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Depressive disorders are a severe psychiatric and social problem that affect more than

4% of the global population. Depressive disorders have explicit hereditary characteristics;

however, the precise driving genetic force behind these disorders has not yet been

clearly illustrated. In the present study, we recruited a three-generation Chinese pedigree

in which 5 of 17 members had long-term depression. We conducted whole-exome

sequencing to identify the genetic mutation profiles of the family, and a list of susceptible

genetic variations that were highly associated with depression onset was revealed via

multiple omics analysis. In particular, a non-synonymous single nucleotide variation in

the oxoglutarate dehydrogenase-like (OGDHL) gene, rs2293239 (p.Asn725Ser), was

identified as one of the major driving genetic forces for depression onset in the family.

This variant causes an important conformational change in the transketolase domain

of OGDHL, thus reducing its binding affinity with the cofactor thiamine pyrophosphate

and eventually resulting in the abnormal accumulation of glutamate in the brain. Brain

imaging analysis further linked the rs2293239 variant with an enlarged amygdala and

cerebellum in depressive family members. In summary, the present study enhances the

current genetic understanding of depressive disorders. It also provides new options for

prioritizing better clinical therapeutic regimens, as well as identifying a new protein target

for the design of highly specific drugs to treat depressive disorders.

Keywords: OGDHL, rs2293239, depressive disorder, Chinese, genetic driver

INTRODUCTION

Depressive disorders, or depression, refers to common but severe mental disorders that affect
more than 264 million people worldwide (1). They are also a leading cause of disability, and place
heavy economic burdens on both patients’ families and society (2). Unfortunately, clinical therapy
for depressive disorders, and in particular major depressive disorder (MDD), usually results in
poor outcomes because of the heterogeneous pathophysiology of these disorders. Any one or a
combination of biological, physical, genetic, and social factors may account for depression onset.

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2022.771950
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2022.771950&domain=pdf&date_stamp=2022-03-18
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cgd936658@163.com
mailto: wwq5392616@sina.com
mailto:chuanjunzhuotjmh@163.com
mailto:chuanjunzhuo@nandkai.edu.cn
https://doi.org/10.3389/fpsyt.2022.771950
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.771950/full


Pan et al. Familial Depression and Gene

Although great efforts have been made over many years, the
driving force underlying depressive disorders remains unclear
in most cases, which has little benefit for improving therapeutic
regimens (3, 4).

Depressive disorders are heritable. Early twin studies
estimated the heritability of depression to be about 36% (5, 6).
For MDD, heritability was determined to be approximately 32%
in a study that measured genomic similarity among unrelated
individuals (7). The inheritance of depression from generation to
generationmakes it feasible to reveal the potential driving genetic
force of this disorder. For example, Hu conducted comparative
genotyping of a case–control cohort and reported that a single
nucleotide polymorphism, rs25531 in SLC6A4, likely impacts
depression onset by interfering with the serotonin pathway
(8). In addition, Zubenko et al. performed a linkage analysis
on 81 families and identified 19 loci that were suspected to
relate to depressive disorders (9). Camp et al. reported three loci
related to depression or anxiety based on 87 Utah pedigrees (10).
Furthermore, Kendler and Flint summarized a number of genes
(5HTTP/SLC6A4, APOE, DRD4, GNB3, HTR1A, MTHFR, and
SLC6A3) linked to susceptibility to heterogeneous depression by
interpreting a large amount of candidate gene literature in 2014
(11). However, despite convincing evidence for their genetic
contribution to disease susceptibility, only a few of these genes or
loci have substantial molecular evidence to support the diagnoses
of the members of this family and clinical therapy (11, 12). In
recent years, genome-wide association studies (GWAS) have
been applied to the search for genetic associations in various
psychiatric diseases. Several biomarker gene variants have
been proposed for depression in different ethnic populations,
including BICC1 rs9416742 in a UK population (13), SIRT1
rs12415800 in a Chinese Han population (14), and rs12462886
of a non-coding region in a US population (15). However, the
results of GWAS for MDD have been questioned because of a

