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We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early
Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology.
Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired
as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to
inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes
in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a
specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting
specimen integrity and are intended as a reference in applying CT more broadly to evaluating the
authenticity of comparable fossils.

Design type(s) comparison objective • quality control testing design

Measurement Type(s) 3D structure determination assay

Technology Type(s) computed tomography scanner

Factor type(s) physical object quality

Sample Characteristics
Liaoning Province • Confuciusornis lacustris • Jeholodens jenkinsi •
Vertebrata
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Background & Summary
Vertebrate fossils are often broken upon discovery and during excavation, and must be reassembled for
research and display. This is especially true for specimens preserved on bedding planes in thinly
laminated sediments, which can completely shatter. Simply gluing together the broken edges rarely yields
a structurally sound specimen because the edges are too thin. Repair commonly involves mosaicking the
broken pieces together, using plaster or grout, onto a stable ‘backing-slab’ that provides structural
integrity. The product is a three-layered object whose ‘stratigraphy’ is man-made (Fig. 1).

A two-century-long history indicates that this type of reassembly is prone to inadvertent error and
willful forgery1–7. Surface layers often include extraneous pieces to fill voids around the restored skeleton.
It is not uncommon to discover that bones from different specimens, even taxa, were combined to create
the impression of a single ‘complete’ skeleton. Surfaces are often painted and textured to disguise repairs
and give visual continuity to the whole. For larger specimens, it was once common practice to build a
structural wooden frame around the reconstructed slab that obscured its ‘stratigraphy.’ Painted or
grouted edges also hide evidence of reconstruction and obscure interpretation.

Once reassembled, these are generally considered to be ‘specimens’ in the conventional sense. Here,
we emphasize that they are more aptly viewed as ‘amalgamations’ since they often comingle associated
bone-bearing pieces with extraneous rocks and consolidating materials. Unrecognized extraneous
elements can lead to cascading errors in scientific analyses.

The problem grew significantly in the last two decades as fossiliferous deposits in China began to yield
prodigious quantities of fossils, many of which were quite complete and well-preserved8–24. However,
many of the new specimens, including holotypes, were reportedly excavated and reassembled
autonomously by local farmers who sold them to private collectors, researchers, and museums25–29. In
such cases, a scientific ‘chain-of-possession’ is difficult to establish25–34. Although strictly illegal35,
commercialization of Chinese fossils and a quasi-free-market of fossil trade are widespread owing to weak
law enforcement36. Commercialization also provides financial incentives to cosmetically enhance
imperfect fossils, causing scientific damage26–29.

Some prominent scientists claim that ‘Normally we know right away if a fossil is a fake…’34. Indeed, a
published fossil skull37 was recently exposed as a forgery using conventional techniques38 and the
publication was retracted39. But conventional preparation is limited by its invasive nature, and for
logistical and technical reasons other scientists concede that ‘Authentication is not easy’34.

With this widely recognized problem, we endorse the recommendation that authentication of fossils
not directly collected by scientists should be a required research protocol36. Chinese authorities have
taken legislative steps to prevent illegal trafficking in fossils35,40,41 but a black market has existed for
years26–29 and concerns are voiced that ‘The fake fossil problem has become very, very serious’34. These
problems, highlighted by China, are global in nature1–4,7.

Computed tomography (CT) has been used for 30 years to nondestructively inspect the entire 3D
volumes of fossils42–48. CT can reveal many features otherwise invisible such as endocasts of the
brain49–53 and inner ear54,55. Several amalgamations and forgeries have passed through the University of
Texas High-Resolution X-ray Computed Tomography Facility (UTCT) in its 19 years of operation. Here,
we describe protocols that we developed to authenticate fossils by validating the associations between
pieces and to identify extraneous elements6.

More general application of CT to forensic problems in paleontology is hindered by the lack of
exemplar datasets and published assay procedures. We describe three datasets from Early Cretaceous
lacustrine deposits of Liaoning, P. R. China that illustrate the use of CT in forensic analysis. The first is a

Figure 1. The Confuciusornis amalgamation, in oblique view. Volumetric rendering from CT data

(Data Citation 1) showing its 3-layer man-made stratigraphy. The top layer is only 2–8 mm thick and was

shattered during excavation. It was mosaicked together using a ceramic grout on a backing slab that provided

structural integrity. Edges of the top bone-bearing layer are colored red; the middle layer consisting of grout is

green; and the backing slab is gray.
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specimen of the primitive bird Confuciusornis56 that was shattered and reconstructed with relatively
minor errors. The second is the so-called ‘Archaeoraptor’57, a chimaera of multiple taxa6. The third is a
nearly perfect specimen of the primitive mammal Jeholodens58. Our intention is that these datasets may
assist others in properly interpreting CT imagery to evaluate the integrity of individual specimens, and to
extend the application of CT in authenticating fossils.

Methods
Material
Confuciusornis lacustris. (Figs 1,2,3,4,5,6; see Table 1 for scanning parameters; Table 2 for data output;
Table 3 for movies; see also Supplementary Figures; Data Citation 1; additional information is available
at: http://digimorph.org/specimens/Confuciusornis_sp/skeleton/). This unnumbered specimen was
provided to us for scanning in 1998 by Mr Guan Jian of the Beijing Museum of Natural History,
as an early test of whether specimens from the newly discovered Liaoning basin were amenable to CT
scanning59. It was reportedly collected from the lower Yixian Formation, but its precise locality within the
Liaoning basin is unknown and it came to us with no other documentation. It is now housed in the
Institute for Vertebrate Paleontology and Paleoanthropology in Beijing.

‘Archaeoraptor liaoningensis’. The ‘Archaeoraptor’ amalgamation (Figs 7,8,9,10,11; see Table 1 for
scanning parameters; Table 2 for data output; Table 3 for movies; see also Supplementary Figures;
Data Citation 1; additional information is available at: http://digimorph.org/specimens/Archaeoraptor_
forgery/) was reportedly collected from the Early Cretaceous Jiufotang Formation of Liaoning, but no
documentation accompanied it57. It was provided for scanning by Steven and Sylvia Czerkas of the
Dinosaur Museum, Blanding, Utah, under a grant from the National Geographic Society to Dr Philip
Currie of the Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta. The specimen was later
disclosed to have been smuggled from China and sold for $80,000 in the US18–21,24–28, as a purported
missing link between birds and more primitive theropod dinosaurs57. It was repatriated to the Institute
for Vertebrate Paleontology and Paleoanthropology in Beijing in 2000.

A series of 22 large-format photographs of the specimen’s surface was taken by Mr. Lou Mazzatenta for
National Geographic Creative in 1999. They were taken using visible and ultraviolet light, and can be
viewed at www.DigiMorph.org/specimens/Archaeoraptor_forgery. These photos were taken after we CT
scanned the amalgamation, and we note that one of its extraneous pieces (Piece F, below) was
subsequently removed and is absent in the photographs.

Figure 2. Photograph of the Confuciusornis amalgamation as it was presented for CT scanning in 1998, taken

with 35 mm color slide film (Photography by Joe Jaworowski).
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Jeholodens jenkinsi. National Geological Museum of China, holotype, specimen number GMW 2139a
(Figs 12,13,14; see Table 1 for scanning parameters; Table 2 for data output; Table 3 for movies; see also
Supplementary Figures; Data Citation 1; additional information is available at: http://digimorph.org/
specimens/Jeholodens_jenkinsi/)58. The only known specimen of Jeholodens jenkinsi was made available
for scanning by Dr Zhe-Xi Luo, then Curator at the Carnegie Museum of Natural History, Pittsburgh,

Figure 3. A 3-D surface model of the Confuciusornis amalgamation (a), compared to a 3-D volumetric

rendering (b) that shows more vividly its extensive fracture pattern. Both were generated from the same

high-resolution X-ray CT dataset (Data Citation 1). The skeleton (c) was digitally filtered from the rest of the

amalgamation. The shatter-fracture pattern of the bone-bearing top layer (d) was mapped from the volumetric

rendering and from cross-sections.
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Figure 4. Confuciusornis amalgamation, showing slices 195 and 343 (see Fig. 5 for slice locations) in original

gray scale (above), and color coded (below). Contrast was adjusted and colors were added in Adobe Photoshop.

Letters refer to the validated bone-bearing pieces and numbers refer to shims labeled in Fig. 5. In slice 343, the

arrow points to a thin, black separation between a shard of the right femur (red) and the rest of the slab

(yellow) filled with a low density consolidant, indicating that this piece was glued back onto the slab.

