
Frontiers in Microbiology 01 frontiersin.org

A review on disinfection 
methods for inactivation of 
waterborne viruses
Adedayo Ayodeji Lanrewaju , Abimbola Motunrayo Enitan-
Folami *, Saheed Sabiu  and Feroz Mahomed Swalaha 

Department of Biotechnology and Food Science, Durban University of Technology, Durban, 
South Africa

Water contamination is a global health problem, and the need for  

safe water is ever-growing due to the public health implications of unsafe 

water. Contaminated water could contain pathogenic bacteria, protozoa, 

and viruses that are implicated in several debilitating human diseases. The 

prevalence and survival of waterborne viruses differ from bacteria and 

other waterborne microorganisms. In addition, viruses are responsible for 

more severe waterborne diseases such as gastroenteritis, myocarditis, and 

encephalitis among others, hence the need for dedicated attention to viral 

inactivation. Disinfection is vital to water treatment because it removes 

pathogens, including viruses. The commonly used methods and techniques 

of disinfection for viral inactivation in water comprise physical disinfection 

such as membrane filtration, ultraviolet (UV) irradiation, and conventional 

chemical processes such as chlorine, monochloramine, chlorine dioxide, and 

ozone among others. However, the production of disinfection by-products 

(DBPs) that accompanies chemical methods of disinfection is an issue of great 

concern due to the increase in the risks of harm to humans, for example, the 

development of cancer of the bladder and adverse reproductive outcomes. 

Therefore, this review examines the conventional disinfection approaches 

alongside emerging disinfection technologies, such as photocatalytic 

disinfection, cavitation, and electrochemical disinfection. Moreover, the 

merits, limitations, and log reduction values (LRVs) of the different disinfection 

methods discussed were compared concerning virus removal efficiency. 

Future research needs to merge single disinfection techniques into one to 

achieve improved viral disinfection, and the development of medicinal plant-

based materials as disinfectants due to their antimicrobial and safety benefits 

to avoid toxicity is also highlighted.
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Introduction

Worldwide, there is an urgent demand for potable water as approximately 1 in 4 people 
of the global population have no access to safe drinking water in the year 2020 (WHO, 
UNICEF, 2021). At the beginning of the COVID-19 pandemic, three out of 10 individuals 
in the world could not wash their hands with soap and clean water in their homes. 
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Unfortunately, it has been estimated that by the year 2030, about 
19% of the global population (1.6 billion persons) will not have 
access to safe water (WHO, UNICEF, 2021).

Waterborne diarrhea is a prominent global morbidity and 
mortality source, with an estimated 4 billion instances of 
sickness and 1.8 million deaths annually (Manetu and Karanja, 
2021). Approximately 90% of death associated with diarrhea 
globally resulted from poor hygiene, inadequate sanitation, and, 
more importantly consumption of unsafe water. Apart from the 
loss of lives linked with poor access to safe water, it also leads to 
a global economic loss of about US$260 billion per annum 
(WHO, 2012). Unsafe water could contain bacteria, protozoa, 
and viruses which are implicated in several human diseases with 
gastroenteritis being the most notable among them (Gall et al., 
2015). Unfortunately, waterborne viruses, which are more 
persistent in the environment than bacteria, are frequently the 
source of diarrheal sickness in drinking, recreational, and 
groundwaters (Magana-Arachchi and Wanigatunge, 2020). 
However, less attention is given to these viruses despite their 
huge negative impact on public health (Gall et  al., 2015; 
Lanrewaju et al., 2022).

Most viruses are linked to gastroenteritis resulting in diarrhea 
and other symptoms such as abdominal cramping, vomiting, and 
fever (Magana-Arachchi and Wanigatunge, 2020). Furthermore, 
they could be responsible for more severe health conditions such 
as encephalitis, myocarditis, meningitis, cancer, and hepatitis 
among others (WHO, 2016; Magana-Arachchi and Wanigatunge, 
2020; Lanrewaju et al., 2022). Unfortunately, few antiviral drugs 
with a broad spectrum of action to treat these diseases are 
available. Both symptomatic and asymptomatic patients can 
excrete a significant quantity of viruses. Clinical observations have 
shown that infected individuals with symptomatic infection may 
shed viruses for a few weeks after infection (Albinana-Gimenez 
et al., 2006; Wu et al., 2020; Yeo et al., 2020).

Primarily, waterborne enteric viruses are transmitted through 
the fecal-oral route (Sánchez and Bosch, 2016; Bouseettine et al., 
2020) which could be  from person to person or via drinking 
contaminated water with its accompanying health hazard (Diaz, 
2006; Upfold et al., 2021). Discharge of influents generated from 
faeces, vomit, and urine of infected animals and humans could 
introduce viruses into wastewater sources (Bosch et  al., 2006; 
Diaz, 2006). Viruses that could be detected in wastewater include 
adenoviruses (AdVs), enterovirus (EVs), polioviruses (PVs), 
hepatitis A viruses (HAV), hepatitis E viruses (HEV), rotaviruses 
(RVs), reoviruses, noroviruses (NoVs), and coronaviruses 
(including SARS-CoV-2) among others (Diaz, 2006; Kitajima 
et al., 2014; Farkas et al., 2018; Gormley et al., 2020; Buonerba 
et  al., 2021; Hasan et  al., 2021; Lanrewaju et  al., 2022). Virus 
genome copies (GC) L−1 approximately range from 105 to 107 in 
raw domestic wastewater (Albinana-Gimenez et al., 2006). The 
ongoing global outbreak of SARS-CoV-2 which is responsible for 
COVID-19 has raised the urgency of elucidating the fate and 
prevalence of coronaviruses as well as other viruses in sewage and 
drinking water sources.

Viruses can be reduced by 3-4log with traditional primary 
and secondary wastewater treatment (Sidhu et  al., 2018); 
however, several viruses may survive in treated effluent and then 
contaminate natural water sources when discharged into it. The 
minimum requirement for the water treatment method to 
be  considered efficient for viral disinfection is to achieve a 
99.99% (4log) reduction of viral concentrations in water after 
treatment as recommended by the United States Environmental 
Protection Agency and Health Canada (Monteiro et al., 2015). 
Hence, viral contamination is a major concern when the effluent 
is discharged into freshwater sources, or when insufficient viral 
elimination occurs during planned or accidental water recycling 
(Chen et al., 2021b). One of the challenges of the traditional 
water/wastewater treatment processes is the low removal 
efficiency due to virus sizes; however, adopting membrane-based 
technologies helps overcome this challenge (Ibrahim et  al., 
2021). Furthermore, free chlorine, a commonly used disinfectant, 
has been linked with the formation of regulated toxic disinfection 
by-products (DBPs). This has led to the adoption of other 
disinfectants such as monochloramine, chlorine dioxide, and 
ozone among others by some drinking water utilities. Recently, 
there has been a search for holistic disinfection techniques with 
much lower health risks. Unfortunately, this ongoing search 
comes with costs and operational challenges (Gall et al., 2015). 
Therefore, the objective of this study is to critically review 
different disinfection methods, and highlight some of their 
merits and limitations associated with the inactivation of 
waterborne viruses.

Disinfection methods for the 
inactivation of waterborne viruses

Effective disinfection strategies are vital in water treatment 
procedures because they ensure the elimination of pathogenic 
microorganisms responsible for waterborne illnesses. The 
commonly used techniques of disinfection for viral inactivation 
in water comprise conventional chemical processes such as 
chlorine, monochloramine, chlorine dioxide, and ozone 
(Figure  1). Furthermore, membrane filtration and UV 
irradiation which are physical methods have also been utilized 
for disinfection in the treatment of water (Collivignarelli et al., 
2018). Many parameters, including water, pH, temperature, type 
of microorganisms, type of disinfection, disinfectant dose, 
contact time, and inorganic and organic material in water, are 
known to influence disinfection (Tsitsifli and Kanakoudis, 
2018). Even though disinfection entails the process of pathogen 
inactivation, the use of chemical disinfectants can result in the 
production of inorganic and organic DBPs (Sadiq and 
Rodriguez, 2004). Interestingly, the introduction of improved 
disinfection technologies such as advanced oxidation processes 
(AOPs) is a viable strategy for enhancing the water and 
wastewater treatment processes (Feitz, 2005; Kokkinos 
et al., 2021).
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Advanced oxidation processes have been considered a 
potential, environmentally acceptable, and effective alternative to 
the traditional disinfection approaches for controlling the 
microbiological quality of water. Water disinfection and 
degradation of different toxic pollutants are achieved through the 
on-site production of chemical oxidants (Shabat-Hadas et  al., 
2017; Giannakis et al., 2017b; Marjanovic et al., 2018; Rekhate and 
Srivastava, 2020). Generally, AOPs are redox technologies that 
involve various oxidation processes, including ozonation, 
ozonation coupled with hydrogen peroxide (H2O2) and/or UV 
radiation, photocatalysis activated by semiconductors such as 
TiO2, and electrochemical oxidation among others (Figure 1). 
Their mechanism of action is a function of the formation of very 
reactive oxygen species (ROS) that are not target-specific and can 
be utilized as a pre-or post-treatment to a biological procedure 
(Galeano et  al., 2017; Kokkinos et  al., 2020). Therefore, 
photocatalytic, cavitation, and electrochemical methods of 
disinfection are highlighted as emerging methods of disinfection 
in this review.

