventricles sliced by cryostat. Macroscopic observation showing the color change from brownish-red to translucent-white.

https://doi.org/10.1371/journal.pone.0276224.g001
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Fig 2. Evaluation of decellularization procedure effectiveness. Representative images of Hematoxylin and Eosin

staining (HE) on cryosections of native myocardium (A) or of d-ECM (B). Scale bar length is 50 μm. C: Agarose gel

electrophoresis analysis of dsDNA isolated from native myocardium and d-ECM. D: Graphical representation showing

a DNA content in native myocardium (NM) of 103.8 ± 8.34 and in d-ECM of 2.049 ± 0.7186 ng per mg of dry tissue.

Each value expresses the mean of 10 samples (n = 10) ± SEM (��� p< 0.0001).

https://doi.org/10.1371/journal.pone.0276224.g002

Fig 3. Evaluation of the d-ECM architecture and composition by histochemistry. Representative images of Hematoxylin and Eosin staining (A) showing no

residual nuclei, Masson’s and Mallory’s Trichrome (B and C, respectively), Sirius Red (D), PAS Morel-Maronger modified (E) and Gomori’s paraldehyde-

fuchsin (F) stainings on cryosections of d-ECM showing collagen fibers stained blue (B-C) or red (D), glycoproteins stained violet (E) and elastic fibers stained

pink (F). Scale bar length is 50 μm.

https://doi.org/10.1371/journal.pone.0276224.g003
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Fig 4. Quantitative measurements of collagen and sGAG in native myocardium and d-ECM. Data showing the

retention of collagen (123.0 ± 14.33 μg/mg wet tissue) and sGAG (2.039 ± 0.1681 μg/mg wet tissue) in d-ECM

compared with native myocardium (225.8 ± 10.41 μg/mg wet tissue; 3.433 ± 0.1572 μg/mg wet tissue). Each value

expresses the mean of 10 samples (n = 10) ± SEM (��� p� 0.0001).

https://doi.org/10.1371/journal.pone.0276224.g004

Fig 5. Evaluation by immunohistochemistry of structural protein retention in d-ECM. Representative images of

fibronectin (FN), laminin (LN) and tenascin (TN) distribution in cardiac d-ECM. Scale bar length is 50 μm.

https://doi.org/10.1371/journal.pone.0276224.g005
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culturing human cardiac progenitor cells (hCPCs) isolated from adult human hearts (n = 10)

on d-ECM scaffolds (n = 3) previously sterilized and rehydrated with culture medium. After

21 days of culture hCPCs were detached from the d-ECM and analyzed by Real-time PCR.

From the analysis emerged that hCPCs culterd on d-ECM showed a statistically significant up-

regulation of genes involved in the differentiation towards cardiomyocytes (MEF2C and

ACTC1), endothelial (ETS1 and FVIII) and smooth muscle cells (GATA6 and ACTA2) with

respect to hCPCs cultered on plastic under the same conditions (Fig 6).

Fig 6. Gene expression analysis of cardiac cell markers in hCPCs culterd on d-ECM or on plastic. Real-time PCR

analysis for cardiac gene expression showed an upregulated transcription of cardiomyocyte markers MEF2C and

ACTC1 (7.320 ± 1.096 and 9.053 ± 1.305), smooth muscle cell markers GATA6 and ACTA2 (4.903 ± 1.245 and

4.423 ± 0.6064) and endothelial cell markers ETS1 and FVIII (5.480 ± 1.394 and 2.297 ± 0.3720) (�p� 0.05;
��p� 0.001).

https://doi.org/10.1371/journal.pone.0276224.g006
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Minimal data set are available in Supporting information (S4 Data).

The natural d-ECM obtained by applying this protocol shows a huge potential in cardiac

tissue engineering. The scaffold could provide a suitable microenvironment along with biolog-

ical signals for damaged heart, prompting the tissue reconstruction upon implantation. The

preservation of qualitative and quantitative integrity of the ECM after the decellularization

method offers a good basis for a facilitating recellularization, reintroducing cells into the spe-

cific compartment of the scaffold, mimicking normal tissue structure.

For the near future, the d-ECM produced by the method proposed could be concretely con-

sidered for pre-clinical and clinical applications, allowing the construction of patches for car-

diac repair.

Supporting information

S1 File. Step-by-step protocol also available on protocols.io.

(PDF)

S1 Fig. Histochemistry on native and decellularized criosections. Representative images of

Hematoxylin and Eosin, Masson’s and Mallory’s Trichrome, Sirius Red, PAS Morel-Maronger

modified and Gomori’s paraldehyde-fuchsin stainings on cryosection sets of d-ECM (S1-S7)

compared to liver sections as negative control (NC) and native heart sections as positive con-

trol (PC1-PC2). Scale bar length is 50 μm.

(TIF)

S2 Fig. Immunohistochemistry of ECM structural proteins. Representative images of fibro-

nectin, laminin and tenascin distribution in cardiac d-ECM. Scale bar length is 50 μm.

(TIF)

S1 Data. DNA content minimal data set.

(XLSX)

S2 Data. Collagen content minimal data set.

(XLSX)

S3 Data. sGAG content minimal data set.

(XLSX)

S4 Data. Real-time minimal data set.

(XLSX)

S1 Table. Primer sequences of genes analyzed by real-time PCR.

(DOCX)

S1 Text. Methods supporting file.

(DOCX)
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