Abbreviations: OGDHL, Oxoglutarate Dehydrogenase L; SLC6A4, Sodium-
and-chloride-dependent solute carrier family 6 gene number 4; 5-HTTP, 5-
Hydroxy Tryptamine Transporter Polymorphism; APOE, Apolipoprotein E;
DRD4, Dopamine D4 receptor gene; GNB3, G protein subunit beta 3; HTR1A, 5-
Hydroxytryptamine receptor 1A; MTHFR, Methylenetetrahydrofolate reductase;
BICC1, BicC family RNA binding protein 1; SIRT1, Sirtuin 1; dbNSFP, database
for Nonsynonymous SNPs’ functional predictions; SIFT, Sorts intolerant from
tolerant; PolyPhen2 HDIV, Polymorphism Phenotyping v2 HumDiv; PolyPhen2
HVAR, Polymorphism phenotyping v2 HumVar; LRT, Likelihood ratio test;
FATHMM, Functional analysis through hidden Markov models; PROVEAN,
Protein variation effect analyzer; MetaSVM, Meta Support vector machine;
MetaLR, Meta Logistic regression; GERP++, Genome evolutionary rate profiling
++; PhyloP, Phylogentic p-values; ff99SB-ILDN, Force field99; MOE, Molecular
operating environment; LRRK2, Leucine rich repeat kinase 2; MUC19, Mucin
19; CNTN1, Contactin 1; TDRD9, Tudor domain containing 9; KIF26A, Kinesin
family member 26A; C14orf180, Chromosome 14 open reading frame 180;
TMEM179, Transmembrane protein 179; LRRK2, Leucine rich repeat kinase 2;
CHSY1, Chondroitin sulfate synthase 1; SELENOS, Selenoprotein S; SNRPA1,
Small nuclear ribonucleoprotein polypeptide A1; PCSK6, Proprotein convertase
subtilisin/kexin type 6; TM2D3, TM2 domain containing 3; TARS3, Threonyl-
TRNA synthetase 3; OR4F6, Olfactory receptor family 4 subfamily F member 6;
OR4F15, Olfactory receptor family 4 subfamily F member 15; OR4F4, Olfactory
receptor family 4 subfamily F member 4; TBX1, T-Box transcription factor 1; IL16,
Interleukin 16; FBXO15, F-Box protein 15; LHPP, Phospholysine phosphohistidine
inorganic pyrophosphate phosphatase; ExAC, Exome aggregation consortium;
WES, Whole exome sequencing.

lack of generalizability and interpretability (11). It has also been
proposed that previously identified candidate genes are likely
to be false positives (16). In particular, the variants identified
using GWAS approaches usually have low penetrance, and few
have had their associations with depression onset confirmed
molecularly. To date, strong depression-associated variants have
not yet been identified; a large gap remains for the translation
of our current knowledge of depressive disorders to efficient
clinical therapy.

To narrow this gap, in the present study, we conducted
a pedigree analysis in a three-generation Chinese family with
depression. We first portrayed the genetic mutation profiles for
every family member, fromwhich we identified rare variants with
high penetrance that were associated with familial depression.
We then performed a protein structure–activity relationship
analysis and multimodal brain image analyses to interpret the
potential roles of the selected variants in depression onset.

MATERIALS AND METHODS

This study was approved by the Clinical Research Ethics
Committee of the Xiamen Xianyue Hospital, Fujian, China. All
experimental protocols were performed in accordance with the
Declaration of Helsinki. Written informed consent was obtained
from all participants after a complete description of the study.

Family Pedigree
The pedigree in this study was a three-generation family of 17
members, five of whom were diagnosed with different levels
of depressive disorders by multiple doctors from the Xiamen
Xianyue Hospital. Diagnoses were made strictly according to the
guidelines of the International Classification of Diseases, Tenth
Revision (ICD-10), and pathophysiology was carefully assessed
by reviewing a thorough history, examination, and workup of
each patient. The pedigree at the time of this study is illustrated
in Figure 1 and demographic information is shown in Table 1.