Meanwhile, the safety of treatment plant operators should 
be considered whenever disinfectants are used because some 
of the disinfectants are harmful; hence, compliance with safety 
precautions by the operators handling the disinfectants is 
important. For instance, UV radiation is considered a 
“complete carcinogen” because it is both a mutagen and a 
nonspecific damaging agent. In addition, it can initiate and 
promotes tumor formation (D’Orazio et al., 2013; Raeiszadeh 
and Adeli, 2020). Likewise, ozone can harm the lungs when 
inhaled. In relatively little doses, chest pain, coughing, 
shortness of breath, and throat irritation can occur. 
Additionally, ozone may weaken the body’s defenses against 
respiratory infections and aggravate chronic respiratory 
conditions like asthma (USEPA, 2008). Therefore, appropriate 
personal protective equipment (PPE), such as goggles, gloves, 
long-sleeved shirts, long pants, and masks should be  worn 
while applying disinfectants (Dhama et  al., 2021). Using a 
suitable mask for a given purpose is preferable to using any 
non-specific mask (Agrawal et al., 2020).

Physical methods

Membrane filtration

Membrane filtration is a highly efficient technique for the 
removal of suspended particles, bacteria, and organic materials 
from drinking water and wastewater. This method enables the 
separation of contaminants present in water by passing it through 
a physical barrier. Commonly used technologies are microfiltration 
(MF), ultrafiltration (UF), nanofiltration (NF), and reverse 
osmosis (RO; Chen et al., 2021a). The basic mechanism of virus 
removal by membrane filtration is size exclusion, as ultrafiltration 
with a nominal pore size of 10−2 μm is suitable for the removal of 
most viruses (Zhang et al., 2016). Apart from the principle of size 
exclusion which operates on the surface of the membrane, other 
mechanisms involving electrostatic interactions are linked with 
the virus and membrane charge, adsorption retention, and 
hydrophilic-hydrophobic reactions. They are also associated with 
the physicochemical parameters of the membranes as well as the 
viruses. These properties facilitate the movement of the viruses 
through the surface of the membrane and their deposition on the 
internal matrix of the membrane (Van Voorthuizen et al., 2001; 
Schaldach et al., 2006; ElHadidy et al., 2013; Gentile et al., 2018; 
Chen et al., 2021a). However, the effectiveness of the membrane 
is affected by the quality of water, the content of solid particles in 
the water, and fouling formation during the water treatment 
process (Collivignarelli et al., 2018). Therefore, several membrane 
modifications have been made to enhance its efficiency, and 
consequently, this has resulted in the inactivation of viruses as the 
modifications facilitate the incorporation of materials with 
enhanced antiviral properties (Sinclair et al., 2018).

Membranes have been modified with different materials such 
as polymers and in the field of antimicrobial polymers, 
polyethylenimine (PEI) is one of the most investigated amine-
containing polymers (Jarach et al., 2020). Sinclair et al. (2018) 
modified a commercial polyether sulfone (PES) microfiltration 
membrane using cationic polyethylenimine (PEI) for virus 
removal through gravity filtration. The virus removal rate was 

FIGURE 1

Disinfection methods for the inactivation of waterborne viruses (adapted from Chen et al., 2021b).

https://doi.org/10.3389/fmicb.2022.991856
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lanrewaju et al. 10.3389/fmicb.2022.991856

Frontiers in Microbiology 04 frontiersin.org

enhanced as the membrane modification weakened the virus 
build-up on the membrane surface via surface repulsion. In 
addition, the utilization of the modified membrane required 
additional force at a reduced cost yet increased the rate of virus 
removal. In another study, cross-linked multilayers on model 
surfaces and commercial PES MF membranes were created using 
a cross-linking agent; terephthalaldehyde (TA), for the formation 
of a positively charged membrane for trapping and inactivation of 
viruses. Furthermore, silver and copper nanoparticles (Ag and 
CuNPs) with antiviral activity were coated on the substrates and 
stabilized with PEI. These resulted in a 4.5-5log unit reduction of 
MS2 bacteriophages through the viral particle inactivation and 
adsorption (Sinclair et al., 2019). Therefore, the incorporation of 
nanoparticles has enhanced the virus removal efficiency as well as 
the reinforcement of the structural integrity, membrane 
hydrophilicity, and electrostatic interaction between the viruses 
and the membrane for increased water flux (Khin et al., 2012; Liu 
et  al., 2019; Németh et  al., 2019; Kuo et  al., 2020; Chen 
et al., 2021a).

Two major challenges in water treatment using membrane 
filtration are biofouling and virus penetration, as the membrane’s 
permeability decreases with increased biofouling. Consequently, 
it results in high energy costs and a reduction in the membrane’s 
durability (Zodrow et al., 2009). Furthermore, virus separation is 
increased to some extent by membrane fouling (Chen et  al., 
2021a); however, the membrane surface could become weakened 
accompanied by increased penetrability and then compromised 
virus retention (Wang et  al., 2017). Membranes have been 
modified with different materials such as polymers; however, 
polymer leaching is a problem associated with this technology 
(Sinclair et al., 2018) which could lead to a loss of the antiviral 
ability of the material when the substance is leached into the 
environment (Koplin et al., 2008; Sinclair et al., 2019). Another 
material that has been incorporated into the membrane for its 
modification is nanoparticles due to their proven antimicrobial 
properties; however, the loss of nanoparticles is a major drawback 
(Zodrow et al., 2009). Therefore, further research is needed in this 
regard to concentrate on the encapsulation of the nanoparticles in 
a bid to control their release.

Ultraviolet irradiation

One of the physical techniques used for the inactivation of 
microorganisms is ultraviolet radiation (Oguma and Rattanakul, 
2021). The International Commission on Illumination has 
described the UV region of the electromagnetic spectrum as 
radiation with wavelengths that ranges from 100 to 400 nm (CIE, 
2003; ASHRAE, 2019). Furthermore, the UV spectrum is 
categorized into UVA (wavelengths of 400–315 nm), UVB 
(315–280 nm), UVC (280–200 nm), and vacuum UV (VUV; 
200–100 nm; IESNA, 2000). A relatively high energy level is 
associated with radiation in the UV range, and microbes absorb 
protons with a high absorption coefficient between 200 and 

300 nm (Chen et al., 2021a). Exposure of microorganisms to UV 
light damages their nucleic acids (DNA or RNA; Ibrahim et al., 
2021). In other words, the process entails running water through 
UV disinfection tubes, which damages the nucleic acids resulting 
in the non-viability of the bacteria and viruses, thus, become 
incapable of reproduction (Wigginton et al., 2012; Sigstam et al., 
2013). This disinfection method has been proven effective for the 
inactivation of cysts of Cryptosporidium and Giardia in water 
(Chen et al., 2021b). The UV disinfection is considered an efficient 
and competitive alternative for the disinfection of secondary 
effluent because it does not make use of chemical agents, is 
non-corrosive, easy to install and operate, and produces no DBPs, 
hence no toxic residue after disinfection (Tondera et al., 2015; 
Zhang et al., 2016). Short contact time is required for disinfection 
due to the rapid-reacting nature of the radicals, and there is no 
odor or taste when it is used. Therefore, UV radiation is 
appropriate for drinking water treatment plants (Ibrahim 
et al., 2021).

The most frequently used UV sources are low-pressure (LP) 
and medium-pressure (MP) UV. They are mercury lamps for 
monochromatic UV at 254 nm and polychromatic UV with a 
broad spectrum, respectively, (Song et  al., 2019). Germicidal 
lamps produce UVC energy by emitting radiation mostly at a 
wavelength of 253.7 nm, which kills or inactivates microorganisms 
(ASHRAE, 2019). Viruses are inactivated differently due to the 
morphological and genomic varieties (enveloped or 
non-enveloped; DNA or RNA viruses) of the different viral species 
as well as the wavelength of the germicidal UV applied (Oguma 
and Rattanakul, 2021). For instance, DNA replication in viruses is 
generally inhibited by UV at 254 nm and 280 nm irradiation. 
However, UV at 224 nm irradiation has little effect on the viability 
of the human adenovirus-2 (HAdV-2) genome. Nevertheless, the 
impact of capsid alterations may impede the virus’s genome ability 
to enter the nucleus in host cells (Vazquez-Bravo et al., 2018). 
Conversely, 3log inactivation can be  attained for poliovirus, 
coxsackievirus, and echovirus using UV at 254 nm in the range of 
14 to 27 mJ/cm2 (Gerba et al., 2002; Shin et al., 2005).

