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Abstract: Applying finite time thermodynamics theory and the non-dominated sorting genetic
algorithm-II (NSGA-II), thermodynamic analysis and multi-objective optimization of an irreversible
Diesel cycle are performed. Through numerical calculations, the impact of the cycle temperature
ratio on the power density of the cycle is analyzed. The characteristic relationships among the cycle
power density versus the compression ratio and thermal efficiency are obtained with three different
loss issues. The thermal efficiency, the maximum specific volume (the size of the total volume of
the cylinder), and the maximum pressure ratio are compared under the maximum power output
and the maximum power density criteria. Using NSGA-II, single-, bi-, tri-, and quadru-objective
optimizations are performed for an irreversible Diesel cycle by introducing dimensionless power
output, thermal efficiency, dimensionless ecological function, and dimensionless power density as
objectives, respectively. The optimal design plan is obtained by using three solution methods, that
is, the linear programming technique for multidimensional analysis of preference (LINMAP), the
technique for order preferences by similarity to ideal solution (TOPSIS), and Shannon entropy, to
compare the results under different objective function combinations. The comparison results indicate
that the deviation index of multi-objective optimization is small. When taking the dimensionless
power output, dimensionless ecological function, and dimensionless power density as the objective
function to perform tri-objective optimization, the LINMAP solution is used to obtain the minimum
deviation index. The deviation index at this time is 0.1333, and the design scheme is closer to the
ideal scheme.

Keywords: irreversible Diesel cycle; power output; thermal efficiency; ecological function; power
density; finite time thermodynamics

1. Introduction

As a further extension of traditional irreversible process thermodynamics, finite time
thermodynamics [1–13] have been applied to analyze and optimize performances of actual
thermodynamic cycles, and great progress has been made. The application of finite time
thermodynamics to study the optimal performance of Diesel cycles represents a new
technology for improving and optimizing Diesel heat engines, and a new method for
studying Diesel cycles has been developed. Assuming the working fluid’s specific heats are
constants [14–24] and vary with its temperature [25–32], many scholars have studied the
performance of irreversible Diesel cycles with various objective functions, such as power
output (P), thermal efficiency (η), and ecological functions (E, which was defined as the
difference between the exergy flow rate and the exergy loss).

In addition to the above objective functions, Sahin et al. [33,34] took power density (Pd,
defined as the ratio of the cycle P to the maximum specific volume) as a new optimization
criterion to optimize Joule–Brayton engines and found that the heat engine designed under
the Pd criterion has higher η and a smaller size when no loss is considered. Chen et al. [35]
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introduced the objective function Pd into the thermodynamic analysis and optimization
of the Atkinson cycle. Atmaca and Gumus [36] compared and analyzed the optimal
performance of a reversible Diesel cycle based on the P, Pd, and effective P (which was
defined as the product of power output and thermal efficiency) criteria. Raman and
Kumar [37] conducted thermodynamic analysis and optimization of a reversible Diesel
cycle under the criteria of P, Pd, and effective P when the working fluid’s specific heats
were linearly functioning with temperature. Rai and Sahoo [38] analyzed the influences
of different losses on the effective P, effective Pd, and total heat loss of an irreversible
Diesel cycle when the working fluid’s specific heats were non-linearly functioning with
temperature. Gonca and Palaci [39] analyzed and compared design parameters under the
effective P and effective Pd criteria of an irreversible Diesel cycle.

The research mentioned above only optimized a single-objective function and did not
optimize multiple objective functions at the same time. Therefore, NSGA-II can be used to
solve a multi-objective optimization (MOO) problem, and MOO can be performed for the
combination of different objective functions.

Ahmadi et al. [40–43] carried out MOO for an irreversible radiant heat engine [40], fuel
cell combined cycle [41,42], and Lenoir heat engine [43] with different objective functions.
Shi et al. [44] and Ahmadi et al. [45] performed MOO of the Atkinson cycle when the work-
ing fluid’s specific heats were constants [44] and varied with temperature non-linearly [45].
Gonzalez et al. [46] performed MOO on P, η, and entropy generation of an endoreversible
Carnot engine and analyzed the stability of the Pareto frontier. Ata et al. [47] performed
parameter optimization and sensitivity analysis for an organic Rankine cycle with a vari-
able temperature heat source. Herrera et al. [48] and Li et al. [49] performed MOO of η
and emissions of a regenerative organic Rankine cycle. Garmejani et al. [50] performed
MOO of P, exergy efficiency, and investment cost for a thermoelectric power generation
system. Tang et al. [51] and Nemogne et al. [52] performed MOO of an irreversible Brayton
cycle [51] and an absorption heat pump cycle [52]. MOO has been applied for performance
optimization of various processes and cycles [53–56].