Figure 5. Map of the Confuciusornis amalgamation derived from high-resolution X-ray CT data (Data

Citation 1). The skeleton is in red and its associated shale is yellow. Extraneous bone-bearing pieces are

magenta, construction shims are gray, and grout is green. The numbered lines indicate the positions of slice

planes for original CT data labeled in Figs 4 and 6.
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Pennsylvania. It was recovered by an unknown collector in the Early Cretaceous Yixian Formation,
reportedly from the Sihetun site, Liaoning Province, P.R. China, and obtained by the National Geological
Museum of China.

Scanning Protocols and Parameters
All three specimens were scanned at UTCT using an ACTIS scanner manufactured in 1997 (with routine
subsequent upgrades) by BioImaging Research, of Lincolnshire, Illinois. The scanner used to generate
these datasets is now decommissioned. For the sake of procedural clarity, its technical specifications and
the parameters used to scan each specimen are detailed here. The evolution of CT instrumentation and
protocols has been thoroughly described elsewhere43–47,60.

For all three specimens, we used our high-energy subsystem with scanning parameters recorded in
Table 1. At the time, this system employed a Pantak 420-kV tungsten X-ray source, a rotating turntable
that accommodated samples up to 50 kg in weight, and either of two possible high-energy detectors.
One detector (P250D), a 512-channel cadmium tungstate solid-state linear array, provided the
greatest sensitivity among our detectors because of its high absorption efficiency. Its vertical aperture

Figure 6. 3-D volume rendering of the Confuciusornis skull, showing two mismatched admixed fragments in

map view (a). The horizontal red line indicates the position of slice 74, which is shown as a colored cross

section (b), and cross section without color (c). Color was added in Adobe Photoshop, to highlight the

mismatched pieces. White arrows (a) indicate a mismatched rounded edge against which the squared corner of

the extraneous red piece was fitted. Green arrows indicate ‘strings’ of grout used to hold the extraneous piece in

place. Red arrows (b,c) point to the extraneous piece in cross section; note how thin it is compared to the pieces

on either side, and that it is separated from adjacent bones by grout.
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(slice thickness) could range from 5mm down to 0.25 mm, with a horizontal channel pitch of 0.31 mm.
The Radiographic Line Scanner (RLS) detector, a 2048-channel gadolinium oxysulfide linear array,
provided lower sensitivity than the P250D but higher in-plane spatial resolution, with a channel pitch of
0.025 mm. It could be used either in a high-resolution mode, with a vertical aperture of 0.25 mm,
or (by sacrificing some sensitivity) using a vertical aperture that could vary from 0.5 to 5 mm.

Jeholodens and the Archaeoraptor amalgamation were mounted in a Plexiglas cylinder using florist’s
foam to prop them upright with the longest axis vertical. CT slices were taken perpendicular to the slab
face. The Confuciusornis amalgamation was stabilized inside a Plexiglas tube by leaning it at an angle of
about 6° against the cylinder walls. In all three specimens the long axis of the slab corresponds roughly to
the vertebral axis and longest dimension of the skeleton in its death posture.

Confuciusornis lacustris. All scanning was done by Richard Ketcham and Timothy Rowe on July
16–17, 1998. The Confuciusornis amalgamation was scanned in 0.5-mm-thick slices, with an inter-slice
spacing (i.e., distance between slice centers) of 0.45 mm. This is achieved by overlapping the scan planes
by 0.05 mm, effectively oversampling the data. This generated 618 consecutive slices. Each reconstructed
slice was 1024 × 1024 pixels with a field of view of 220 mm, resulting in an inter-pixel spacing (in-plane
resolution) of 0.215 mm. See Table 1 for additional scan parameters and Table 2 for data outputs
(Data Citation 1).

Jeholodens Confuciusornis ‘Archaeoraptor’

X-ray source setting* 250 kV, 3.5 mA 420 kV, 4.4 mA 420 kV, 4.7 mA

X-ray focal spot size 1.0 mm 1.8 mm 1.8 mm

Detector†,‡ RLS P250D P250D

X-ray pre-filter§ None 2 brass plates (1.58 mm each) 1 brass plate (1.58 mm)

Wedge|| Air Air Air

Offset¶ 0% 160% 190%

Source-object distance# 752 mm 710mm 700mm

Views** 1800 1200 2000

Rays averaged†† 2 1 1

Samples per view‡‡ 1 1 1

Integration time‡‡ 25 ms 64 ms 84 ms

Reconstruction offset§§ 600 600 400

Reconstruction scale§§ 550 900 1100

Reconstructed image size (pixels) 1024 1024 1024

Grayscale range 12 bit 12 bit 12 bit

Field of reconstruction|||| 50 mm 220mm 270mm

Slice thickness 0.25 mm 0.5 mm 1.0 mm

Inter-slice spacing 0.20 mm 0.45 mm 0.9 mm

Cropped image size (pixels) 1,024 × 1,024 996 × 265 1,022 × 149

Number of slices 400 618 422

Table 1. Scanning Parameters. *420-kV Pantak tungsten X-ray source †RLS Detector: Radiographic Line
Scanner (RLS) detector, a 2048-channel gadolinium oxysulfide linear array; this detector, although less
sensitive, provides higher in-plane spatial resolution, with a channel pitch of 0.025 mm. It can be used either in
a high-resolution mode, with a vertical aperture of 0.25 mm, or (by sacrificing some sensitivity) using a vertical
aperture that can vary from 0.5 to 5 mm. ‡P250D Detector: Linear array detector consisting of a 512-channel
cadmium-tungstate solid-state linear array, which provides superior sensitivity because of its high absorption
efficiency. Its vertical aperture (slice thickness) ranges from 5mm down to 0.25 mm, with a horizontal channel
pitch of 0.31 mm. §Material through which X-rays are passed to change beam properties; see Ketcham and
Carlson 60 for further explanation. ||Medium through which X-ray signal is calibrated; see Ketcham and
Carlson 60. ¶In offset-mode scanning, center of rotation is laterally offset to increase field of view by percent
value listed; see Ketcham and Carlson 60. #Distance between X-ray focal spot and center of rotation. **Number
of rotational positions at which X-rays were collected; see Ketcham and Carlson 60. ††Number of consecutive
detector channels (‘rays’) averaged during acquisition. For example, a value of 2 for a 2048-channel detector
results in 1024 raw data values, and a value of 1 indicates no averaging (2048values). Similar to binning.
‡‡Integration time denotes time over which a single detector reading, or sample, is collected, and samples/view
denotes the number of samples collected for each view. §§Reconstruction parameters for the CT reconstructor.
Offset determines final gray level of wedge material, and increasing scale increases image contrast; see Ketcham
and Carlson 60. ||||Field of view in final reconstructed image.

www.nature.com/sdata/
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Dataset Number Jeholodens Confuciusornis ‘Archaeoraptor’

1.0

Original Data Format* 16-bit TIF 16-bit TIF 16-bit TIF

Number slices 400 618 422

Individual slice file size 2.049Mb 518 Kb 330 Kb

Total zipped dataset volume 367Mb 149Mb 74Mb

Voxel dimension X 0.04883mm 0.2148 mm 0.2637 mm

Voxel dimension Y 0.04883mm 0.2148 mm 0.2637 mm

Voxel dimension Z 0.20 mm 0.45 mm 0.90 mm

2.0

Resampled cubic voxels 16-bit TIF 16-bit TIF 16-bit TIF

Cubic voxel size 0.04883mm 0.2148 mm 0.2637 mm

Number slices 1639 1295 1441

Individual slice file size 569 Kb 302–567 Kb 231–401 Kb

Total zipped dataset volume 818Mb 679Mb 525Mb

3.0

Leveled Dataset† 16 bit TIF 16 bit TIF 16-bit TIF

3.1

16bit_XY

Number slices 400 618 422

Individual slice file size 2.049Mb 516 Kb 329 Kb

Total zipped dataset volume 365Mb 159Mb 73Mb

3.2

16bit_XZ

Number slices 1023 996 1024

Individual slice file size 935 Kb 671 Kb 462 Kb

Total zipped dataset volume 846Mb 585Mb 421Mb

3.3

16bit_YZ

Number slices 277 265 164

Individual slice file size 3.275Mb 2.520Mb 2.883Mb

Total zipped dataset volume 795Mb 553Mb 410Mb

4.0

8bit_leveled 8-bit TIF 8-bit TIF 8-bit TIF

4.1

8bit_XY

Number slices 400 618 422

Individual slice file size 1.024Mb 259 Kb 165 Kb

Total zipped dataset volume 114Mb 64Mb 30Mb

4.2

8bit_XZ

Number slices 1023 996 1024

Individual slice file size 468 Kb 336 Kb 231 Kb

Total zipped dataset volume 201Mb 144Mb 93Mb

4.3

8bit_YZ

Number slices 277 265 164

Individual slice file size 1.638Mb 1260 Kb 1.442Mb

Total zipped dataset volume 179Mb 126Mb 89Mb

Table 2. Samples and data outputs. *Note: These are ‘unleveled’ and appear as black images when loaded
directly into many image viewers; to see imagery adjust image levels in your viewer. Opening the files in Image
J automatically sets viewable levels. †These three folders containing leveled 16 bit images viewable in most
image viewers; resliced along each orthogonal plane.
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Because the specimen was leaning at a ~6° angle for stability, reslicings in the YZ and XZ planes are not
perfectly orthogonal to the slab face The specimen was gently wedged in place with a piece of corrugated
cardboard that is visible in some of the slices.