In a bid to enhance viral inactivation using UV, H2O2, ozone, 
sodium hypochlorite, and chlorine dioxide, among others, have 
been incorporated into the UV disinfection process. Mamane 
et al. (2007), incorporated 25 mgl−1 dose of H2O2 to filtered UV 
irradiation for 15 min, which led to a 2.5log increase inactivation 
effect on MS2, whereas MS2 was resistant to only UV irradiation 
at >295 nm. The authors opined that hydroxyl radicals produced 
from the photolysis of H2O2 could be responsible for the observed 
effect and could have destroyed the cell membranes of MS2 with 
a simple but rigid structure. Similarly, combining UV treatment 
with chlorine resulted in 3-5log10 reductions for chlorine-resistant 
coliphages coupled with reduced DBPs formation (Zyara 
et al., 2016).

Ultraviolet C (UVC) light with wavelength between 207 and 
222 nm has been reported to be effective for the inactivation of 
microorganisms. Specifically, far UVC light is considered safe for 
human health compared to the traditional germicidal UV light 
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because it does not damage mammalian cells (Buonanno et al., 
2017; Ponnaiya et al., 2018; Buonanno et al., 2020; Narita et al., 
2020). Sequential UVA and UVC irradiation using light-emitting 
diodes (UV-LED) were applied for Escherichia coli and MS2 
inactivation in a study carried out by Song et al. (2019). There was 
no improvement in the inactivation of MS2 as compared to E. coli 
following UVA pre-treatment accompanied by UVC treatment. 
The observed inactivation of MS2 in their study was attributed to 
its composition as being void of a cellular metabolic system (Song 
et al., 2019).

The efficiency of 222 nm UVC light for the inactivation of 
alpha HCoV-229E and beta HCoV-OC43 was evaluated using an 
aerosol irradiation chamber. Aerosolized coronavirus 229E and 
OC43 were inactivated by UVC with low doses of 1.7 and 1.2 mJ/
cm2, respectively, (Buonanno et al., 2020). Biasin et al. (2021), 
investigated the ability of UVC irradiation at different doses to 
inactivate SARS-CoV-2 (Virus Human 2019-nCoV strain 2019-
nCoV/Italy-INMI1, Rome, Italy) at a multiplicity of infection 
(MOI) of 1000, 5, and 0.05. The authors reported that UVC dose 
of just 3.7 mJ/cm2 was adequate to attain above 3log inactivation 
without viral replication. All the viral concentrations evaluated at 
a UVC dose of 16.9 mJ/cm2 were inactivated completely. Mariita 
et al. (2022), inactivated Feline calicivirus (FCV) ATCC VR-782; 
a surrogate of norovirus with a UVC light-emitting diode (LED) 
array (KL265-50 V-SM-WD). A 99.9% virus reduction (3log 
reduction) was achieved at a UVC dose of 22.5 mJ cm−2; hence, the 
authors posited that NoVs can be  inactivated effectively using 
UVC LED array (Mariita et al., 2022).

Disinfection methods, especially UV light, have repeatedly 
been found ineffective against adenovirus (Prado et al., 2019); 
hence, optimizing this method for the inactivation of adenovirus 
is a necessity. The use of UV-LEDs for viral inactivation just got 
into the limelight recently (Rattanakul and Oguma, 2018; 
Keshavarzfathy et al., 2021); therefore, more research is needed in 
this regard. Although UV disinfection is known for not resulting 
in the formation of DBPs compared to chlorine, turbid and 
colored particles in the secondary effluent may reduce UV light 
penetration which affects its disinfection ability (Zhang et  al., 
2016). In addition, incorporation of H2O2 into UV irradiation for 
improved viral inactivation is less efficient when applied to 
wastewater with increased absorbance and its utilization is affected 
by the high cost of operation (Rasalingam et al., 2014).

Chemical methods

Chlorination

For several decades, chlorination has been used in both 
developing and advanced countries as the most economical, 
traditional, and versatile disinfectant for water disinfection 
processes (Lim et al., 2010; Hu et al., 2019; Martino, 2019; Luo 
et  al., 2020; Rachmadi et  al., 2020). The slower decay rate of 
chlorine in comparison to many other chemical disinfectants is 

responsible for its capacity to retain disinfection activity for longer 
periods; hence, its preference for use in drinking water distribution 
systems and water reservoirs avoids subsequent replication of the 
microorganisms (WHO, 1996; Xiao et al., 2020).

Chlorine interacts with organic chemicals in the water to 
generate several secondary products that are more hazardous than 
the parental components (Anand et  al., 2014). Chlorine gas 
combines with water to generate aqueous HOCl and HCl 
(Equation 1), and then HOCl dissociates further to form OCl− and 
H+ (Equation 2; Lin and Lee, 2007; Collivignarelli et al., 2018). The 
use of aqueous chlorine for disinfection is a function of contact 
time and concentration (Kumar et al., 2020).

 Cl H O HOCl HCl2 2+ ↔ +  (1)

 HOCl OCl H↔ +− +
 (2)

Chlorine gas and water have a reversible and pH-dependent 
chemical interaction in nature (Hung et al., 2017). The presence 
of OCl− and HOCl in large quantities in water aids in the 
oxidation, hydrolysis, and disintegration of cell membranes. These 
reactions between the chlorine compounds and membrane 
proteins of the microorganisms in water result in the formation of 
chloro-nitrogen compounds. Proteins, DNA, lipids, and 
cholesterol are all biological targets that HOCl is known to interact 
within the body (Hawkins et al., 2003). The purine and pyrimidine 
sequences of the DNA of the microorganisms are altered by HOCl 
as this is expressed in its negative effect on the genetic sequence 
mutation, metabolism, synthesis of protein, and transport of 
glucose (Kumar et al., 2020).

Chlorine exhibits its potent bactericidal effect by blocking 
metabolic activities through a variety of complex processes. The 
modus operandi it adopts alters the chemical composition of the 
enzymes at the center of bacteria’s nutrition systems, rendering 
them inactive thereby preventing their growth and survival 
(Collivignarelli et al., 2018). However, some endospore-forming 
bacteria such as Bacillus and Clostridium are not inactivated by 
chlorine disinfection. At the same time, protozoa, including 
Entamoeba histolytica and Giardia lamblia, require a high dose 
(mgL−1) and considerable contact time to be inactivated (Kumar 
et al., 2020).

The destruction of viral capsid protein and the inhibition of 
genome replication can both be achieved toward the inactivation 
of viruses using free chlorine (Fuzawa et al., 2019). At a pH of 7.4, 
room temperature, 5 mM PO4

2−, and 10 mM NaCl, it was reported 
that no undamaged capsid protein was detected after 5log 
inactivation of MS2 with chlorination having caused significant 
damage to the genome and capsid protein. The considerable 
capsid protein degradation led to a substantial loss of protein-
mediated binding or injection capabilities, and the treatments 
hindered replication functions and causes significant genome 
damage (Wigginton et al., 2012).

https://doi.org/10.3389/fmicb.2022.991856
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lanrewaju et al. 10.3389/fmicb.2022.991856

Frontiers in Microbiology 06 frontiersin.org

The efficiency of free chlorine in the inactivation of 
waterborne viruses has been expressed to be temperature and 
pH-dependent (Lim et  al., 2010) as well as the type of virus 
involved. Table  1 shows the estimated Ct values for 4log 
reduction of waterborne viruses using the efficiency factor hom 
(EFH) model. This method has been utilized to evaluate 
disinfection kinetics in drinking water to ensure conformity with 
the Surface Water Treatment Rules for microbiological reduction 
requirements (Haas and Joffe, 1994). The idea of disinfectant 
dose and contact time is essential to comprehending disinfection 
kinetics and using the Ct concept (Collivignarelli et al., 2018). 
The Ct values are the product of the disinfectant dose C (in 
mgL−1) and the contact time t (in minutes; Haas and Joffe, 1994; 
Girones et  al., 2014; Rachmadi et  al., 2020). They are an 
important metric for practical disinfection evaluation and 
system design (Collivignarelli et al., 2018; Chen et al., 2021b). 
Under similar conditions, Echovirus (E), Coxsackievirus B 
(CVB), and PV are more resistant to inactivation using 
chlorination. However, pH dependence for disinfection of 
CVB5, CVB6, PV, E-1, and E-12 was revealed to occur at pH 9 
or higher, resulting in a remarkable increase in the required Ct 
values for the inactivation of these viruses when compared to pH 
7 or lower without a change in the time (Black et  al., 2009; 
Cromeans et al., 2010). In addition, it has been documented that 
reoviruses are more sensitive to chlorine compared to 
enteroviruses (Betancourt and Gerba, 2016). It has not been 
reported that chlorine effectively controls all waterborne viruses 

as Norovirus suspension remained infectious after 30 min of 
contact with 3.75 mgl−1 free chlorine (Keswick et al., 1985).