Reference [24] established a relatively complete irreversible Diesel cycle model and
studied the optimal performance of E. Firstly, based on the model established in the
reference [24], this paper studies the optimal Pd performance of an irreversible Diesel cycle
while considering the impacts of the cycle temperature ratio and three loss issues. Secondly,
the maximum specific volume, maximum pressure ratio, and η are compared under the
maximum P and maximum Pd criteria. Thirdly, applying NSGA-II with a compression
ratio as the decision variable and cycle dimensionless P (P, which is defined as P divided
by maximum P), η, dimensionless Pd (Pd, which is defined as Pd divided by maximum
Pd), and dimensionless E (E, which is defined as E divided by maximum E) as objective
functions, the single-, bi-, tri-, and quadru-objective optimizations of an irreversible Diesel
cycle are performed. Through three different solutions, that is, LINMAP, TOPSIS, and
Shannon entropy, the deviation indexes obtained under different solutions are compared,
and the optimized design scheme with the smallest deviation index is finally obtained.

2. Cycle Model

The working fluid is assumed to be an ideal gas. Figures 1 and 2 show the T − s and
P − v diagrams of an irreversible Diesel cycle. It can be seen that 1− 2 is an adiabatic
process, 2− 3 is a constant-pressure process, 3− 4 is an adiabatic process, and 4− 1 is a
constant-volume process. The processes 1− 2s and 3− 4s are the isentropic and adiabatic
processes, respectively.
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The heat absorption and release rates are, respectively,

.
Qin =

.
mCp(T3 − T2) (1)

.
Qout =

.
mCv(T4 − T1) (2)

where
.

m is the mass flow rate, and Cv and Cp are the specific heats under constant volume
and pressure, respectively.

Some internal irreversibility loss (IIL) is caused by friction, turbulence, and viscous
stress. The irreversible compression and expansion internal efficiencies are expressed
as [16,19,20,30]

ηc = (T2s − T1)/(T2 − T1) (3)

ηe = (T3 − T4)/(T3 − T4s) (4)

The cycle compression ratio γ and temperature ratio τ are

γ = V1/V2 (5)

τ = T3/T1 (6)

According to the property of isentropic process, one has

T2s = T1γk−1 (7)
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(T3/T2s)
k = T4s/T1 (8)

According to Equations (3)–(8), one has

T2 = T1[(γ
k−1 − 1)/ηc + 1] (9)

T4s = τkT1/γk(k−1) (10)

T4 = T1[τ
kηe/γk(k−1) − τηe + τ] (11)

For the actual heat engine, there is heat transfer loss (HTL) between the working fluid
and the cylinder. According to Refs. [14,24,27], it is known that the fuel exothermic rate is
equal to the sum of the total endothermic rate and the HTL rate; one has

.
Qleak = A−

.
Qin = B(T3 + T2 − 2T0) (12)

where A is the fuel exothermic rate and B is the HTL coefficient.
Similarly, as the piston generates friction with the cylinder wall when running at high

speed, the friction loss (FL) of the cycle cannot be ignored. As a four-stroke heat engine, a
Diesel heat engine has four strokes of intake, compression, expansion, and exhaust, and all
of them produce FL. According to Refs. [24,32], for the treatment of FL in each stroke, the
FL during compression and expansion is included in internal irreversible losses. According
to Refs. [57–59], the piston motion resistance in the intake process is greater than that in
the exhaust process. If the friction coefficient in the exhaust process is µ, the equivalent
friction coefficient, which includes the pressure drop loss in the intake process, is 3µ. The
friction coefficients on the exhaust and intake stroke are µ and 3µ, respectively. There is a
linear relationship between friction force and speed: fµ = −µv = −µdx/dt, where x is the
piston displacement and µ is the FL coefficient. The power consumed due to FL during the
exhaust and intake strokes can be derived as

Pµ = dWµ/dt = 4µ(dx/dt)2 = 4µv2 (13)

For a Diesel cycle, the average speed of the piston in four reciprocating motions is

v = 4Ln (14)

where n is the rotating speed and L is the stroke length.
Therefore, the power consumed by cycle FL is

Pµ = 4µ(4Ln)2 = 64µ(Ln)2 (15)

The cycle P and η are, respectively,

P =
.