For each family member, 1mL of peripheral blood was
collected in the hospital. Subsequently, plasma separation was
conducted by centrifugation at 800 ×g for 10min and 2,500 ×g
for 10min consecutively. The separated leukocytes were stored at
−80◦C before the DNA was extracted.

Mutation Profiling by Whole-Exome
Sequencing
The genomic DNA of leukocyte samples was extracted using
the EZ-10 Spin Column Blood Genomic DNA Purification
Kit (Sangon Biotech Co, Ltd., Shanghai, China). The DNA
concentration was measured using the Qubit R© DNA Assay Kit
and Qubit R© 2.0 Fluorometer (Life Technologies, CA, USA). For
each sample, 0.6 µg of DNA was used as the input material for
the DNA sample preparation. The whole exome was captured
using the Agilent SureSelect Human All Exon Kit (Agilent
Technologies, CA, USA) and the library for sequencing was
prepared according to the manufacturer’s instructions. WES was
performed by Novogene (Beijing, China) using the Illumina
Hiseq platform in a 150-base pair (bp) paired-end mode.
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FIGURE 1 | Genetic profiling of the depressive family. (A) The pedigree structure and their genetic mutation profiles. The number inside each large circle or rectangle

indicates the age of the family member. The small colored rectangles under the family members indicate the type of data acquired in this study. The pie chart illustrates

the mutation composition. (B) The differential mutation density (DMD) landscapes in chromosomes. Several hotspots of differential variants, at 12q12

(DMD = 32.9833), 14q32.33 (DMD = 24.5667), and 15q26.3 (DMD = 22.3000), were observed in the depressive family members, covering 19 genes and

976 variants.
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TABLE 1 | Demographic and clinical information of the depressive subjects.

G2-F-01 G2-F-04 G2-F-03 G2-F-02 G3-F-02

Age 46 39 41 43 18

Sex Female Female Male Female Female

Depression grade Mild to moderate depression Major depression Major depression Major depression Mild to moderate depression

HDRS-17 score 22 42 34 33 20

Duration of illness (months) 148 187 67 184 17

Medication Paroxetine hydrochloride Lamotrigine olanzapine Fluoxetine hydrochloride Lamotrigine fluvoxamine Lamotrigine fluvoxamine

Duration of treatment (months) 102 138 56 132 16

Data were calculated up to 2018.

HDRS-17, hamilton depression rating scale.

Exome Data Preprocessing and Variant
Calling
Before variant calling, quality control was conducted on the raw
sequencing data using Trimmomatic (version 0.36; parameters:
LEADING = 3, TRAILING = 3, SLIDINGWINDOW =

4:15, MINLEN = 50, http://www.usadellab.org/cms/?page=
trimmomatic) (17). Subsequently, Kraken (18) was used to
exclude potentially polluted reads. The clean reads were then
mapped to the human reference genome (GRCh38) using the
Burrows–Wheeler Aligner (19) (v.0.7.17; parameters: mem -
t 4 -M). We then used the Genome Analysis Toolkit (20)
(GATK, v.4.0.10.1) and Samtools (21) (v.1.9) for basic processing,
duplicate marking, and base quality score recalibration. Next,
variant calling for germline mutations was conducted using
the GATK HaplotypeCaller. Variants were further annotated
using ANNOVAR (22) (v.2018Apr16) by referring to databases
such as refGene, avsnp150, clinvar_20180603, dbnsfp35a, exac03,
exac03nontcga, exac03nonpsych, cosmic70, 1000g2015aug_all,
and 1000g2015aug_eas.

Differential Mutation Density
The DMD was determined by summarizing the mutation
difference between the depressive and healthy members of the
family for every 1,000,000 bp (1 Mbp) segment of chromosome:

DMD =
∑n

i=1
(
Oid

Nd
−

Oi,h

Nh
) (1)

where Oi,d indicates the occurrence of a definite mutation i in
the depressive members, Nd indicates the number of depressive
family members, Oi,h indicates the occurrence of a definite
mutation i in the healthy family members, Nh indicates the
number of depressive family members, and n indicates the
total number of mutations detected in the 1 Mbp segment in
this study.