In the presence of naturally occurring organic molecules, 
chlorine produces trihalomethane and acetoacetic, which are 
recognized to be carcinogenic to humans with the most frequent 
being the trihalomethanes (THMs; Rebhun et  al., 1997; Guay 
et al., 2005; Sun et al., 2009; Badawy et al., 2012; Wu et al., 2013; 
Sorlini et  al., 2015; Sorlini et  al., 2016). While chloroform, 
bromodichloromethane (BDCM), chlorodibromomethane 
(CDBM), and bromoform comprise the volatile compound 
category. The THMs, haloacetic acids (HAAs), chlorophenols, 
chloral hydrate, and haloacetonitriles (HANs) are some of the 
undesired halogenated organic compounds formed when chlorine 
combines with natural organic molecules (humic and fulvic 
acids). Although brominated THMs can be produced in large 
quantities when waters with high bromide content are chlorinated, 
chloroform is generally the most common by-product generated, 
while the majority of other DBPs are found in trace amounts, 
typically less than 1 μgl−1 (Nieuwenhuijsen et  al., 2000). 
Production of DBPs that accompanies chlorine disinfection is an 
issue of great concern due to the increase in significant human 
health risks, such as cancer of the bladder and adverse associated 
reproductive outcomes (EPA, 2005; Richardson et al., 2007). This 
has made the development of alternative disinfectants a necessity 
due to the mutagenicity, carcinogenicity, and teratogenicity of the 
DBPs formed during chlorine disinfection in a bid to meet up with 
the regulation of DBPs (Gall et al., 2016).

TABLE 1 Estimated Ct values for 4-logs reduction of waterborne viruses using the efficiency factor hom (EFH) model (adapted from Chen et al., 
2021b).

Enteric virus CT value (mg min L−1) Disinfectant dose 
(mg L−1) Conditions References

Adenovirus-40 0.22 1.0 pH 6, 5°C Thurston-Enriquez et al. (2003)

0.75 pH 7, 5°C

0.27 pH 8, 5°C

Poliovirus-1 6.36 pH 6, 5°C

5.3 pH 7.5, 5°C

5.3 1.0 pH 7.5, 5°C Black et al. (2009)

22.9 1.0 pH 9, 5°C

Coxsackievirus B5 11.5 1.0 pH 7.5, 5°C

22.9 1.0 pH 9, 5°C

Echovirus 1 6.2 1.0 pH 7.5, 5°C

16.6 1.0 pH 9, 5°C

Echovirus 12 7.4 1.0 pH 7.5, 5°C

32.3 1.0 pH 9, 5°C

Coxsackievirus B3 2.9 0.2 pH 7, 5°C Cromeans et al. (2010)

1.7 0.2 pH 8, 5°C

Coxsackievirus B5 7.4 0.2 pH 7, 5°C

10 0.2 pH 8, 5°C

MS2 0.435 0.172 pH 7.2, 5°C Lim et al. (2010)

0.183 0.172 pH 7.2, 20°C

Rotavirus 5.55 0.4 pH 7.2, 20°C Xue et al. (2013)

Adenovirus-2 1.65 2.7 pH 8, 25–26°C Girones et al. (2014)
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Monochloramination

Many chemical reactions occur from the interaction between 
chlorine and the aqueous solution of ammonia (Equations 3 and 
4), which depends on the concentration, temperature, and pH of 
the aqueous solution. The mechanism of the formation of 
chloramine from the reaction between chlorine and aqueous 
ammonia is a function of the molar concentration of ammonia 
and chlorine (Equations 5 and 6; Kumar et al., 2020).

 Cl H O HOCl2 2+ ↔  (3)

 HOCl NH NH Cl H O+ → +3 2 2  (4)

 HOCl NH Cl NHCl H O+ → +2 2 2  (5)

 HOCl NHCl NCl H O+ → +2 3 2  (6)

Organic chloramine is the end-product of the reaction 
between chloramine and several amino acids. At a suitable 
temperature and pH, the organochlorine compound is formed at 
the interaction of chloramine and cell component which include 
alanine, tyrosine, and glycine. Monochloramine (NH2Cl) is a 
desirable disinfectant because; unlike free chlorine, it does not 
readily interact with natural organic matter to produce controlled 
DBPs [total trihalomethanes (TTHM) and haloacetic acids 
(HAA5); Lytle et al., 2021]. On the contrary, NH2Cl has been used 
by many drinking water systems in the United  States as a 
secondary disinfectant to reduce the generation of DBPs and the 
growth of biofilms (Cromeans et al., 2010). The inactivation of 
bacteria by NH2Cl as well as their resistance to NH2Cl has been 
reported when extra and intracellular antibiotic resistance genes 
(eARG and iARG) were employed in both intracellular and 
extracellular components (He et al., 2019).

The inactivation rates of NH2Cl disinfection on AdV2, 40, and 
41, E-1 and E-2, CVB3 and B5, and Murine Norovirus (MNV) 
have been compared by Cromeans et al. (2010). Disinfection with 
NH2Cl was most effective against E-1 and least effective against 
E-2 and AdV 2. However, to attain 4log inactivation of CVB5 and 
E-2, Ct values of 900 mg × min L−1 and 1,500 mg × min L−1 were 
required. At pH 7, the authors reported that NH2Cl was the most 
effective against AdV2, CVB5, and E-1. Unlike chlorine 
disinfection, NH2Cl disinfection showed more variation in virus 
inactivation rates (Cromeans et al., 2010). The outcome of the 
investigation revealed that NH2Cl efficacy data for different 
viruses should be integrated into the NH2Cl inactivation modeling 
and system design. In addition, no single disinfection method is 
effective in the inactivation of all types of viruses.

Kahler et al. (2011) examined the disinfection efficiency of 
NH2Cl on CVB5, E-11, MNV, and HAdV2  in untreated 

groundwater and two partially treated surface water. The authors 
reported that this method was most effective for MNV, followed 
by CVB5, while it was least effective for HAdV2 and E-11. The 
study indicated that the water quality impacts the inactivation of 
viruses; hence, this should be  considered while developing 
monochloramination designs. According to Gall et al. (2016), at 
pH 9, Ct values of approximately 13,000 mg × min L−1 at 5°C and 
above 5,000 mg × min L−1 at 15°C are sufficient to attain 4log 
inactivation of HAdV. The examination of the different stages in 
the replication cycle of HAdV was conducted to understand the 
mechanism of inhibition of NH2Cl by Gall et al. (2016). Therefore, 
the authors concluded that there is a possibility of the inhibition 
of a replication cycle action after binding, although it was claimed 
that this would have occurred before the early viral 
protein synthesis.

Likewise, the effect of NH2Cl was examined in human 
norovirus (hNoV) GI, and GII, in secondary wastewater and 
phosphate buffer (PB). Using RT-qPCR as a method of detection, 
<0.5log10 reductions of all viruses at Ct values were up to 450 mg 
× min L−1 except for hNoV GI, where 1log10 reductions at Ct 
values of <50 mg × min L−1 for NH2Cl in wastewater were 
recorded. There was a comparable resistance to monochloramine 
by hNoVGI and MNV with 2log10 RT-qPCR reductions ranging 
from 300 to 360 mg × min L−1 in PB (Dunkin et al., 2017). The 
results revealed that there is an occurrence of genogroup 
dependent resistance pattern in hNoVs.

Because of poor disinfection properties and ineffectiveness 
against spore-forming waterborne pathogens like 
Cryptosporidium, chloramine is not utilized as a primary 
disinfectant (Kumar et al., 2020). When compared with chlorine, 
it is less virucidal (Dunkin et al., 2017), and a longer contact time 
is needed to attain similar disinfection efficiency because the 
active ingredient in chloramine, which is hypochlorite, is released 
slowly (Chen et al., 2021b). In other words, it is a less effective 
disinfectant than chlorine because it requires more exposure time 
to inactivate many waterborne pathogens, including 
enteric viruses.