Qin −
.

Qout − Pµ =
.

m[Cp(T3 − T2)− Cv(T4 − T1)]− 64µ(Ln)2 (16)

η =
P

.
Qin +

.
Qleak

=

.
m[Cp(T3 − T2)− Cv(T4 − T1)]− 64µ(Ln)2

.
mCp(T3 − T2) + B(T2 + T3 − 2T0)

(17)

According to the definition of Pd in Refs. [33–35], the Pd is expressed as

Pd = P/v4 (18)

According to Refs. [38,39], the total volume vt, stroke volume vs, and gap volume vc
of the cycle are defined as

vt = vs + vc (19)

vs = πd2L/4 (20)

vc = πd2L/4(γ− 1) (21)
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In the Diesel cycle, vt = vmax = v1, vc = v2. According to Equations (5) and (17)–(19),
one has

Pd = P/vmax = P/vt = 4(γ− 1)P/πd2Lγ (22)

According to Ref. [24], an irreversible Diesel cycle has four kinds of entropy generation
due to FL, HTL, IIL, and exhaust stroke to the environment. The four entropy generation
rates are expressed as

σq = B[1/T0 − 2/(T2 + T3)](T3 + T2 − 2T0) (23)

σµ = Pµ/T0 = 64µ(Ln)2/T0 (24)

σ2s→2 =
.

m
∫ T2

T2s

CpdT/T =
.

mCp ln(T2/T2s) (25)

σ4s→4 =
.

m
∫ T4

T4s

CvdT/T =
.

mCv ln(T4/T4s) (26)

σpq =
.

m
∫ T4

T1

CvdT(1/T0 − 1/T) =
.

mCv[(T4 − T1)/T0 + ln(T1/T4)] (27)

Therefore, the total entropy generation rate is

σ = σq + σµ + σ2s→2 + σ4s→4 + σpq (28)

According to the definition of E in Ref. [24], the E is expressed as

E = P− T0σ (29)

According to the processing method of Refs. [35,44], P, Pd, and E are respectively
defined as

P = P/Pmax (30)

Pd = Pd/(Pd)max (31)

E = E/Emax (32)

According to Equations (4), (9) and (11) and given the compression ratio γ, the initial
cycle temperature T1, and the cycle temperature ratio τ, by solving the temperatures at
the 2, 3, and 4 state points, the corresponding numerical solutions of P, η, Pd, and E can
be obtained.

3. Maximum Power Density Optimization

The working fluid is assumed to be an ideal gas. According to the nature of the air,
T0 = 300 K, T1 = 350 K,

.
m = 1 mol/s, k = 1.4, Cv = 20.78 J/(mol ·K), and τ = 5.78− 6.78.

According to Refs. [24,44], the cycle parameters are determined: γ = 1− 100, B = 2.2 W/K,
µ = 1.2 kg/s, L = 0.07 m and n = 30 s−1.

The relationships between the objective functions (Pd and η) of an irreversible Diesel
cycle and the cycle design parameters (the cycle temperature ratio, HTL, FL, and IIL) are
shown in Figures 3–6. It can be noticed that the relationship between Pd and γ (Pd − γ)
is a parabolic-like one. When no loss is considered, the relationship between Pd and η
(Pd − η) is a parabolic-like one, and when there is loss, the relationship curve of Pd − η is a
loop-shaped one.
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According to Figure 3, it can be seen that there is an optimal compression ratio (γPd

),
which makes Pd reach the maximum. As τ increases, γPd

increases; when τ increases from
5.78 to 6.78, γPd

increases from 12.7 to 16 (an increase of 25.98%). According to Figure 4,
there is thermal efficiency (ηPd

) corresponding to the maximum Pd. As τ increases, ηPd
increases; when τ increases from 5.78 to 6.78, ηPd

increases from 45.82% to 49.29% (an
increase of 7.40%). It can be seen that with the increase in τ, γPd