‘Archaeoraptor’. All scanning of the Archaeoraptor amalgamation was done by Richard Ketcham on
July 29, 1999—August 4, 1999. The skeleton was scanned from the nose to the end of the tail, generating a
total of 422 consecutive 1-mm-thick slices taken at an inter-slice spacing of 0.9 mm. The split bones
yielded lower CT contrast with surrounding rock than the Confuciusornis specimen, and the greater
cross-sectional dimension led to increased streaking and beam-hardening artifacts. As a result, it was
necessary to acquire comparatively thick slices. Still, the image quality was not as good as for
Confuciusornis, and the poorer quality of the specimen is evident in both the CT slices and 3D volumetric
reconstructions of the slab. Each reconstructed slice was 1024 × 1024 pixels with a field of view of
270 mm, resulting in an inter-pixel spacing of 0.264 mm; the slices were subsequently cropped to omit
empty space to make storage and rendering more efficient. See Table 1 for additional scan parameters and
Table 2 for data outputs (Data Citation 1).

Jeholodens jenkinsi. Scanning was performed by Richard Ketcham and Matthew Colbert on
April 23, 1999. It was scanned from the tip of the skull to the back of the ankles, omitting much of
the tail. The anterior 80 mm of the slab were scanned with a slice thickness of 0.25 mm and an inter-slice
spacing of 0.20 mm, for a total of 400 slices. Each reconstructed slice was 1024 × 1024 pixels with a field of
view of 50 mm, resulting in an inter-pixel spacing of 0.049 mm. See Table 1 for additional scan
parameters and Table 2 for data outputs (Data Citation 1).

We scanned only the main skeleton-bearing part. The small slab containing the skeleton is composed
of fine-grained shale and measures approximately 10 cm in length and 1 cm thick. The slab is triangular,
with the nose of the skull at the apex, and the postcranium is distributed over an area of increasing width
towards the base of the triangle. The triangular geometry is significant because the X-ray beam had to
penetrate an increasingly wide expanse of shale towards the base of the triangle. As a result, data quality
diminished from front to back of the slab (see below).

Image Processing
Overview. The original CT scans (Data Citation 1) were produced using a 12-bit linear detector that
acquired a volume with non-cubic voxels. In other words, the inter-pixel spacing (X and Y) is smaller
than than the inter-slice spacing (Z). The 12-bit data were exported in 16-bit format, which makes them
appear ‘black’ when opened in many image viewers. To see this imagery, one must adjust image ‘levels’ in
most image viewers, either by changing the color table mapping the data values in the file to the displayed
gray levels, or by rescaling the data values themselves. Opening the files in ImageJ (National Institutes of
Health) automatically sets viewable grayscale levels (see Usage Notes). Image stacks can also be imported
into ImageJ as ‘virtual stacks’ if the user does not have enough RAM to load the image stack directly.

Sample File name File format File size Mb Movie type

Confuciusornis Conf_XY.MP4 MPEG-4 1.992 Slice stack

Conf_XZ.MP4 MPEG-4 3.802 Slice stack

Conf_YZ.MP4 MPEG-4 5.116 Slice stack

Conf_PitchSpinBodySkel.MP4 MPEG-4 1.082 3-D pitch, matrix removed

Conf_RollSpinBodyMatrix.MP4 MPEG-4 0.884 3-D roll

Conf_RollSpinBodySkel.MP4 MPEG-4 1.106 3-D roll, matrix removed

Conf_RollSpinHeadSkel.MP4 MPEG-4 0.252 3-D roll of skull, matrix removed

Conf_YawSpinHeadSkel.MP4 MPEG-4 0.249 3-D yaw of skull, matrix removed

Conf_CONVOID.MP4 MPEG-4 7.609 3-D roll showing voids

‘Archaeoraptor’ Arch_XY.MP4 MPEG-4 1.272 Slice stack

Arch_XZ.MP4 MPEG-4 3.212 Slice stack

Arch_YZ.MP4 MPEG-4 4.345 Slice stack

Arch_SlabSpin.MP4 MPEG-4 1.990 3D slab

Jeholodens Jeh_XY.MP4 MPEG-4 5.727 Slice stack

Jeh_XZ.MP4 MPEG-4 8.764 Slice stack

Jeh_YZ.MP4 MPEG-4 8.747 Slice stack

Jeh_RollSpinBodySlab.MP4 MPEG-4 2.476 3-D slab

Table 3. Movies available for download.
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SCIENTIFIC DATA | 3:160040 | DOI: 10.1038/sdata.2016.40 9



To make these data more easily accessible to those who might have difficulty using them in their
original format, we included modified versions in which the grayscale values have been rescaled to better
‘fill’ the 16-bit grayscale space. We also include a version in which the data have been resampled to render
the voxels cubic or isometric (Table 2). Many software packages assume that voxels are cubic, thus these
resampled datasets may be easier to load under default settings. No discernible artifacts were introduced
by the resampling process.

The original scan orientation of these fossils on slabs was chosen to maximize the data quality—which
may not yield the most informative images of the specimens. Accordingly, orthogonal reslicings of the
data are also provided (YZ and XZ; Data Citation 1; the YZ reslicings provide the best views of the
specimen). Finally, we have included 8-bit versions of the rescaled and resliced data for those who do not
possess the computing capabilities to process the 16-bit data.

Image Processing Methods. Grayscale levels for the ‘16bit_XY’ data were adjusted from the
‘16bit_original’ data using ImageJ. To change the grayscale levels, the original data were imported into
ImageJ as an image sequence, and the grayscale levels were adjusted using the following commands:
Process>Math>Multiply…Value: 16. The modified data were then saved as a TIFF image sequence.
We note that this method is a form of ‘windowing’ the data, and that in effect it multiplies a grayscale
level from 212 by 24 to make it a fraction of 216.

To generate the ‘8bit_XY’, the ‘16bit_XY’ data were reformatted to 8-bit mode using ImageJ:
Image>Type>8 bit, and saved as a TIFF image sequence. Changing the data from 16-bit to 8-bit format
reduces the detail of grayscale information in the data, and correspondingly reduces the file size by 50%,
which may make the data accessible for those lacking the necessary computer resources to handle the
16-bit data.

The ‘16bit_resampled’ data were generated by importing the ‘16bit_XY’ data into Avizo 8.1 (FEI
Company) and resampling them to make the voxels cubic. This was accomplished using the following
procedure: Compute>Volume Operations>Resample>Create. In the ‘Properties’ for the ‘Resample’
icon the voxel sizes for X, Y, and Z were changed to correspond to the original XY (inter-pixel) resolution
(0.215 mm for Confuciusornis; 0.264 mm for ‘Archaeoraptor’; and 0.049 mm for Jeholodens). The
resulting resampled data were then saved as a stack of 2-D TIFF images, and subsequently cropped in
ImageJ to reduce file size.

Figure 7. Photograph of the ‘Archaeoraptor’ amalgamation taken as it was presented for CT scanning at

UTCT in August, 1999. A series of professional large-format photographs taken in visible and ultraviolet

light is available for viewing at http://digimorph.org/specimens/Archaeoraptor_forgery/.

www.nature.com/sdata/
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Figure 8. ‘Archaeoraptor’ amalgamation. Photo (a), volumetric reconstruction (b), silhouette of skeleton (red)

and associated bones (black) (c), and fracture map of the top bone-bearing layer (d) (Data Citation 1).
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The ‘16bitresliceXZ’ and ‘16bitresliceYZ’ comprise orthogonal reslicings of the ‘16bit_resampled’ data
set. The reslicings were produced in ImageJ using the following command: Image>Stacks>Reslice [/]…
and then selecting ‘start at: top’ or ‘start at: left’ for the ‘16bitresliceYZ’ and ‘16bitresliceXZ’ data sets,
respectively. The YZ reslicings also required mirroring in ImageJ: Image>Transform>Flip
Horizontally.

The ‘8bitresliceXZ’ and ‘8bitresliceYZ’ represent the same data as ‘16bitresliceXZ’ and ‘16bitresliceYZ,’
respectively, that have been reduced from 16-bit depth to 8-bit depth using ImageJ.

Figure 9. ‘Archaeoraptor’ amalgamation, showing slices 30 and 220 in original grayscale (above), and color

coded (below). Contrast was increased and colors were added in Adobe Photoshop. Letters and numbers are

keyed to Fig. 10.