Chlorine dioxide

In recent years, there has been a significant increase in the 
usage of gaseous chlorine dioxide as a disinfectant for drinking 
water. Chlorine dioxide (ClO2) is typically utilized for water 
disinfection at 0.1 and 5.0 mgl−1 concentrations. It is a volatile gas 
created in situ by mechanical generators utilizing acid-based or 
electrolytic processes (Ma et  al., 2017). It is employed as an 
oxidizing agent (Symons, 1981) to break down biofilm in pipes 
and tanks (Michael et al., 1981), and it can only react in water via 
oxidation with a low generation of THM. It oxidizes organic 
components derived primarily from oxidized by-products and a 
small quantity of chloro-organic molecules, whereas chlorine 
interacts with substances through oxidation and electrophilic 
substitution (WHO, 2002; Totaro et  al., 2021). Furthermore, 
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chlorine dioxide lowers the development of harmful halogenated 
disinfection by-products; however, at concentrations of 0.5 mgl−1, 
it also produces the organic halides chlorite/chlorate as well as 
tastes and odors (Thurston-Enriquez et al., 2005).

The disinfection impact of chlorine oxide on algae, protozoa, 
biofilms, bacteria, and viruses was also examined (Aieta and Berg, 
1986). The inactivation process of viruses is not like other cells 
because the time of inactivation is shorter than that of bacteria 
even under similar conditions. This could be attributed to the less 
complex structure of viruses compared to bacteria. Chlorine oxide 
gas acts on the genome of the non-enveloped viruses, whereas in 
enveloped viruses, it interacts with one or more of the cysteine, 
tyrosine, and tryptophan amino acid residues of the spike proteins 
as it does not need to invade the enclosed viral surface (Noss et al., 
1986; Noszticzius et al., 2013; Kály-Kullai et al., 2020). Factors that 
have significant effects on the inactivation rates of viruses using 
ClO2 include dosage, time, pH, and temperature (Berman and 
Hoff, 1984). When they are treated with 1.0 mg/l of chlorine oxide, 
enveloped viruses are inactivated readily compared to 
non-enveloped viruses (Sanekata et al., 2010). The adherence of 
the virus to the host cell is prevented via the disinfection action 
on the proteins of the viral envelope, and consequently, cell 
invasion and infection were prevented (Li et al., 2004). According 
to Noss et al. (1986), the premise of the disinfection process is a 
viral protein component; inactivating the coat viral protein results 
in the inhibition of the virus capacity to attack the host cells. 
Table 2 shows the inactivation efficiency of selected viruses by 
chlorine dioxide.

Furthermore, Thurston-Enriquez et al. (2005), examined the 
inactivation efficiency of ClO2 within the range of 0.67–1.28 mgl−1 
on AdV40 under pH values of 6 and 8 at 5°C and 15°C. The 
disinfection effectiveness of chlorine oxide improved at higher 
temperatures and pH values. Higher inactivation rates were 
reported at 15°C and pH 8 compared to other investigated 
conditions (Thurston-Enriquez et al., 2005). The effect of ClO2 at 
an initial concentration of 5 mgl−1 was elucidated on HAV, and the 
disinfectant could not eliminate the infectivity after 60 min; 
however, the virus was completely inactivated after 10 min having 
increased the concentration to 7.5 mgl−1. The 5′-non-translated 
region (5’NTR) of the virus’s genome was damaged by the 
disinfectant, which hindered the replication, and interaction with 
viral proteins and prevented adherence to the host’s cells (Li et al., 
2004). A faster inactivation rate of 30 s at 0.8 mgl−1 and 5 min at 
0.4 mgl−1, respectively, for HAV was reported by the Department 
of Public Health of Parma (Li et al., 2004; Zoni et al., 2007).

Feline Calicivirus (FCV) was inactivated completely by ClO2 
in 30 min at 0.2 mgl−1 as reported by Alvarez and O’Brien (1982). 
In the same vein, at the same concentration and contact time, 
CVB5 was inactivated completely. Interestingly, at 0.2 mgl−1 of 
ClO2 and a reduced contact time of 4 min, complete inactivation 
of CVB5 was reported (Alvarez and O’Brien, 1982). Thurston-
Enriquez et al. (2005) discovered that treating EV71 with ClO2 for 
more than 30 min (0.5 mgl−1), 25 min (1.5 mgl−1), and 15 min 
(2.0 mgl−1) resulted in complete inactivation of the virus. Similarly, 

at 4.92 mgl−1 of ClO2 for 1 min, higher rate of inactivation was 
reported at pH 8.2 compared to pH 5.6 while inactivation 
occurred rapidly at 36°C compared to 4°C or 20°C. The 
effectiveness of ClO2 for the inactivation of EV71 was dependent 
on both temperature and pH. Likewise, it has been found that the 
inactivation of AdV40 and FCV by ClO2 is more significant at 
15°C than at 5°C (Thurston-Enriquez et al., 2005).

Chlorine dioxide is connected with DBPs such as chlorite and 
chlorate formation during water disinfection. As a disinfectant, 
ClO2 is commonly used for pre-oxidation followed by post-
chlor(am)ination to reduce the production of chlorite and chlorate 
as neurotoxicity could result from a high dose of ClO2 (Chen et al., 
2021b). The unstable nature of ClO2 prevents its storage; hence, it 
must be  manufactured on-site and then added to water 
(Collivignarelli et al., 2018). Also, ClO2 is more biocidal when 
compared with chlorine and chloramines; however, it causes 
organoleptic abnormalities in treated water (Ngwenya et al., 2013), 
which makes this disinfectant less suitable for purification.

Ozonation

For over a century, ozone (O3) has been used in drinking 
water treatment and chemical oxidation. It is used to substitute 
chlorine for disinfection in some parts of the world (Choudhury 
et al., 2018). Ozone is a bluish gas with a strong odor. It is an 
exceedingly reactive and unstable allotrope of oxygen (Rekhate 
and Srivastava, 2020). It is one of the most potent disinfectants 
available, and effective against practically all sorts of waterborne 
infections (Wolf et al., 2018). It is partially soluble in water and 
interacts with organic particles found in bacteria, viruses, and 
protozoa cells. The development of the organism’s cytoplasmic 
protein is inhibited as a result of the reaction between the ozone 
and the cell’s plasma membrane (Kumar et al., 2020).

Bacteria, viruses, protozoa, and prion protein as well as other 
pathogens such as Cryptosporidium, Giardia cysts, parvum 
oocysts, and Legionella that are resistant to chlorine are known to 
be effectively inactivated by ozone (Von Gunten, 2003; Betancourt 
and Rose, 2004; Passos et al., 2014; Li et al., 2017; Xi et al., 2017). 
More specifically, the effectiveness of ozone for the removal of 
viruses in water has been documented (Tondera et al., 2015; Wolf 
et al., 2018; Wang et al., 2018b), and this is usually through the 
oxidation of nucleic acids or promotion of protein coagulation in 
the viral particle (Tyrrell et al., 1995; Gomes et al., 2019b). Besides 
the inactivation of waterborne pathogens, O3 is employed to 
control taste and odor and the chemical oxidation of contaminants 
in drinking water (Chen et al., 2021b).

According to the Environmental Protection Agency (Agency, 
1999), O3 at 0.1 mgl−1 outperforms chlorine at 2.0 mgl−1 due to 
faster reaction times in terms of disinfection with no regrowth of 
microorganisms. Ozone has been adopted recently in wastewater 
treatment with the primary goal of reducing micropollutants in 
secondary wastewater effluent and their impact on the aquatic 
environment (Wolf et  al., 2018). Many potable reuse systems 
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incorporate ozone as an essential component, for pre-oxidation of 
organic materials in the effluent, micropollutant reduction, and 
disinfection (Gerrity et al., 2013). In addition, due to its ability to 
reduce membrane fouling (Stanford et al., 2011), ozonation is 
commonly employed for membrane pre-treatment (Cheng 
et al., 2016).

In a bid to achieve improved disinfection using ozone, 
biologically activated carbon, free chlorine, or other catalysts have 
been incorporated with ozone. Gomes et al. (2019a), integrated 
volcanic rocks as catalysts into ozone, resulting in the complete 
removal of NoV GI, GII, and JC Polyomavirus (JCPyV). However, 
after 150 min, JCPyV remains inactivated. Also, an increase in the 
amount of ozone led to a surge in the disinfection of MS2 from 2.1 
to 6.8log when ozone, coagulation, and ceramic membrane 
filtration were combined for the removal of viruses for water 
reclamation (Im et al., 2018).

Ozone can be used more effectively for viral inactivation in 
water than traditional water treatments such as mechanical 
treatment, aerated grit chamber, activated sludge, and reactors 
(Wang et al., 2018b). However, there could be a reduction in the 
inactivation with changes in some operational parameters, such 
as a lower temperature or an increase in pH. In clearer terms, 
ozone’s attenuation rate and oxidation ability are affected by a rise 
in pH and vice versa. In addition, other factors that could reduce 
the inactivation of viruses in water using ozone include the 
presence of particles, organic matter, and co-existing ions (Cai 
et al., 2014). Thus, the movement of ozone molecules is enhanced 
by an increase in temperature, resulting in the attachment of 
organic particles to the virus, which shields the viruses from ozone 
molecules and affects inactivation. In essence, the efficiency of 
ozone disinfection is reduced when a substantial quantity of ozone 
is consumed due to the presence of dissolved organic matters 
(Chen et al., 2021a).