, and ηPd
corresponding to

the maximum Pd also increases.
Figures 5 and 6 show the Pd − γ and Pd − η curves of the cycle when there are three

different losses. Table 1 lists ηPd
when considering different losses and the percentage of

the decrease in ηPd
compared with when no loss is considered. It can be seen that, with the

increase in the losses considered, ηPd
decreases. When the three losses are considered at

the same time, ηPd
decreases by 22.55% compared to that without any losses. According to

Figure 5, it can be seen that as the compression ratio increases, Pd first increases and then
decreases. According to Figure 6, it can be seen that when there are increases in HFL, FL,
and IIL, ηPd

corresponding to the maximum Pd decreases.

Table 1. Comparison of the ηPd
in 8 cases.

Curve Number Considered Loss η ¯
Pd

Percentage of η ¯
Pd

Decrease

1 No loss 61.51% 0%
2 FL 60.36% 1.87%
3 HTL 56.45% 8.23%
4 FL and HTL 55.41% 9.92%
1′ IIL 52.97% 13.88%
2′ IIL and FL 51.84% 15.72%
3′ IIL and HTL 48.67% 20.87%
4′ IIL, HTL and FL 47.64% 22.55%

Figures 7–9 show the change trends of the corresponding maximum specific volume,
maximum pressure ratio, and η with the τ under the maximum P and maximum Pd
criteria of an irreversible Diesel cycle. According to Figures 7 and 8, compared with the
corresponding results under the maximum P criterion, the maximum specific volume is
smaller and the maximum pressure ratio is larger under the maximum Pd criterion. It
is observed that the Diesel heat engine designed under the maximum Pd criterion has a
smaller size.
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According to Figure 9, the η of the cycle under the maximum Pd criterion is higher.
When τ = 6.28, the η obtained under the maximum P and maximum Pd criterion are 46.04%
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and 47.64%, respectively. The latter is an increase of 3.54% over the former. Therefore,
compared with the maximum P criterion, the engine designed under the maximum Pd
criterion has a smaller size and a higher η.

4. Multi-Objective Optimization with Power Output, Thermal Efficiency, Ecological
Function, and Power Density

MOO cannot make multiple objective functions reach the optimal value at the same
time. The best compromise is achieved by comparing the pros and cons of each objective
function. Therefore, the MOO solution set is not unique, and a series of feasible alternatives
can be obtained, which are called Pareto frontiers. In this section, P, η, E, and Pd are used
as objective functions; the compression ratio (γ) is used as an optimization variable; and
NSGA-II [44–52] is used to perform bi-, tri-, and quadru-objective optimizations for an
irreversible Diesel cycle. Through three different solutions, that is, LINMAP, TOPSIS, and
Shannon entropy, the optimization results under different objective function combinations
are obtained.

In the LINMAP solution, a minimum spatial distance from the ideal point is selected
as the desired final optimal solution. In the TOPSIS solution, a maximum distance from the
non-ideal point and a minimum distance from the ideal point are selected as the desired
final optimal solution. In the Shannon entropy solution, a maximum value corresponding
to a certain objective function is selected as the desired final optimal solution.

The optimization problems are solved with different optimization objective combina-
tions, which form different MOO problems.

The six bi-objective optimization problems are as follows:

max
{

P(γ)
η(γ)

, max
{

P(γ)
E(γ)

, max
{

P(γ)
Pd(γ)

, max
{

η(γ)
E(γ)

, max
{

η(γ)
Pd(γ)

, max
{

E(γ)
Pd(γ)

(33)

The four tri-objective optimization problems are as follows:

max


P(γ)
η(γ)
E(γ)

, max


P(γ)
η(γ)
Pd(γ)

, max


P(γ)
E(γ)
Pd(γ)

, max


η(γ)
E(γ)
Pd(γ)

(34)

The one quadru-objective optimization problem is as follows:

max


Pd(γ)
η(γ)
E(γ)
Pd(γ)

(35)