Figure 10. Map of the ‘Archaeoraptor’ amalgamation, as it was presented for CT scanning at the University of

Texas High-Resolution X-ray CT facility on July 29, 1999, with a key to its various parts. The numbered lines

indicate slice planes for original CT data labeled in Fig. 9.

www.nature.com/sdata/
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Movies. For ease of navigation through entire image stacks, we also built self-contained compact
movies in MPEG-4 format based on the 8-bit stacks mentioned above (Table 3). Most of the movies are
slice stacks, but we also include movies of 3D volumetric models rotating about their orthogonal axes
(Conf_RollSpinBodyMatrix.MP4; Arch_SlabSpin.MP4; Jeh_RollSpinBodySlab.MP4; Data Citation 1).
Special image processing was performed to show the distribution of air spaces in the Confuciusornis
amalgamation (CONVOID.MP4, Data Citation 1).

Specimen Assays
Interpreting CT data. The grayscales in CT data reflect differences in X-ray attenuation that arise
primarily from heterogeneous mass density and mean atomic number within the specimen, in addition to
the X-ray spectrum employed in the scanning47,60. Individual CT slices are viewed as 2D pixel images,
although each represents an actual volume that has been averaged down from the slice thickness. Slices
are represented as grayscale images. Air is scaled as dark, but ideally not black, pixels. Our standard
protocol at UTCT is to calibrate such that air has a positive data value, so no voxels have a value of zero.
While making air ‘black’ may be cosmetically attractive, it results in a loss of information about the true
location of material boundaries and the presence of scanning artifacts, in turn compromising the ability
to make accurate measurements. White represents the highest density in the image, but in our data it is
scaled on a sample-by-sample basis to correspond to the densest material present. As with air, we
generally scale the data to avoid saturating any voxels (i.e., making them pure ‘white’), as doing otherwise
results in information loss. In contrast to the variable scaling used for industrial-type CT data, medical
CT data are usually calibrated to Hounsfield Units, which are largely reproducible between instruments.
However, the Hounsfield scale was designed for medical imaging, and is inadequate for the dynamic
range of materials found in geological specimens.

In all three datasets described here, the bone is denser than the matrix; that is, the bone appears in
light-gray to (nearly) white, while the matrix is darker gray, and air is darkest. As noted, false color was

Figure 11. The probable sequence of assembly of the top layer of the ‘Archaeoraptor’ amalgamation, starting

with (a) the partial Yanornis skeleton, to which a split femur (b) was added, followed by the tibiae (c), the split

(part and counter-part) foot (d), the tail (e), and finally the shims (f).
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Figure 12. Photographs of part- and counter-part of Jeholodens jenkinsi as they were split upon discovery.

Only the main part (left) was CT scanned (Data Citation 1).

Figure 13. Volume rendering from CT data (Data Citation 1) of the Jeholodens specimen, showing the top

(left) and bottom (right) of the main slab. This small slab is virtually devoid of fractures.
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added to certain images in Photoshop (Adobe Systems Incorporated) to highlight features described in the
figure captions.

Using CT to assay an amalgamation is basically a 3D mapping exercise that evaluates the ‘fit’ between
each pair of adjacent pieces separated by a fracture or grout joint. It involves identifying all individual
pieces by mapping the fractures that separate them, and then conducting pairwise comparisons of 3D
edge geometries of bones and rock fragments to determine whether adjacent pieces have a verifiable ‘fit.’
It also maps the distribution of consolidants such as grout and glue, which typically have their own
unique grayscales (below). An additional concern is to identify all extraneous bone and rock fragments,
that is, to identify any elements that do not have a verifiable association with the rest. The introduction of
extraneous non-bone-bearing elements is a common practice to add structural integrity or to enhance
appearances for display or for commercial sale. We refer to these as ‘shims.’ If left unidentified,
extraneous elements can confound analyses of taphonomy and depositional environments related to the
skeleton itself.

Fracture planes can take on myriad different orientations; hence pairwise comparisons are most
effective when CT slice stacks are examined along all three orthogonal axes to map the boundaries of the
individual parts in 3D. Objects are usually scanned along one axis, and the slice stacks for the other two
axes are generated digitally. Powerful programs such as VGStudio Max (Volume Graphics GmbH), Avizo,
and ImageJ enable this type of simultaneous examination (see Usage Notes). For convenience, we resliced
the original datasets along XZ and YZ axes, and these datasets are provided in 16-bit and 8-bit versions
(Table 2). We also assembled the resliced image stacks into self-contained MPEG-4 movies (Table 3).

Assay Rationale. In the three studies described here, the most informative evidence that CT data
offered involved fracture geometry, and we mapped fracture surface trace geometry in map view, fracture
face geometry in cross section, thickness and density of adjacent pieces, cross-cutting relationships among
different generations of fractures, the continuity across fractures of bones and natural molds of bones that
had fallen away from the slab, continuity of invertebrate burrows, and the distribution of grout and other
consolidants. For other specimens, additional criteria such as bedding thickness and marker beds can be
expected. The features we employed in this study have by no means exhausted those that CT can
potentially reveal for validating other kinds of specimens.

Assay Procedures. The primary data produced in CT scanning the three specimens described
here were sinograms47,60. The sinograms were then convolved in a process referred to as ‘image
reconstruction’ in which the sinograms are converted into a sequence of cross-sectional images of the
scanned object. The cross-sections display on a computer screen as pixel images, but because each pixel
actually represents the slice thickness averaged down into a 2D plane, these images actually represent
voxels. Thus, the primary data used for interpretation of the scanned object are voxel images, and the
datasets represent large cylinders (‘bricks’) of voxels.

Once each specimen had been scanned, we created a 3D ‘volumetric rendering’ or ‘volume model’ from
the original CT dataset using the volume rendering software VGStudio Max or Avizo (see Usage Notes).
In an ongoing discussion of optimal imaging methods for fossils, a large contingent of paleontologists
prefers the visual effects produced by ‘surface renderings’ or ‘surface models’ of a scanned object. Surface
rendering produces a fine mesh of polygons that describe the object’s external and internal surfaces, or
the external surface of some region of interest. But the volumes between those surfaces are simply empty
space when visualized as surface renderings. There are many advantages of surface models. They afford a
standard format for 3D printing, and they produce smaller files than the original full-resolution voxel
dataset that are easier to manipulate on inexpensive computers.

Figure 14. Jeholodens. Sample XY section (slice 59).
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For forensic evaluation, we emphasize the superiority of volume rendering over surface modeling.
Surface modeling can indeed generate visualizations that resemble those produced by volume rendering,
but they effectively discard the original voxel data, and are therefore less amenable to secondary
verification. In forensic analysis, as well as for many conventional scientific goals, data validation is a
requisite step in the research protocol, hence our preference for volume rendering, and our decision to
make the original voxel data available (Data Citation 1). Interpreting the structural integrity of an object
is fundamentally a 3D problem, and internal volumes are rich terranes for scientific discovery, at least in
authentic specimens. Volume renderings work by mapping each voxel value to a color and an opacity
value, allowing some voxel values to be rendered transparent or semi-transparent and others to be
rendered opaque. Surface models can produce similar visualizations, but volume renderings preserve the
density information contained in the original CT data. The greater cost of volume rendering is that voxel
datasets are generally large and computationally demanding to work with. Typically they are visualized as
images of external surfaces, cross sections, or 3D cutaway views and only a small proportion of the total
dataset is visualized in any single image. Their overwhelming advantage for the forensic analysis
described here is that subsequent users can validate for themselves adjustments that were made to the
threshold and range of displayed densities used to reveal fractures and cosmetic applications, and
otherwise invisible internal structure.

This point is illustrated by comparing a surface model (Fig. 2a) and a volume rendering (using the
Phong algorithm) of the Confuciusornis dataset (Fig. 2b). The surface rendering is no better than
conventional photography (Fig. 2; Supplementary Figures) in revealing the fracture pattern of the top
slab, whereas volume rendering reveals vividly that the surface layer was shattered. By adjusting the
display threshold, the surficial grout and paint could be filtered away in the volume model to see the
underlying structure.

In our volume renderings, in map-view one can see where edges of separate pieces are either tightly or
poorly aligned on either side of a fracture. In the Confuciusornis amalgamation, false ‘repair’ of the
mandible is evident where a square corner of an extraneous piece is set against a curved face of the
adjacent piece (Figs 5 and 6). One can also see in this image twirled ‘strings’ of grout that were set in to
hold the extraneous piece at its edges. The absence of matching edges between adjacent pieces is even
more obvious in the Archaeoraptor amalgamation, in the center of the slab where the tail was joined to
the body in a jumble of mis-matched pieces (Fig. 9).