The formation of bromate during disinfection from the 
oxidation of bromide ions in water (Chen et al., 2021a) a kind of 
DBPs is a major concern when significant ozone exposures are 
needed for pathogen inactivation (Gomes et  al., 2019b). The 
instability and poor solubility of ozone in water is a setback for its 
application in practice; hence, its on-site production is required 
for its utilization (Rekhate and Srivastava, 2020). Therefore, there 
is a high operation cost associated with using ozone for 
disinfection in addition to maintenance costs linked to the use of 
ozonation equipment (Collivignarelli et al., 2018).

Emerging methods

Photocatalytic disinfection

The interaction between a photocatalyst (reaction initiator) 
and the aquatic medium (disinfection target) is known as 
photocatalytic disinfection; hence, both components of the 
photocatalyst and the properties of the aqueous medium are 
important factors in the reaction (Schneider et al., 2014; Smith 
and Rodrigues, 2015). The process of photocatalytic oxidation 
entails the production of electron–hole pairs by the irradiation of 
a semiconductor (such as TiO2) with appropriate light. As a result 
of the irradiation, electrons (e-) are stimulated into the conduction 
band (CB), leaving a hole (h+) in the valence band (VB). 
Thereafter, the duo of e−/h+, which are the charge carriers, 
migrates to the photocatalyst’s surface/interface and takes part in 
the redox processes. These charge carriers start a chain of events 
that result in the production of ROS. The ROS formed include 
singlet oxygen, superoxide radicals, hydrogen peroxide, hydroxyl 
radicals, and perhydroxyl radicals. These highly reactive chemicals 
are particularly important because they can engage in cellular 

TABLE 2 Inactivation efficiency of selected viruses by chlorine dioxide.

Enteric virus Ct value Inactivation efficiency Conditions Reference

Feline calicivirus 0.18 mg min L−1 4log pH 8, 15°C Thurston-Enriquez et al. 

(2005)

Feline calicivirus 9.59 min 4log 0.4 mg/l, pH 7.0,

20°C

Zoni et al. (2007)

Feline calicivirus 2 min 0.25log 1.0 mg L−1 ClO2 Sanekata et al. (2010)

Murine norovirus 0.25 mg min L−1 4log pH 7.2, 5°C Lim et al. (2010)

Coxsackievirus B5 2.41 min 4log 0.4 mg L−1 ClO2,

pH 7.0,

20°C

Zoni et al. (2007)

Hepatitis A virus 19.58 min 4log 0.4 mg L−1 ClO2,

pH 7.0, 20°C

Zoni et al. (2007)

Enterovirus 71 3.93 mg min L−1 4log pH 7.2, 20°C Jin et al. (2013)

Echovirus 11 1.0 mg min L−1 6log pH 7.4 Zhong et al. (2017)

Human rotavirus 1.21 mg min

L−1

4log pH 7.2, 20°C Xue et al. (2013)

Adenovirus type 40 0.12 mg min L−1 4log pH 8, 15°C Thurston-Enriquez et al. 

(2005)

Human Adenovirus 2 min 1.5log 1.0 mg L−1 ClO2 Sanekata et al. (2010)
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component oxidation, microbial cell content release, and other 
activities (Cabiscol Català et al., 2000; Reddy et al., 2016).

Photocatalytic disinfection is very effective for the inactivation 
of bacterial species. TiO2 nanotubes were used for the inactivation 
of E. coli at the rate of 106 CFU/ml under 10 min (Baram et al., 
2009). Daels et al. (2015) also reported the effective inactivation 
of 76% of the overall bacterial colonies within 6 h of exposure time 
using TiO2-functionalized membranes. Also, Li et  al. (2015) 
utilized Ag-TiO2 to disinfect Pseudomonas aeruginosa. Similarly, 
photocatalytic disinfection was also used to inactivate fungus and 
algae (Tatlıdil et al., 2011; Lee et al., 2015).

Over the last few years, nanostructured TiO2, the most notable 
studied photocatalyst, has been actively investigated for 
photocatalytic viral disinfection. Degussa P25 was the most 
preferred photocatalyst in all these investigations because of its 
strong photoactivity, long-term stability, relatively low toxicity, 
and inexpensive cost (Zhang et al., 2015; Wang et al., 2018a). Viral 
inactivation kinetics is affected by TiO2 crystalline structures 
which are either anatase or rutile. Sjogren and Sierka (1994) began 
the pioneering work on the inactivation of MS2 through 
photocatalytic viral disinfection by using TiO2 photocatalyst. 
Thereafter, TiO2 and TiO2 -based photocatalysts, metal-containing 
photocatalysts apart from TiO2, and metal-free green 
photocatalysts have been employed to achieve improved antiviral 
disinfection effects (Table 3). Sato and Taya (2006) studied the 
impact of TiO2 particle crystalline structures on their virucidal 
ability. The authors achieved a maximum viral inactivation 
efficacy when both anatase and rutile TiO2 particles were 
combined with a 70% anatase ratio, having anatase and rutile 
phases that is 2 and 11 times more than TiO2, respectively.

To achieve increased viral inactivation in drinking water, 
researchers have embarked on enhancing both metal and metal 
oxides. TiO2 photocatalysis was improved by loading the 
photocatalyst with nano-sized silver (nAg) by Liga et al. (2011), as 
a result of the several benefits attached, which include suppressed 
charge recombination in TiO2 by trapping the excited electrons, 
increased surface area for virus adsorption, and Ag+ release for 
viral inactivation. The combination of TiO2 and nAg facilitated 
increased viral disinfection efficiency, as 6.2-log MS2 was 
inactivated within 2 min of UV irradiation using nAg/TiO2 and 
was > 6 times quicker compared to the unmodified TiO2.

Furthermore, a variety of effective, metal-containing, visible-
light-active photocatalysts, as well as TiO2-based photocatalysts, for 
instance, plasmon-induced viral disinfection by Ag-AgI/Al2O3 (Hu 
et al., 2010) and platinum-tungsten oxide (Pt-WO3; Takehara et al., 
2010), have been developed to enable solar-driven inactivation of 
waterborne viruses. Bacteriophage MS2 titer of 2 × 106 PFU/mL 
was reduced to <5 PFU/mL under visible-light radiation for 3 h 
when graphene oxide (GO) sheets were integrated into WO3 films 
to give graphene-WO3(G-WO3) films (Akhavan et  al., 2012). 
Wustite, Maghemite, and nano-Maghemite which are iron oxides 
were explored for their photocatalytic antiviral activity using solar 
irradiation. Wustite demonstrated the highest disinfection 
efficiency with a record of 5log MS2 under 30 min, while 2.6log 

MS2 inactivation was achieved within 120 min (Giannakis et al., 
2017a). Some of the distinct advantages of using iron ore minerals 
to inactivate microbial contaminants include low-cost material, 
availability, earth abundance, visible-light reaction owing to the 
presence of iron components, and simple magnetic recovery from 
water. Therefore, natural photocatalysts based on iron have a 
potential for industrial manufacture and real-time utilization for 
waterborne viruses’ disinfection (Zhang et al., 2019a).

Moreover, fullerene-based photocatalysts have been developed 
to improve the disinfection and inactivation of waterborne viruses. 
Novel C60 derivatives with diverse functional groups such as eNH3

+, 
–COOH, or –OH-terminals were developed, with improved water 
stability. There is a possibility that the electrostatic bond between 
positively charged C60 derivatives and negatively charged MS2 
viruses was responsible for the outstanding viral inactivation 
activity demonstrated by the cationic aminoC60 when compared to 
the commercial TiO2 P25 (Lee et al., 2009; Cho et al., 2010; Lee 
et al., 2010; Moor and Kim, 2014; Moor et al., 2015). In addition, 
aminoC60 was found to be reactive when exposed to visible light 
from fluorescent lamps as well as sunlight (Cho et  al., 2010). 
Furthermore, an organic linker with an amide group was utilized 
to link the C60 derivatives onto functionalized SiO2 surface all in a 
bid to reduce their accidental discharge to water (Lee et al., 2010), 
leading to a significant improvement of the viral inactivation.