Copy Number Variation Calling and
Differential Analysis
eXome Hidden Markov model (XHMM) (23) (v.1.0) and
GATK (20) (v.4.0.10.1) were used separately to call CNVs
based on exomes. The XHMM method accepted the Burrows–
Wheeler Aligner-aligned BAM file as the input. The XHMM
module (- PCA) was applied to generate component variation,

other modules (- normalization and - matrix) were applied
to generate a z-score of read depth and normalization,
and the hidden Markov model (- discover) was applied
to identify CNVs. The GATK method used the Determine
Germline Contig Ploidy module to determine autosomal
and allosomal contig ploidy, and subsequently used the
Germline CNV Caller module to call CNVs. In the current
study, only consensus CNVs that were called by both tools
were retained for differential analysis. The CNV differential
analysis was conducted between the depressive group and the
healthy group using a self-written shell script. The differential
CNVs, if available, were further functionally annotated to
evaluate their connection with depression using Classify
CNV (24) software (v.1.1.0) and referring to the human
genome (GRCh38).

Identification of Depression-Associated
Variants
We performed a series of bioinformatic analyses one by one
to identify depression-associated variants (Figure 2), as follows.
(1) A comparison of mutation profiles was performed to
extract the differential, non-synonymous, and exonic variants.
At the time of this investigation, the third generation of
the family were mostly teenagers, when depression is likely
under progression but symptoms have not yet appeared.
Thus, members of the third generation were excluded from
the case–control comparative analysis. The third-generation
member G3-F-02, who was diagnosed with depression just
before the initiation of this study, was the only exception; she
was involved in the variant detection. (2) Genetic segregation
analysis was conducted to confirm whether the variants
satisfied a Mendelian inheritance model using the segreg
program in the Statistical Analysis for Genetic Epidemiology
package (25) (v.6.4). Sporadic variants that did not fit the
Mendelian inheritance model were excluded because they did
not contribute much to familial trait inheritance statistically
according to the program. (3) Common variants, with an
allele frequency of more than 0.05 in the Exome Aggregation
Consortium (ExAC) (26) and the 1000 genome project (27,
28), were excluded. Odds ratios (ORs) were calculated for
every retained rare variant following conventional practices,
based on the allele frequency difference between the psychosis
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FIGURE 2 | Schema of the discovery of driver variants for the familial depressive disorder.

(ExAC_Psych) and non-psychosis (ExAC_nonPsych) subsets
of ExAC release 1.0 (GRCh38). In the same way, we also
calculated the ORs for every variant by counting the allele
frequency difference between MDDs in Chinese Han women
and normal controls in the Convergence of Epicardial and
Endocardial Ablation for the Treatment of Symptomatic
Persistent Atrial Fibrillation (CONVERGE) study (14). (4)
For the remaining variants, deleteriousness was evaluated
using 13 different algorithms in dbNSFP (29), including SIFT
(30), PolyPhen2 HDIV, PolyPhen2 HVAR (31), LRT (32),
MutationTaster (33), MutationAssessor (34), FATHMM (35),
PROVEAN (36), MetaSVM, MetaLR (37), GERP++ (38), and
PhyloP (39). The variants that were predicted deleterious by at
least one algorithm were considered to have high penetrance
for depression. Variants with more hits were considered to be
more deleterious. The most deleterious variants were considered
to be driving variants for depression and were adopted for later
functional analyses.