A map view of the volume rendering also shows where marked differences in density or thickness exist
between adjacent pieces, suggesting a misfit and/or admixture of an extraneous piece. This can be seen in
the Archaeoraptor amalgamation (Fig. 9) between pieces labeled 5a/5b, which are relatively dark
(i.e., less dense) and the adjacent pieces labeled L and M, which are brighter (i.e., denser).

In cases where the bone and matrix are of non-overlapping densities, both surface and volume
rendering offer the ability to digitally filter out surrounding matrix to visualize the entire skeleton. The
Confuciusornis amalgamation shows this well, where volumetric filtration of the dataset was used to
isolate the semi-articulated skeleton from its encasing matrix (Conf_PitchSpinBodySkel.MP4;
Conf_RollSpinBodySkel.MP4; Data Citation 1). This enabled examination of the skeleton from all
angles to evaluate the positioning of the bones with respect to one another, and provided informative
evidence for judging the authenticity of the skeleton as a whole. This process was less successful with
Jeholodens and Archaeoraptor because bone and matrix overlapped in density.

The volume rendering of Confuciusornis also added considerable scientific value to the specimen by
revealing all of the surfaces that remain concealed by matrix as well as providing a foundation for
quantitative analysis of individual bones. Additional bones unexposed on the slab face are present in the
underlying mudstone, for example cervical vertebrae that lie beneath the skull (Conf_RollSpionHeadSkel.
MP4, Conf_YawSpinHeadSkel.MP4, Data Citation 1). In certain cases, this type of digital preparation,
using either volumetric or surface rendering, can provide a satisfactory and cost-effective alternative to
conventional mechanical preparation. Lastly, one can potentially convert the matrix-free volume
rendered skeleton into a surface model for 3D printing.

Volume rendering was used as a base map for identifying the fractures and separate elements of the
Confuciusornis (Fig. 5) and Archaeoraptor amalgamations (Fig. 11). It was exported as an image of each
slab surface into Illustrator (Adobe Systems Incorporated), where the surface bones and fractures were
traced onto different ‘layers’ of the Illustrator file. The map was generated by tracing the fracture pattern
in surface view, while simultaneously evaluating the geometries of adjacent pieces in cross sections.

Cross sections of the Confuciusornis amalgamation (Conf_XY.MP4, Conf_XZ.MP4, Conf_YZ.MP4;
Data Citation 1) show it to be less crushed than it appears on the surface. Some of the seemingly flattened
bones are merely pressed into the underlying sediment, and some still preserve natural hollow cavities. In
cross section one can also see that the larger limb bones, although hollow in life, were crushed during
burial, shattered during excavation, and several different elements flaked away and were glued back
together during assembly of the amalgamation. A thin dark line of separation beneath bone
fragments and the rest of the slab is indicative of the low-density consolidant used in these repairs
(Fig. 4, arrow).

The cross sections also proved most decisive in evaluating whether pairs of assembled pieces were lying
in natural relationships to one another. The most important criteria in validating the adjacency of pieces
include matching thickness, density, fracture face geometry, and the distribution of grout. This is
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illustrated for the Confuciusornis amalgamation in Figs 3,4,5,6, and for the Archaeoraptor amalgamation
in Fig. 8. In the latter, Slice 30 (Figs 9a and 10) crosses a portion of the slab in which all but one of the
pieces lie in natural relationships to each other. Pieces 1a, 1b, 1d, and 1e are not separated by grout and
are matched across fractures in thickness, density (brightness), and fracture face geometry. Piece FF lies
adjacent to Piece 1e, however the latter is thicker and denser than the former. The grout has fewer
bubbles than elsewhere, and its distribution beneath Piece FF suggests that this is an extraneous shim
that was grouted onto the slab toward the end of assembly of the amalgamation
(see Arch_XY.MP4; Arch_XZ.MP4, and Arch_YZ.MP4; Data Citation 1).

Slice 220 (Fig. 9b) of the Archaeoraptor amalgamation crosses a portion of the slab that was entirely
fabricated from unverifiable pairs of pieces, as evidenced by the distribution of grout between pieces of
mismatched thickness and density, the lack of similarity in fracture faces, and the lack of continuity in the
bones. This is the region of greatest unconformity, involving admixture of the extraneous tail fragments
and the shards of rock that still adhere to these small, broken bones. In cross section, all pieces containing
caudal vertebrae are far thinner than the surrounding pieces, there are no matching geometries between
fractured edges, and grout separates most edges from the rest of the pieces comprising the surface layer
(Figs 9 and 10).

Geological events that preceded discovery can leave natural evidence that is informative in pairwise
comparisons between pieces assembled into an amalgamation. This is most evident in the Archaeoraptor
amalgamation where at least three separate fracture episodes are apparent. One fracture event can be
identified as the oldest, and was probably caused by an ancient earthquake or tectonic unloading as the
buried lakebeds returned to the surface. It is marked by the deposition of a dense material, probably
carbonate, that was absorbed into adjacent fractured edges as groundwater circulated through the
fractures. The result is that these edges have ‘stripes’ of higher density and greater brightness than the
edges of rocks fractured at some later time (Fig. 9: slice 30, Pieces 1b-1d).

The second fracture event was either natural or occurred during excavation as the specimen was
shattered. In Slice 30, pieces 1d and 1e can be matched across fractures in thickness, density, fracture face
geometry, and they are not separated by grout. They also lack the carbonate ‘stripe’ associated with the
first-generation fractures. A mismatch is evident when a piece bearing the bright carbonate stripe is
aligned adjacent to a piece lacking the stripe. This can be seen in the map view volume rendering of
Archaeoraptor (Fig. 8), and confirmed in Slice 220 (Fig. 9), where Piece F lacks the carbonate stripe but it
is positioned adjacent to piece 5a that has the carbonate stripe. There is also grout between the two,
strengthening the diagnosis that Piece F is extraneous and was added late in the construction process.

A third set of fractures can be seen in both surface and cross sectional views, in which fractures
propagated but did not rupture into separate pieces (Fig. 9). This almost certainly happened during
discovery, and/or later as the grout set. In the Confuciusornis amalgamation some of the top layer
fractures are continuous with fracture patterns in the grout, and may have been caused by differential
shrinkage of the grout as it hardened (Figs 4,9).

Additional fractures are manifest in delamination of the shale beds comprising the backing slab, and
these are more certainly attributable to differential shrinkage of the grout as it hardened. In the
Confuciusornis amalgamation delamination separations are evident in both the backing slab and surface
slab. These voids are artifacts of the construction technique, and can be seen in 3D in a Supplementary
movie (CONVOID.MP4, Data Citation 1).

One short invertebrate burrow was evident in the Archaeoraptor amalgamation. It runs for a few
millimeters horizontally through the sediment beneath the skull, and crosses from Pieces 1b-1d and
matches across the fracture separating these two pieces. It is visible in XY slices 10–16 (Arch_XY.MP4;
Data Citation 1). These have proved highly informative in understanding the geological history of other
fossils that we have scanned.

The ceramic grout used to consolidate both the Confuciusornis and Archaeoraptor amalgamations has
a very distinctive texture. Its signature is lower density than the top and backing slabs, containment of air
bubbles and tiny metallic inclusions, and a unique fracture pattern. The grout also has an inconsistent
pattern of adhesion to the slabs on either side, often becoming detached over large regions and leaving
voids. Air bubbles in the grout show up as dark voids. Bubbles are introduced when powder and liquid
are mixed, and the distribution of bubbles is informative of the firmness of the grout when applied. In
relatively less saturated and fresh mixtures, the bubbles tend to rise and become trapped against the
bottom surface of the top slab pieces. As the grout stiffens, the bubbles become less mobile. The history of
application can be mapped with the aid of bubble distribution (Fig. 11). Different mixtures of grout can
be identified by the different sizes and clustering patterns in bubbles.

Metallic inclusions within the grout are the brightest and densest objects in the amalgamation. Tiny
metallic fragments are a common contaminant in man-made objects such as these, generated as metallic
tools are used and sharpened.

We note in passing that delamination is an indication that this method of repair introduces its own
destabilizing influence to whatever authentic pieces are present, and that other consolidants should be
sought if the production of amalgamations remains the preferred method for reassembly of fossils from
thinly bedded sediments that are broken or shattered during excavation.

Finally, we note that there are two artifacts that affected the dataset, one being the ring artifact that
results from inhomogeneity in individual detector crystals during scanning. The second artifact is called
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the ‘longhorn artifact’ and it is a result of the geometry of the object, which is wide and flat. This means
that the X-ray beam has a very short course when the specimen was perpendicular to the beam, but a very
long course when parallel to the beam.