To develop an outstanding photocatalyst with a very high viral 
disinfection efficiency, Hu et al. (2012) introduced aptamers on 
the edge of GO and the composite novel antiviral material through 
energy transform/electron transfer efficiently inactivated viruses 
as it damaged nucleic acids and viral proteins using visible-light 
radiation. Aptamers that were integrated into GO increased the 
GO nanosheets’ stability and bind to targets precisely. Graphitic 
carbon nitride (g-C3N4) became an attractive candidate for 
photocatalytic viral inactivation due to its biocompatibility with 
insignificant toxicity, resistance to photo-corrosion, air oxidation 
at increased temperature, and chemical stability in solvents such 
as acids and bases (Cao et al., 2015; Zheng et al., 2017).

Matsuura et al. (2021) examined the ability of light-emitting 
diode (LED)-activated TiO2 fixed on a glass sheet to inactivate 
SARS-CoV-2 in aerosol and liquid. They reported that SARS-CoV-2 
was inactivated with a reduction in its infectivity by 99% after 
20 min and 120 min of interaction in aerosol and liquid, respectively. 
Hence, it was deduced that the photocatalytic interaction mediated 
by TiO2 with the SARS-CoV-2 virus was dependent on time. The 
impacts of TiO2 photocatalyst on SARS-CoV-2 virion include 
reduced virion count, increased virion size, decreased particle 
surface spike structure, and destruction of viral proteins and 
genome. The authors believed that the degradation of the spike 
protein of SARS-CoV-2 by the photocatalytic reaction of TiO2 could 
inactivate the virus irrespective of the mutation in the protein.

However, one of the major limitations of using TiO2 in water 
disinfection is the reaction kinetics; therefore, more studies should 
focus on improving the TiO2 inactivation efficiency and the rate 
of solar energy utilization toward viral inactivation. Furthermore, 
magnetically separable materials that facilitate the removal of used 
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photocatalysts from aquatic environments are another obstacle for 
the semiconductor-based photocatalytic viral disinfection 
method. Thus, floating photocatalysts are interesting candidates 
for enhancing the use of light/oxygen to generate more ROS 
(Habibi-Yangjeh et al., 2020).

Another significant drawback of the photocatalytic 
disinfection method for the inactivation of waterborne viruses is 
the high level of charge recombination in TiO2 and low 
photocatalytic activity. In addition, the broad bandgap of TiO2 
(3.2 eV for anatase and 3.0 eV for rutile) enables the material to 
operate solely on UV light accounting for approximately 4% of 
solar energy used for photocatalytic disinfection. The majority of 
photocatalysts that have been shown to have outstanding antiviral 
action contain (heavy) metals, and the accidental release of 
hazardous metals (e.g., Cu, Ag) into treated water presents serious 
health issues (Zhang et al., 2019a).

Cavitation

Cavitation is the production of tiny vapor bubbles (cavities) 
within a liquid that was originally uniform and an abrupt drop in 

pressure causes this quick physical process. Cavities are formed 
due to the disruption of the liquid medium at one or more sites 
and their shapes are majorly influenced by the flow structure. The 
unstable vapor structures frequently collapse suddenly as they 
approach a section of elevated pressure. Strong shear flows, jets, 
high local temperatures, shock waves, rapid depressurization, and 
supersonic flow are all possible outcomes of the collapse 
(Shamsborhan et al., 2010; Kosel et al., 2017). In general, there are 
two types of cavitation: hydrodynamic cavitation (HC) and 
acoustic cavitation (AC). The process which results in a drop in 
the local pressure differentiates the two; however, the mechanisms 
that regulate the hydrodynamic bubble and the acoustic bubble are 
essentially similar. In AC, the propagation of acoustic waves 
achieves the required low pressures to cause the disruption of the 
liquid and lead to cavitation. In contrast, the liquid’s current speed 
in HC will generate a reduced local pressure below saturation 
point for a liquid temperature, resulting in cavitation formation 
(Zupanc et al., 2019).

The precise mechanism by which cavitation inactivates viruses 
is not fully comprehended yet as few studies have evaluated the 
impact of cavitation on waterborne viruses (Filipić et al., 2022). 
The inactivation of viruses was known to be caused by heat and 

TABLE 3 Summary of parameters, inactivation efficiency, and photocatalysts used for viral disinfection in water.

Virus Photocatalyst
Catalyst 
loading 
(mg L−1)

Virus level 
(PFU/ml) Light source Inactivation 

efficiency/time References

Murine

norovirus

TiO2 10 1 × 108 UV lamp 3.3log/ 24 h Lee et al. (2008)

MS-2

bacteriophage

TiO2 – 2 × 105 4 W BLB lamp 2log/109 min Cho et al. (2011)

Phage f2 TiO2 1,000 1010–1011 6 W black light

Lamp

6log/15 min Zuo et al. (2015)

Phage MS2 Mn-TiO2 100 1 × 105 150 W Xe ozone-

free lamp

4log/60 min Venieri et al. (2015)

Phage MS2 g-C3N4 150 1 × 108 300 W Xe lamp 8log/300 min Li et al. (2016)

Phage Qβ Rh-SrTiO3 3,000 5 × 107 Vis 5log/120 min Yamaguchi et al. (2017)

Phage MS2 FeO 5 1 × 106 Simulated solar 5log/30 min Giannakis et al. (2017a)

Phage f2 TiO2 100 >20 4 W UV-lamp 5-6log/160 min Cheng et al. (2018b)

Bacteriophage

f2

Cu - TiO2

Nanofibers

50 1 × 104 Xe lamp 4.0log/120 min Zheng et al. (2018)

Bacteriophage

f2

Ag3PO4/g-C3N4 100 3 × 107 8 W UVA lamp 6.5log/80 min Cheng et al. (2018a)

Phage MS2 g-C3N4 135.4 1 × 108 Xe lamp 8log/240 min Zhang et al. (2018b)

MS2 g-C3N4/EP 0.06 1 × 108 300 W Xe lamp 8log/240 min Zhang et al. (2018a)

Bacteriophage

f2

Cu - TiO2

Nanofibers

10 1 × 108 Xe lamp >5log/240 min Cheng et al. (2019)

HAdV-2 O-g-C3N4/HTCC 3 – 7 W white LED

Lamp

5log/120 min Zhang et al. (2019b)

Norovirus Cu- TiO2 – 2.89 ± 0.11 log 10 UVA-LED 5log/60 min Moon et al. (2020)

HAdV-2 g-C3N4/H2O2 100 1 × 105 300 W Xe lamp 2.6log/150 min Zhang et al. (2021)

MNV TiO2 300 1 × 106 4 W Blacklight 

Blue Lamps

1.4 × 10−5/32 min Kim et al. (2021)
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high pressure, and OH− was linked to damage of viral capsid 
proteins (Chen et al., 2021b). According to Su et al. (2010), virus 
inactivation could be due to the damage caused during cavitation 
either to the exterior protein capsid or the recognition sites 
situated on the exterior of the capsid. Kosel et al. (2017), opined 
that the alteration of the viral capsid or genome by OH− produced 
during cavitation combined with mechanical impacts could 
be attributed to virus inactivation.

Dular et al. (2016), assessed the effect of HC on the decrease 
of rotavirus (RV), in a Venturi cavitation chamber using a 
pulsating system. The treatment reduced the RV concentration by 
75% using RT-qPCR. In a similar Venturi constriction, the effect 
of HC on MS2 infectivity was investigated by Kosel et al. (2017), 
and it was reported that there was a 4.8log reduction per litre. The 
authors also mentioned that the viral inactivation could be linked 
to the damage of the host’s recognition receptors situated on the 
virus surface due to the OH− radicals generated from cavitation. 
Also, they posited that OH− radicals were formed because 
cavitation could be  responsible for the observed damage. 
Furthermore, they suggested that high shear forces inside the 
cavity could be another factor responsible for additional damage 
to the virus. Filipić et al. (2022), recently evaluated the inactivation 
of potato virus Y (PVY) in a liter of water using HC where 
inactivation was achieved after about 125 to 500 HC passes. It was 
observed that there was rapid and severe damage to the protein 
capsid of the virus compared to the genomic RNA, and this could 
be  a major contributory factor to the virus inactivation. The 
authors further observed that strong oxidants such as O2, OH−, 
and H2O2 were not really involved in the virus inactivation; hence, 
this suggested that mechanical effects are possibly responsible for 
the inactivation.

Although hydrodynamic cavitation is a less expensive form of 
disinfection than AC, it costs more than chlorination and 
ozonation (Holkar et al., 2019). Also, it requires a continuous 
energy supply, and there is a limit to how much water can 
be treated using this process (Dular et al., 2016). Due to significant 
operational expenses, HC disinfection technology is currently in 
the laboratory stage (Pichel et  al., 2019), and is yet to 
be implemented in large-scale applications (Sun et al., 2020).