Protein Structure–Activity Relationship
Analysis
Because the human OGDHL protein structure was not
yet available in the Protein Data Bank (PDB) database,
we used homology modeling to simulate the structure for
the structure–activity relationship analysis. The simulation
was conducted using the commercial software Molecular
Operating Environment (MOE), adopting the multifunctional 2-
oxoglutarate metabolism enzyme (PDBID: 2yic) as the template
coupled with the cofactor thiamine pyrophosphate (TPP), Ca2+,
and Mg2+. The simulated protein structure was stabilized
and optimized in a water environment (310K temperature)
using GROMACS software (40) (v.2018.4) for 20 ns molecular
dynamics with both force fields: amber general force field (41)
and amber ff99SB-ILDN (42). Furthermore, we simulated the
mutant protein (OGDHL N725S) by changing the amino acid
at position 725 (NP_001334748.1) from asparagine (N) to serine
(S), followed by 50 ns molecular dynamics under the same
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conditions as for the wild-type protein simulation. The structure–
activity relationship analysis was performed by evaluating the
conformational change and binding affinity between the OGDHL
wild type and N725S mutant using MOE software.

Image Data Acquisition and Processing
Magnetic resonance imaging (MRI) of the brain, which included
structural MRI (sMRI), functional MRI (fMRI), and diffusion
imaging (dMRI), were scanned for every family member when
possible. For various reasons, all three imaging modalities
were not used for all family members. The image data
acquisition statuses are shown in Figure 1A. All images were
taken using a MAGNETOM Skyra 3T MRI (Siemens AG,
Erlangen, Germany). High-resolution T1-weighted sMRI images
were acquired according to a standardized protocol (three-
dimensional magnetization-prepared rapid acquisition with
gradient echo sequence; repetition time [TR]/inversion time
[TI]/echo time [TE] = 2,530/950/2.01ms; 192 sagittal slices; flip
angle = 8◦; slice thickness = 1mm; field of view = 256 ×

256 mm2; base resolution = 256). The functional images were
obtained using blood oxygen level-dependent contrast-sensitive
gradient-echo planar imaging (TE = 30ms; flip angle = 90◦;
in-plane resolution = 3.238 × 3.438mm; volume TR = 2.1 s).
The dMRI was acquired using echo-planar imaging (b = 1,000
s/mm2; TR = 11,700ms; TE = 79ms; 2mm thickness, image
matrix 112× 112; field of view= 224× 224 mm2).

The raw brain images were converted into NIfTI format
using dcm2niix (43) (v.25) and were then output for external
analyses. For the sMRI images, we used the FIRST module
(44) (run_first_all) in FMRIB Software Library (FSL) software
(45) (v.6.0.1) to extract the subcortical structure segmentation.
Overall, 15 subcortical segments (left-thalamus, left-caudate,
left-putamen, left-pallidum, left-hippocampus, left-amygdala,
left-accumbens-area, brain-stem, right-thalamus-proper, right-
caudate, right-putamen, right-pallidum, right-hippocampus,
right-amygdala, and right-accumbens-area) and a cerebellum
segment were extracted in this study. The volumes for the
subcortical structures and cerebellum were determined using the
“fslmath” program of FSL. The volume comparison between the
healthy control and depression groups was performed using a
randomization test in a self-written R script; its robustness was
evaluated using the randomization test. For the fMRI images, raw
images were processed for motion correction, field unwarping,
normalization, and bias field correction using fMRIPrep (46)
software. In the normalized images, the blood oxygen levels
of 39 distinct brain regions (nodes) were determined using
the Python package nilearn (47), referring to the multi-subject
dictionary learning (MSDL) atlas (48). For each family member,
the covariance values of the blood oxygen levels between the
nodes were calculated to form a 39 × 39 connection matrix.
The connectome map was built upon the connection matrix
by setting an edge_threshold = 0.99, in which the edge stood
for the connectivity [calculated by the tangent (49)] between
the nodes. The connection map difference between the healthy
control and depression groups was determined using the FSL
module randomize (50). The dMRI images were preprocessed
using the tract-based spatial statistics (TBSS) module (51) of

FSL software to create the fractional anisotropy (FA) image,
register the FA image, skeletonize themean FA image, and project
the FA information onto the mean FA skeleton image. The
difference in the fiber tract skeleton between the healthy control
and depressive groups was then evaluated using the FSL module
randomize (50).