The role of photography. Photography is a staple in all manner of forensic documentation. Many
paleontological publications submit photographic documentation in defense of the authenticity of the
described specimen. However, in revealing the nature of the Confuciusornis amalgamation the superiority
of volume-rendered CT data over any of the various reflected light imaging techniques is clear by
comparing Figs 2,3,4 (see also Supplementary Figures). Figure 2 is a color photograph. Supplementary
Figs 1–6 are conventional black-and-white photographs using fine-grained professional film of the top
surface. Neither was effective in illuminating the full degree of shatter-fracturing of the bone-bearing top
layer, or in mapping the many parts of the amalgamation (Figs 5,6) owing to the cosmetic treatment that
the surface had received.

Both color and ultraviolet light photography of the Archaeoraptor amalgamation (http://digimorph.
org/specimens/Archaeoraptor_forgery/) were more effective in showing that it too was a shatter-fractured
amalgamation built of heterogeneous elements. UV photography performed best in brightly illuminating
the bone, and in showing different reflectance of pieces with different densities. For example, Pieces 5a-b
reflected UV light more brightly than the adjacent mis-matched Pieces J and K (see Fig. 10). The grout
tends to fluoresce a green color under UV light thus highlighting the fracture pattern where separate
pieces were grouted together, but conventional photography offered a cleaner picture of all of the
fractures. The heterogeneous reflectance of surface pieces in UV photography is symptomatic of an
amalgamation and an indication that CT scanning will probably reveal much more of the object’s forensic
history. Additional photographs of all three specimens described here are available in the Supplementary
Figures, for anyone wishing to make more detailed comparisons of these techniques.

UV light was recently used to propose that soft tissues were preserved in the type specimen of
Micoraptor gui61. However, the distribution of fluorescence in this specimen corresponded closely to
grout in photographs of the specimen17, in what appears to be another amalgamation. CT scanning this
specimen can potentially resolve doubts about whether the fluorescence is an artifact of amalgamation
reassembly, rather than evidence of soft tissue preservation. More recently, UV laser stimulated
fluorescence revealed the skull of a different Microraptor specimen to be a composite of at least two
different specimens62. However, these authors note the possibility that differential fluorescence may be
the result of taphonomic effects. Here too, CT scanning can potentially resolve any doubt concerning the
composite nature of this specimen.

We note that CT failed to document any integumentary structures (feathers, hair). If present, their
remains are too thin and too low in relative density to register in the scans. In such cases, photographs are
superior in documenting surficial features of the slabs. However, CT can decisively resolve whether
extraneous pieces have been joined together and where grout has been applied. Thus, both photography
and CT have their places in forensic documentation and analysis.

Assay determinations
Confuciusornis. As can be seen in the photographs (Fig. 2, Supplementary Figures), this object
appeared to be a complete articulated skeleton, preserved intact on the surficial bedding plane of a solid
slab of shale. Analysis revealed that the specimen was shattered during excavation, and reassembled on an
uneven bed of grout applied to the surface of a solid slab of shale. Grout and paint were also applied over
much of the surface around the skeleton to obscure the shatter-fracture pattern. Grout was also applied
along the edges of the slab, obscuring the three-layered stratigraphy indicative of a man-made
amalgamation. The top layer including the bone is quite thin, ranging between 2 mm to a maximum
of ~ 8 mm. The grout layer ranged from ~3mm to ~6mm, and the entire amalgamation was between
20 mm to 25 mm thick.

The CT scans revealed that the surface layer of the amalgamation was assembled from 81 separate
pieces. They can be classified into three groups with more or less separate histories. There are 22
associated bone-bearing pieces which contain most of the skeleton, and they were correctly reassembled
to reveal a skeleton in its natural death posture (Confu_PitchSpinBodySkel.MP4, Confu_RollSpion-
BodySkel.MP4; Data Citation 1). The most glaring absence is any evidence of a sternum, which was
probably lost during excavation. An additional 55 extraneous shims with no bone or verifiable
relationship to the skeleton were introduced during construction.

The last four elements of the amalgamation surface consist of bone-bearing pieces that lacked verifiable
association with the skeleton and were classified as extraneous. Two had been placed at the back of the
mandible (Figs 5,6), where the skull was badly fractured during excavation. The anatomical effect
presents an unusually large mandibular fenestra of unique construction bordered inferiorly by a thin
splint of bone. In contrast, other specimens of Confuciusornis have a small fenestra bordered by a broad
plate of bone56. Mismatching outlines are evident in surface view once the obstructing paint was filtered
away (Figs 3,6); in cross section the joint faces are dissimilar and the pieces are of considerably different
thickness, the extraneous pieces being thin flakes (Fig. 6b,c). ‘Strings’ of grout lying between these and the
adjacent pieces indicate that they were set into place late in the assembly process.
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A third extraneous piece was added to the left hand, and seems to represent the distal phalanges of left
digit III. Here too, the absence of matching fracture planes and differing thickness in cross section
suggests that this piece is out of place and may not have come from this specimen at all. The fourth
non-verifiable piece may be a fragment of right manual digit II that broke away during excavation and
was later glued to the surface.

The skeleton is preserved lying on its back. The skull is bent forward and down over the long neck in
such a way that its dorsal and left sides lie exposed on the slab face. The beak covers all but the anterior-
most cervical vertebrae; in the CT scans the remaining cervical vertebrae can be seen preserved beneath
the skull. Partial dorsal surfaces of palatal bones are visible through the right orbit. The right mandible is
exposed in lateral view, disarticulated from the cranium but still lying close by. It was reconstructed with
two extraneous pieces. The palate, basicranium, and left mandible are buried beneath the other skull
bones and are not visible on the slab’s surface.

The axial skeleton was slightly disarticulated during decomposition and shortly after burial. Several of
the mid-cervical vertebrae have drifted away from their natural positions. The base of the neck is
separated and dislocated well to the right of the dorsal vertebrae. The base of the tail is separated from the
sacrum, and the proximal caudal vertebrae have drifted away from their natural positions and come to lie
in a disorganized pile near the distal end of the pubes. Much of the cervical and dorsal vertebral column
lies obscured beneath the overlying bones of the skull and arms, but they can be seen in the CT scans by
filtering the matrix away. Several mid-dorsal vertebrae are partially exposed in lateral view. The
remaining dorsal centra are exposed in ventral view, as are the sacrum, distal caudal vertebrae, and
pygostyle. Most of the ribs have also drifted slightly from their natural positions and lie flat on the
bedding plane. Short segments of very tiny ribs, possibly representing gastralia, lie in unnatural positions
between the pubes.

Prominently visible on the face of the slab is a large furcula. Parts of the right and left coracoid, and the
proximal end of the right scapula can also be seen, but their exact shapes are obscured by matrix. The left
forelimb is extended slightly outward from the body, with its ventral or palmar surface facing up.
Elements of what might be digit III are present, but their association with the skeleton cannot be verified
(below). The right forelimb is folded at the elbow joint to lie over the thorax such that the forearm and
hand cover much of the humerus. Several phalanges in each hand are slightly displaced. There is no
evidence of a sternum.

The cranial surfaces of the pubes are visible from their proximal ends to their fused distal symphysis.
The cranial edges of both ischia are exposed between the pubes, but little of their overall form can be seen.
Both ilia are entirely encased in matrix. Both femora are shattered and lie dislocated from the hip sockets.
The tibiae are also crushed. The fibulae form thin splints of bone extending from the knee joint to a point
midway down the shaft of each tibia. The proximal tarsal bones appear fused to the tibiae, but matrix
obscures details of the relationships among these bones. The metatarsals appear fused to the distal tarsals,
and the proximal ends of the metatarsals themselves appear to be fused. The left foot is intact and has a
reversed hallux that lies close to the distal end of the second metatarsal. The right foot is complete but its
digits are slightly displaced, and its first metatarsal is hidden from view.

‘Archaeoraptor’. As presented for scanning, it appeared to be a complete, articulated skeleton
preserved on the surficial bedding plane of a more massive slab of shale. No counter slab was associated
with it. Its surface layer was built from 88 individual pieces and reassembled as a mosaicked
amalgamation. Little of its surface had been painted or grouted, and the fracture pattern was more clearly
visible than in Confuciusornis. Nevertheless, conventional preparation of its surface carried out at the
Tyrell Museum failed to reveal its composite nature.

The top layer including the bone is somewhat thicker than the Confuciusornis amalgamation, ranging
between ~4 mm—to a maximum of ~10 mm. The grout layer ranged from ~2mm to ~5 mm, and the
entire amalgamation was 27 mm at its thickest. The top layer pieces can be classified into three groups
with more or less separate histories of construction. The first group to be assembled comprises roughly
one-third of the slab surface and includes 23 pieces that lie, as reconstructed, in natural association with
one another (Fig. 10). Together, these pieces contain roughly the anterior half of a semi-articulated
skeleton of a new species of ornithurine bird, later referred to the taxon Yanornis martini16. The skull lies
flattened on its left side, and the exposed right side shows a row of teeth in the maxilla and dentary. The
cervical vertebrae are slightly disarticulated, but the head and neck are positioned in hyperextension
characteristic of rigor mortis. The presacral vertebral column is partly exposed along with several right
ribs. The right wing is flexed with the hand lying over the thorax. The left wing is partially extended.
A large furcula and a robust sternum with a tall keel are present. Little of the pelvis is preserved. The shaft
of the right femur is partially preserved.