The evolution flow chart of NSGA-II is shown in Figure 10. The optimization results
obtained by the combination of different objective functions in the three solutions are listed
in Table 2. It can be seen that when single-objective optimization is performed under the
criterions of maximum P,η, E, and Pd, the deviation indexes (0.5828, 0.5210, 0.2086, and
0.4122, respectively) obtained are much larger than the result obtained by MOO. This
indicates that the design scheme of MOO is more ideal. When taking P, E, and Pd as the
optimization objectives to perform tri-objective optimization, the deviation index obtained
by the LINMAP solution is smaller, and the design scheme is closer to the ideal scheme.
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Figures 11–16 show the Pareto frontiers of bi-objective optimization (P− η, P− E
.
,

P− Pd, η − E
.
, η − Pd, and E− Pd). When P increases, η, E, and Pd all decrease; when η

increases, E and Pd both decrease; when E increases, Pd decreases. According to Table 1,
when P and η or P and E are the objective functions, the deviation index obtained by the
LINMAP solution is smaller. When P and Pd or η and E are the optimization objectives, the
deviation index obtained by the Shannon entropy solution is smaller. When E and Pd are
the optimization objectives, the deviation indexes obtained by the LINMAP and TOPSIS
solutions are smaller than those obtained by the Shannon entropy solution. When η and Pd
are the objective functions, the deviation index obtained by the TOPSIS solution is smaller.
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Table 2. Optimization results obtained by combining different objective functions.

Optimization Methods Solutions
Optimization Variable Optimization Objectives Deviation Index

γ
¯
P η

¯
E

¯
Pd

D

Quadru-objective
optimization

(P, η, E, and Pd)

LINMAP 18.0466 0.9615 0.5008 0.9809 0.9804 0.1342
TOPSIS 18.0822 0.9611 0.5010 0.9815 0.9801 0.1346

Shannon entropy 14.3437 0.9958 0.4769 0.8359 1.0000 0.4068

Tri-objective optimization
(P, η, and E)

LINMAP 18.2403 0.9591 0.5017 0.9842 0.9785 0.1366
TOPSIS 18.5159 0.9556 0.5029 0.9882 0.9758 0.1422

Shannon entropy 20.3584 0.9299 0.5095 1.0000 0.9545 0.2068

Tri-objective optimization
(P, η, and Pd)

LINMAP 17.1965 0.9715 0.4966 0.9624 0.9878 0.1443
TOPSIS 16.8933 0.9749 0.4949 0.9540 0.9900 0.1574

Shannon entropy 14.3433 0.9958 0.4768 0.8359 1.0000 0.4068

Tri-objective optimization
(P, E, and Pd)

LINMAP 17.8459 0.9640 0.4999 0.9772 0.9823 0.1333
TOPSIS 17.9598 0.9626 0.5004 0.9793 0.9812 0.1336

Shannon entropy 14.3437 0.9958 0.4768 0.8359 1.0000 0.4068

Tri-objective optimization
(η, E, and Pd)

LINMAP 18.7911 0.9520 0.5040 0.9916 0.9729 0.1495
TOPSIS 18.7911 0.9520 0.5040 0.9916 0.9729 0.1495

Shannon entropy 14.3437 0.9958 0.4769 0.8359 1.0000 0.4068

Bi-objective optimization
(P and η)

LINMAP 17.4129 0.9691 0.4977 0.9678 0.9860 0.1380
TOPSIS 17.3189 0.9722 0.4962 0.9655 0.9868 0.1384

Shannon entropy 26.2726 0.8327 0.5176 0.9166 0.8647 0.5193

Bi-objective optimization
(P and E)

LINMAP 18.0043 0.9620 0.5006 0.9802 0.9808 0.1339
TOPSIS 18.2236 0.9593 0.5016 0.9839 0.9787 0.1364

Shannon entropy 20.3584 0.9299 0.5095 1.0000 0.9545 0.2068

Bi-objective optimization
(P and Pd)

LINMAP 13.5850 0.9989 0.4699 0.7800 0.9989 0.5004
TOPSIS 13.5850 0.9989 0.4699 0.7800 0.9989 0.5004

Shannon entropy 14.3437 0.9958 0.4768 0.8359 1.0000 0.4068

Bi-objective optimization
(η and E)

LINMAP 21.6879 0.9097 0.5129 0.9948 0.9367 0.2645
TOPSIS 21.6879 0.9097 0.5129 0.9948 0.9367 0.2645

Shannon entropy 20.3584 0.9299 0.5095 1.0000 0.9545 0.2068

Bi-objective optimization
(η and Pd)