Electrochemical disinfection

The primary basis of the electrochemical disinfection method 
is the oxidation ability of disinfectants in the electrode layer or 
the bulk of the electrode (Bruguera-Casamada et  al., 2016; 
Ghernaout, 2017). This disinfection method is characterized by 
the production of intermediates, and it is grouped into two 
categories: direct anode oxidization, and indirect product 
oxidation. The transfer of electrons between the electrode and the 
target material without using poisonous chemicals and other 
organic molecules is the basis of inactivation when direct anode 
oxidation is performed. In contrast, concentrated saline solution 
is needed for anode oxidation, and therefore the accumulated 

molecules and ions (e.g., H2O and Cl) at the electrode are 
oxidized for the formation of chlorine-active substances (for 
instance, Cl2, HOCl, and ClO3) as well as oxygen-active 
substances (e.g., oscillation of [O(3P)], H2O2, O3). To oxidize and 
remove the target substance, intermediate products are critical in 
transporting the electrons from the target material to the surface 
of the electrode (Panizza and Cerisola, 2005; Santana et al., 2005; 
Yang et  al., 2018; Jung et  al., 2020). The main cause of the 
inactivation of microorganisms when electrochemical 
disinfection is employed is damage to the intracellular enzyme 
system of the microbes (Long et al., 2015).

Boron-doped diamond electrodes have also been employed 
as a disinfectant in a sequential electrocoagulation-electro-
oxidation treatment system for the removal of viruses in water. 
Bacteriophages MS2, ΦX174, and human echovirus were 
reduced from the positive simulation effect in the physical 
decrease of coagulation-filtration, ferrous iron-based 
disinfection, and electro-oxidation disinfection (Heffron et al., 
2019). Tu et al. (2021) reported the inactivation of SARS-CoV-2 
virus in Na2CO3 aqueous solution using nickel foam as both 
cathode and anode. Inactivation rates of 95, 99, and 99.99% at 
5 V were recorded within just 30s, 2 min, and 5 min, respectively. 
The inactivation rates were attributed to oxidation and 
degradation of the receptor binding domain (RBD) of the SARS-
CoV-2 spike glycoprotein by the NiOOH anode surface formed 
in situ during the electrolysis.

Even though viruses are smaller and less complex physically 
than bacteria, they resist electrochemical treatment more strongly, 
limiting the method’s utilization, thereby necessitating further 
research (Drees et al., 2003; Chen et al., 2021b). Much attention 
has not been given to DBPs formation from electrochemical 
disinfection; however, some researchers now explore the 
possibility of by-products generation from electrochemical 
disinfectants and their possible toxicity levels (Jasper et al., 2017; 
García-Espinoza and Nacheva, 2019). Disinfection by-products 
that are produced during chemical disinfection processes might 
also be produced during electrochemical disinfection treatment 
depending on the electrode material used and applied voltage 
(Ghernaout, 2017).

Comparison of disinfection 
methods

Common disinfection methods involve membrane filters, 
ultraviolet irradiation, chlorine, monochloramine, chlorine 
dioxide, ozone, and emerging disinfection treatments such as 
photocatalytic and electrochemical disinfection. The mechanism 
of disinfection for virus mitigation and inactivation is based on 
the contact between the viruses and disinfectants to break down 
the virus’s capsid protein and nucleic acid. This makes it impossible 
for viruses to spread to host cells and reproduce, while membrane 
filtration employs the size exclusion principle. The kind and 
primary concentration of the disinfectant and virus, as well as the 
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pH, temperature, and treated water matrix (particles, dissolved 
oxygen, coexisting ions, and dissolved organic matter), remain the 
major factors militating against water disinfection.

Each disinfection method reviewed reduces the viral load 
before the effluent is discharged into the environment. However, 
the rate of viral inactivation differs, for instance, ozonation and 
UV irradiation are more effective for viral inactivation when 
compared with chlorination. Interestingly, UV irradiation is 
considered a clean disinfection technology due to its viral 
inactivation efficiency without forming DBPs. Furthermore, 
studies have revealed that RVs (Betancourt and Gerba, 2016), JC 
PyV, and echoviruses are better inactivated using chlorine 
compared to other waterborne viruses (Chen et al., 2021a). SARS-
CoV-2 is inactivated by both chlorine and chlorine oxide (Brown 
et  al., 2021; Hatanaka et  al., 2021), as well as the emerging 
methods: photocatalytic disinfection (Khaiboullina et al., 2020), 
and electrochemical disinfection (Tu et al., 2021). However, the 
efficiency of cavitation for the disinfection of SARS-CoV-2 has not 
been investigated. Adenoviruses which have been reported to 
be  resistant to UV irradiation (Augsburger et  al., 2021), and 
monochloramination (Gall et al., 2016), are inactivated by both 
ozonation and photocatalysis disinfection (Chen et al., 2021a). 
Furthermore, Chen et al. (2021b) mentioned that inactivation of 
E. coli, Clostridium perfringens, Vibrio cholerae, and MS2 was 
faster using chlorine-active substances produced on-site compared 
to chlorine. Table  4 further summarized the virus removal/
inactivation range, merits, and limitations of various disinfection 
methods discussed in this article. The log reduction value (LRV) 
shows the relative number of inactivated pathogens during the 
disinfection process (Equation 7).

 
log log /reduction values LRV A B( ) = ( )10  

(7)

where A is the number of viable pathogens before treatment 
while B is the number of pathogens after treatment (Mariita and 
Randive, 2021).

Conclusion and perspectives

Disinfection is critical in the elimination of waterborne 
microorganisms for the discharge of safe water to the 
environment. However, viruses differ from other pathogens in 
that they react differently in treatment processes, resulting in 
differences in their fate and behavior in water. Therefore, this 
has led to the adoption of different disinfection techniques, all 
in a bid to achieve safe water that is void of viruses. 
Unfortunately, secondary pollution caused by the formation 
of DBPs associated with chemical disinfectants cannot 
be overemphasized; hence, it should be avoided during viral 
disinfection. Interestingly, single techniques of disinfection 
can be  sequentially merged into one and utilized as 
one method.

Emerging disinfection technologies have the potential to 
significantly increase virus inactivation in water by utilizing 
synergistic effects of different disinfection methods to solve the 
problem of the persistence of waterborne viruses. Nevertheless, 
they are not void of toxicity issues and accompanying high cost 
of operation. For example, to reduce DBPs formation yet increase 
viral inactivation, UV irradiation could precede chlorination, and 

TABLE 4 Virus removal/inactivation range and the merits and limitations of the various disinfection method (adapted from Chen et al., 2021a).

Method
Removal/

inactivation
log

Merits Limitations

Membrane filtration 0.5–5.9 Low energy cost, the potential for mobile treatment 

unit, does not require chemicals

Removal efficiency is unstable, a potential health risk for 

humans

Ultraviolet irradiation 0.09–5 No DBPs formation, less susceptible to pH and 

temperature, non-corrosive, ease of installation and 

operation, short contact time

Relatively high energy consumption, inefficient in turbid 

water

Chlorination 1- > 5 Simple to handle, cost-effective, residual in distribution DBPs production, residual toxicity

Monochloramination 0.5–4 Stable residual, less odor, and taste issues Weak disinfectant, less virucidal, long contact time

Chlorine dioxide 0.25–6 More effective than chlorine at higher pH, lowers DBPs 

formation

DBPs formation, organoleptic abnormalities

Ozonation 0.6–7.7 Effective disinfectant, short contact time, possible 

combination with various catalysts

DBPs formation, high operation and maintenance cost, non-

stable and poor solubility, effectiveness is affected by water 

turbidity

Photocatalytic disinfection 1–8 Low cost of operation, possible reuse of catalysts, 

favorable catalytic performance

Accidental leaching of hazardous metals into treated water

Cavitation <4 No DBPs formation, possible for incorporation into a 

continuous flow process

Energy-intensive and high operating cost, still at the 

developmental stage

Electrochemical disinfection 3.4–5 Easy to control, environment friendly Possibility of DBPs formation, low selectivity, the high 

operating cost associated with electricity consumption
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this would reduce the quantity of chlorine that is required. On the 
other hand, there could be formation of more DBPs if already 
chlorinated water is exposed to UV radiation. Furthermore, the 
feasibility of the application of these merged technologies to 
large-scale water treatment plants still hinders the adoption of 
these techniques on an industrial scale despite their undeniable 
benefits. Therefore, these techniques should be investigated on a 
pilot scale to ascertain their feasibility. Considering the foregoing, 
it could be logically proposed that natural biomaterials such as 
medicinal plants that are biocompatible, biodegradable, 
abundant, readily available, and cost-efficient with intrinsic 
health and safety benefits coupled with their significant 
antimicrobial attributes should be explored as potential novel 
disinfectants, and adapted for the inactivation of waterborne  
viruses.
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