The second group of surface layer pieces includes 26 pieces containing ‘associated bones’, plus a few
barren pieces that are verifiably contiguous (Fig. 10). These bones are arranged to portray the articulated
rear half of the skeleton, but they were added secondarily and none preserves evidence of a natural
attachment to any piece of the first group. The third category includes 39 shim pieces that lack bone
entirely, or contain only dissociated small fragments of bone (Fig. 7d). The shims vary in thickness,
density, and color, and generally are separated from the other pieces by seams of grout.
None preserves evidence of a natural attachment to any piece of the first or second group. Shims were
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added to secure the ‘associated bones’ into position around the bird skeleton and to make the slab more
presentable.

The sequence of assembly (Fig. 11) was probably as follows. The partial Yanornis skeleton was
assembled first and the ‘associated bones’ were positioned secondarily. The first associated bone to be
added to the bird skeleton was a longitudinally split femur, positioned as if it is the left that accompanies
the right in the bird skeleton. Similar profiles and surface staining suggest this might be the counter piece
to the right femur of the bird skeleton, but severe damage to both prevents verification. The next pieces to
be added were badly fragmented apparent right and left tibiae and fibulae. They are probably both from
the left side and represent the part and counter-part of a single articulated tibia-fibula. Next were the
apparent right and left feet, again, part and counter-part of a single right foot. The articulated distal end
of a tibia is preserved in the same piece with the foot, but is rotated 90o from the orientation of the more
proximally situated tibia-fibula. This indicates that pieces containing the foot probably came from a
different specimen than the tibia-fibula.

The last bones to be added were several fragments lying behind the bird pelvis, followed by the elongate
stiff tail. The tail is broken into five discontinuous pieces set against thin flakes of matrix that float on
thick grout seams. It consists of approximately 20 distal caudal vertebrae that are preserved with elongate
rod-like extensions of the prezygapophyses and chevrons characteristic of non-volant dromaeosaurids.
This tail was reported as part of the type specimen ofMicroraptor zhaoianus11, however, the basis for this
assertion was never explained, and this association is no better validated than its prior association with
the partial Yanornis skeleton.

The associated bones do not duplicate any bones found in the bird skeleton, but they introduce several
phylogenetic character conflicts. The tail of a non-volant dromaeosaur is incongruous with the
ornithurine characteristics of the shoulder girdle and wing, and also with the foot, which lacks the
characteristic enlarged second claw of dromaeosaurids. Apart from size and hollowness, there is no
evidence to suggest that the femur, tibia/fibula, foot or tail belong to either the same individual or species.
Taken collectively, the Archaeoraptor slab evidently represents two or more species, assembled from at
least two, and possibly five, separate specimens6.

Jeholodens. The Jeholodens dataset (Jeh_RollSpinBodySlab.MP4; Jeh_XY.MP4; Jeh_XZ.MP4; Jeh_YZ.
MP4; Data Citation 1) was included to give an example of a nearly perfect, unfractured specimen that
shows minimal evidence of human intervention (Figs 12,13). It is a much smaller specimen than the
Confuciusornis and Archaeoraptor amalgamations, and this contributed to its intact preservation upon
discovery. The dataset shows far fewer features than the others, largely because they are amalgamations
and their history of human construction is reflected in a complex man-made stratigraphy, the reassembly
of numerous broken pieces, and the introduction of extraneous pieces into a mosaicked composite.

The Jeholodens specimen was discovered intact and preserved between the split part and counter-part,
with most of the skeleton remaining on the part that we scanned. Within this small slab, delamination
between bedding planes beneath the skull was consolidated with an unidentified type of glue that
penetrated deeply into the fracture (Fig. 14). Owing mostly to its small size, this specimen was not
shattered in the process of discovery and did not need the additional structural reinforcement of an
extraneous backing slab. We present it here as a rare example of an intact specimen, damaged only
slightly as it was split into part and counter-part, and showing only very subtle evidence of repair.

At its maximum, this tiny slab is 10.2 mm thick. Bright streaks perpendicular to the bedding planes can
be seen in cross section (Fig. 14). Most are confined to the lower third of the slab, but a few cross its entire
thickness. These represent natural fractures that were later diagenetically healed by a denser material,
probably a carbonate.

This specimen consists of a partial skull and complete postcranium. Most of the skeleton lies flattened
on the surface of a bedding plane along which the part and counterpart separated. The skeleton is lying
on its ventral surface with the right forelimb folded beneath the rib cage and the hand partially
disarticulated. The other limbs are outstretched, and the elements of the hand and feet are slightly
separated from natural articulation. The tail is curled. The skull and postcranium were flattened and
crushed during burial. It is peculiar in that the fibulae lie medial to the tibiae, a presumed taphonomic
artifact.

We noted above that this CT data set become noisier toward the back of the specimen. The slab is
triangular, and the increased noise is a reflection of the longer path the X-rays tooktoward the rear of
the block.

Data Records
Original Confuciusornis Data Folders
University of Texas High-Resolution X-ray CT Facility Archive 0044, 0109 & 0110.

Original ‘Archaeoraptor’ Data Folders
University of Texas High-Resolution X-ray CT Facility Archive 0122.

Original Jeholodens jenkinsi Data Folders
University of Texas High-Resolution X-ray CT Facility Archives 0100, 0101, 0555.
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See Tables 2 and 3 for a description of samples and data output, and for a list of movies available for
download.

Technical Validation
The primary issue requiring validation involves the spatial geometry of the CT imagery as reconstructed
by the ACTIS software that operated the scanner. Each scan is preceded by a calibration to identify
precisely the center of rotation of the turntable with respect to the chosen detector. We also periodically
undertook data calibrations by scanning complex objects (‘phantoms’) whose dimensions were known
with precision, and compared spatial data in X-, Y-, and Z-axes in the imagery generated.

Calibrations are also necessary to establish the characteristics of the X-ray signal as read by the
detectors under scanning conditions, and to reduce geometrical uncertainties. The latter calibrations vary
widely among scanners; as a rule flexible-geometry scanners such as the one at UTCT require them,
whereas fixed-geometry scanners geared towards scanning a single object type may not.

The two principal signal calibrations are offset and gain, which determine the detector readings with
X-rays off, and with X-rays on at scanning conditions, respectively. We used an additional signal
calibration known as a ‘wedge’ that consists of acquiring X-rays as they pass through a calibration
material over a 360° rotation. The offset-corrected average detector reading is then used as the baseline
from which all data are subtracted. If the calibration material is air, the wedge is equivalent to a gain
calibration. A typical non-air wedge is a cylinder of material with attenuation properties similar to those
of the scan object. Such a wedge can provide automatic corrections for both beam hardening and ring
artifacts, and can allow utilization of high X-ray intensities that would saturate the detectors during a
typical gain calibration60.

Usage Notes
Many image processing programs can be used to manipulate these datasets. The following are those that
we used, and we include instructions for performing common tasks. The various conversions of the
original datasets (Table 1; Data Citation 1) were carried out using these procedures.

Programs for Image Processing
Freeware

(1) IrfanView (http://www.irfanview.com/). Useful for viewing serial slice sequences, renaming and
resizing files, and converting file formats

(2) ImageJ (https://imagej.nih.gov/ij/). Can be used for viewing image stacks individually or along all
three orthogonal axes simultaneously. Used for image processing (e.g., cropping, adjusting levels,
reslicing data, adding slice numbers) and measuring. ImageJ offers many other useful features, and
the above list is far from comprehensive—we encourage self-guided exploration of this powerful
software. Because ImageJ is open-source, there are also many useful plugins that can be downloaded
from third-party webpages. For example BoneJ is a plug-in that provides tools for trabecular analysis
and whole bone shape. Some plug-ins are linked from the ImageJ website, and a version of ImageJ
called Fiji is available that includes most of the available ImageJ plugins. Among the plugins included
with an ImageJ standard download are several that can be used for volume rendering or generating
surfaces with tomographic data. Although these 3D Plugins are slow, and may sometimes fail on
large data sets, they may provide a useful free alternative for generating static images if Avizo or other
3D packages are not available.

(3) 3DSlicer (https://www.slicer.org/). 3D visualization and measurement program (for those who do not
want to buy a 3D visualization program).