LINMAP 18.4344 0.9566 0.5026 0.9871 0.9766 0.1403
TOPSIS 18.1938 0.9597 0.5015 0.9834 0.9790 0.1359

Shannon entropy 14.3437 0.9958 0.4768 0.8359 1.000 0.4068

Bi-objective optimization
(E and Pd)

LINMAP 18.5178 0.9555 0.5029 0.9882 0.9758 0.1422
TOPSIS 18.5178 0.9555 0.5029 0.9882 0.9758 0.1422

Shannon entropy 14.3437 0.9958 0.4769 0.8359 0.9999 0.4068
Maximum of P - 12.8106 1.0000 0.4617 0.7090 0.9952 0.5828
Maximum of η - 26.2980 0.8323 0.5176 0.9160 0.8643 0.5210
Maximum of E - 20.4061 0.9293 0.5096 1.0000 0.9540 0.2086
Maximum of Pd - 14.3205 0.9960 0.4765 0.8330 1.0000 0.4122

Positive ideal point - 1.0000 0.5176 1.0000 1.0000 -
Negative ideal point - 0.8328 0.4618 0.7105 0.8647 -
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Figures 17–20 show the Pareto frontiers of the tri-objective optimization (P− η − Pd,
P − η − E, η − E − Pd, and P − E − Pd). When P increases, η decreases, and E and Pd
first increase and then decrease. When η increases, Pd decreases, and E first increases and
then decreases. When η, E, and Pd are the optimization objectives, the deviation indexes
obtained by the LINMAP and TOPSIS solutions are smaller than those obtained by the
Shannon entropy solution. When the combination of the other three objective functions
are the optimization objectives, the deviation index obtained by the LINMAP solution is
smaller, and the result is better.

Figure 21 shows the Pareto frontier of the quadru-objective optimization (P− η −
E− Pd). With the increase in P, η increases, Pd decreases, and E first increases and then
decreases. When P, η, E, and Pd are the optimization objectives, the deviation index
obtained by the LINMAP solution is the smallest, and the result is the best.
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5. Conclusions

The expression of the Pd of an irreversible Diesel cycle was derived in this paper, and
the impacts of τ and three loss issues on the cycle of Pd versus γ and η characteristics were
analyzed. The performance parameters (maximum specific volume, maximum pressure
ratio, and η) of an irreversible Diesel cycle based on the criteria of maximum P and Pd
were compared. Using three different solutions, including LINMAP, TOPSIS, and Shannon
entropy, the results of single-, bi-, tri-, and quadru-objective optimization for an irreversible
Diesel cycle were analyzed and compared. Comparing the deviation indexes obtained
under different objective function combinations, the optimal design scheme was selected.
The results showed the following:

1. The relationship curves of the cycles Pd − γ and Pd − η were a parabolic-like one and
a loop-shaped one, respectively. With the increases in the cycle temperature ratio, the
γPd

and ηPd
corresponding to the maximum Pd increased. With the increases in HFL,

FL, and IIL, the γPd
and ηPd

corresponding to the maximum Pd decreased.
2. Under the maximum Pd criterion, a smaller size and higher efficiency engine will

be designed.
3. The deviation index of MOO was smaller. When taking P, E, and Pd as the optimiza-

tion objectives to perform tri-objective optimization, the deviation index obtained
by the LINMAP solution was smaller, and the design scheme was closer to the
ideal scheme.

4. The next step will be to use exergy efficiency optimization to further reinforce the
results of MOO.
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Nomenclature

B Heat transfer loss coefficient (W/K)
Cp Specific heat at constant pressure (J/(mol ·K))
Cv Specific heat at constant volume (J/(mol ·K))
E Dimensionless ecological function
P Dimensionless power output
Pd Dimensionless power density
Q Heat transfer rate (W)
T Temperature (K)
Greek symbols
γ Compression ratio (-)
η Thermal efficiency (-)
µ Friction coefficient (kg/s)
σ Entropy generation rate (W/K)
τ Temperature ratio (-)
Subscripts
Pd Max power density condition
0 Environment
1 − 4,2s,4s Cycle state points
Abbreviations
FL Friction loss
HTL Heat transfer loss
IIL Internal irreversibility loss
MOO Multi-objective optimization
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