(4) Drishti (http://sf.anu.edu.au/Vizlab/drishti/). Volume exploration and presentation tool.
(5) SPIERS (http://spiers-software.org/). A useful software toolkit for tomographic visualization that

generates surface models.
(6) Blob3D, Quant3D, Align3D, and MuCalc Tool (http://www.ctlab.geo.utexas.edu/software/). UTCT

has developed a number of specialized software packages for quantitative analysis of HRXCT
datasets. Blob3D measures 3-D geometric information on up to thousands of discrete objects within a
data volume. Quant3D quantifies three-dimensional fabrics using a variety of metrics. Align3D
performs a three-dimensional alignment and subtraction of two data sets, allowing differences
between them to be determined and analyzed precisely. MuCalcTool is a Microsoft Excel workbook
for computing and comparing the X-ray attenuation of various minerals at different X-ray energies.
All of these programs are freely available for academic use.

Commercial 3-D Visualization & Measurement Software

(1) VGStudio Max (http://www.volumegraphics.com/en/). A relatively expensive but powerful program,
excellent for making volumetric renderings, segmenting and making surface models.
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(2) Avizo (formerly Amira) (http://www.fei.com/software/avizo3d/). A less expensive product than
VGStudio Max, excellent for measuring, segmenting and making surface models. Avizo currently has
the best suite of segmentation tools available.

(3) Mimics (http://biomedical.materialise.com/mimics). Software specifically developed for image
processing of 3-D data from CT, MRI, micro-CT, CBCT, 3-D Ultrasound, and Confocal Microscopy.

Animation Software

(1) QuickTime Pro (www.apple.com/quicktime/download/). Excellent software for producing
self-packaged animations from slice stacks or image frames.

(2) Windows Live Movie Maker (http://windows.microsoft.com/en-us/windows/movie-maker). An
alternative to QuickTime that tends to make movies with larger file sizes for a given resolution
and quality level, but in formats that may compatible with other programs (e.g., PowerPoint).

(3) Blender (https://www.blender.org/). A free and open-source 3-D creation suite. It supports the
entirety of the 3-D pipeline—modeling, rigging, animation, simulation, rendering, compositing and
motion tracking, even video editing and game creation. This is a sophisticated presentation tool, but
is not aimed at scientific data analysis.

PROCESSING WITH ImageJ
Resizing and Cropping Dataset. For convenience, we provide cropped and resized versions of all three
original datasets (Table 1, Data Citation 1). We also offer the following instructions for several common
procedures that are useful in working with other datasets.
Reducing the size of a dataset can greatly speed its manipulation in 3D rendering programs. This is especially

true for memory-intensive activities like segmentation. Simple ways to reduce the size of a dataset are to
down-sample the data from 16-bit to 8-bit TIFFs (reduces file size by 50%), downsize the dimensions of the
slices (e.g., from 1024 × 1024 pixels to 512 × 512 pixels; reduces file size by 75%), and/or crop the slices to
remove empty canvas.
Another reason to convert from 16-bit to 8-bit is that many programs cannot handle 16-bit data, or offer

only limited options for processing them (e.g., Illustrator, Photoshop, IrfanView). For example, Photoshop
reads in 16-bit data as 15-bit data (although all documentation refers to it as 16-bit), resulting in a small
amount of data loss that may affect some users (e.g., those using the data in numerical analysis programs or
simulations). Therefore, we strongly recommend doing 16-to-8-bit conversions using ImageJ, Avizo, or
VGStudio Max.
To load a 16-bit image sequence into ImageJ use these menus. File>Import>Image Sequence. Then

navigate to the 16-bit folder and double click on 1st slice; select OK in Sequence Options window. Or, drag
and drop folder containing 16-bit images to ImageJ control panel.
If ImageJ prompts that you do not have enough memory to open the stack, then you will need to change the

amount of memory allocated to ImageJ using the following menus: Edit>Options >Memory & Threads. Then
increase Maximum memory to a larger value (corresponding to your computer’s capacity). Close and reopen
program. For computers lacking sufficient memory, image sequences can be loaded as virtual stacks.
To down-sample the data, go to: Image>Type>8-bit. ImageJ will convert the open images to 8-bit. Note

that this operation optimizes the grayscales to whatever range is displayed in the viewer. If you wish to
maximize the range of grayscale values when converting from 16-bit to 8-bit, then the entire volume needs to
be set to the maximum 16-bit range prior to down-sampling to 8-bit: Image>Adjust>Brightness/Contrast.
In the window that pops up, click Set, and adjust the Minimum and Maximum displayed value to 0 and
65535 respectively (or, for ‘Unsigned 16-bit range’ select ‘16-bit’).

Resizing and Cropping Images. ImageJ allows images to be resized and cropped. We caution that
cropping images (below) does not change in-plane resolution, but resizing does. To resize the data, select:
Image>Adjust>Size. Set new width and height as desired (e.g., 512 pixels), and select OK. It is
advantageous to pick a size that is a multiple scalar of the original dimensions as this will require no
interpolation of the data.
To crop the data, select a crop area by clicking-and-dragging the mouse on an image in the stack. Check each

side of cropping bounding box with the slider through the entire image sequence to make sure specimen is not
clipped. Select: Image>Crop. After down-sampling, resizing or cropping the data, select: File>Save As>Image
Sequence. Create a new folder into which the image sequence is saved.

Orthogonally Reslicing Data. For convenience, we provide orthogonally resliced datasets (Data
Citation 1) that were processed using ImageJ using the following steps: Image>Stacks>Reslice [/]: in the
pop-up window, choose the side of the stack from which you wish to reslice (e.g., Top, Left, Bottom,
Right) and click OK. ImageJ will indicate the direction of reslicing as it processes the data, and will
generate a resliced stack. Then select File>Save As>Image Sequence (make a new folder and save the
resliced data).
Note that ImageJ exports the reslicings with a voxel aspect ratio of 1:1:1, so the YZ reslicings will look

‘squatty’ and the XZ reslicings will look ‘stretched’ if the Z (interslice) spacing differs from the X and Y
(interpixel) spacing (either because the original voxels were not equant, or because the data have been resized).
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In such cases, the reslicings require stretching to their appropriate aspect ratio. To do this, first calculate the
voxel aspect ratio: interslice spacing/(field of reconstruction/image resolution). Then multiply voxel aspect ratio
by the number of slices in the original data; this gives you the correct length, in pixels, for your reslicings; round
to the nearest pixel. In ImageJ, open one of your reslicings if it is not already open, then select: Image>Scale: in
the pop-up window, adjust theWidth (pixels) or Height (pixels) to the appropriate length as calculated above.
To close: File> Save As>Image Sequence.

Adding Slice Numbers. We recommend numbering each slice so that subtle features can be referenced
and indexed. To do this in ImageJ use the following menus: File>Import>Image Sequence: browse to
appropriate folder and load slices. Next: Image>Stacks>Label: starting value is 1, interval is 1, X location
is 5 (pixels from left margin), Y location is 18 (pixels from top margin), font size is 14, and text is blank.
Click OK. These are our standard values for DigiMorph.org processing. Feel free to change the location of
the labels as desired. If you cannot see the slice numbers, the text is likely black (ImageJ’s default). Change
the text color to white by going to: Edit>Options>Colors: select white as the foreground color. Then
repeat the step above to add the label. To close: File>Save As>Image Sequence.

Orthogonal Views. This option presents a dynamic reslicing of the original CT slice stack. The
‘cross-hairs’ can be dragged with the mouse to locate features in the different planes. Note that, as with
the resliced data, the orthogonal views assume equant voxels, and the reslicings will look stretched or
squatty if the voxels are not isometric. Go to: Image>Stacks>Orthogonal Views.

Histogram. This function allows histogram measurement of the grayscale values in one slice, the whole
volume, or some region of interest (as defined with the selection tools). This is an easy way to quantify the
distribution of grayscale values in your data. Select: Analyze>Histogram.

Adjust Brightness and Contrast. To change the contrast or grayscale levels of your data, we
recommend adjusting the brightness and contrast on the 16-bit data prior to downsizing to 8-bit—this
will retain far more data than adjusting after converting to 8-bit data. Note that ImageJ uses the adjusted
window levels of the 16-bit data as the grayscale range for the down-sized 8-bit data (see above
discussion). Select: Image>Adjust>Brightness/Contrast

Measuring. Will measure lengths, areas, grayscale values (including standard deviation; mean, min and
max values), angles, coordinates of points, and a variety of other values, depending on the chosen
selection tool. Select: Analyze>Measure.

Line Profile Plots. Will plot the grayscale profile of a line or rectangle. Select: Analyze>Plot>Profile.

Binning Data. This will downsample the data in X, Y, and Z planes. Select: Image>Transform>Bin.

Transform Data. Allows rapid reorientation and downsizing of the data (i.e., flipping, rotating,
translating, binning, etc.): Image>Transform: choose appropriate transformation.
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