RESULTS

Identification of Potential Driver Variants in
Familial Depression
WES of the peripheral blood of all 17 family members yielded
a mean sequencing depth of 258.94× (ranging from 234.26×
to 294.52×) after quality control (Supplementary Table S1).
The sequencing coverage was deep enough for robust variant
calling. Overall, 141,022 single nucleotide variants (SNVs) and
19,148 insertion/deletion variants (InDel) were obtained. The
distribution of SNVs and InDels in each family member is
illustrated in Figure 1A. The family members had almost the
same distributions of the different variant types, indicating that
the variant calling fromWES was well processed.

Before searching for depression-associated variants, we first
examined chromosomal integrity by measuring the CNVs
caused by abnormal chromosomal events, such as duplication,
deletion, rearrangement, or recombination. There were no
significant chromosomal differences between the depressive
and healthy family members. In particular, no significant
CNV differences were observed in the chromosomal region
22q11.2; this region has been linked with schizophrenia
and other neuropsychiatric/behavioral disorders. Furthermore,
we analyzed the DMD landscapes per 1 Mbp segment of
chromosomes (Figure 1B). Three hotspots of DMD (with DMD
> 20) were detected, at 12q12 (DMD = 32.9833), 14q32.33
(DMD = 24.5667), and 15q26.3 (DMD = 22.3000). These three
DMD hotspots may be chromosomal fragments that are mutual
to the depressive members, and are inherited from generation to
generation (Figure 1B). These chromosomal fragments covered
19 genes and 976 variants: four genes in 12q12 (SLC2A13,
LRRK2, MUC19, and CNTN1), five genes in 14q32.33 (TDRD9,
RASPG, KIF26A, C14orf180, and TMEM179), and 10 genes in
15q26.3 (LRRK, CHSY1, SELENOS, SNRPA1, PCSK6, TM2D3,
TARS3, OR4F6, OR4F15, and OR4F4). Although a literature
search of these genes and variants revealed some clues of their
association with depressive or other affective disorders, a series
of bioinformatic analyses (including OR association analyses and
deleteriousness analyses) on these variants did not confirm their
significant association with or penetrance for depression in our
pedigree. Hence, we no longer considered the variants at these
depression-specific hotspots as the candidate driving force of
familial depressive disorders.

To identify potential depression-associated variants, we
conducted a series of bioinformatic analyses. The case–control
analysis extracted 159 differential, non-synonymous, and exonic
variants between the depressive and other family members,
including 144 SNVs and 15 InDels. According to the segregation
analysis based on the whole mutation profiles, the familial
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TABLE 2 | Segregation analysis of the family based on the whole-exome

sequencing data.

Mode of inheritance LN (likelihood) -2LN (Lh) AIC

Sporadic model without familiar residual

association

−8.3785 16.757 26.757

Sporadic model with familiar residual

association

−6.75353 13.507 23.5071

Mendelian major gene models with

autosomal dominant inheritance

−7.66576 15.3315 23.2215

Mendelian major gene models with

autosomal recessive inheritance

−7.66575 15.332 23.2216

TABLE 3 | Information and allele frequency for the four potential driving variants.

SNP rs2293239 rs201457933 rs79499419 rs41298838

Chromosome chr10 chr15 chr18 chr22

Start 49739806 81300079 74126069 19765921

End T G T G

Reference C C C A

Gene.refGene OGDHL IL16 FBXO15 TBX1

ExAC_EAS/ExAC_ALL 13.9333 12.7500 13.3000 53.2105

1000g2015aug_eas/

1000g2015aug_all

4.9603 4.9766 4.4571 4.8633

ORExAC 2.1815 - 3.0087 42.7604

ORCONVERGE 1.2602 0.979 0.8722 1.1531

ExAC_ALL 0.0015 0.0016 0.001 0.0019

ExAC_EAS 0.0209 0.0204 0.0133 0.1011

ExAC_nonpsych_ALL 0.0012 0.0013 0.0007 0.0010

ExAC_nonpsych_EAS 0.0183 0.0171 0.0098 0.1250

1000g2015aug_all 0.0042 0.0032 0.0020 0.0090

1000g2015aug_eas 0.0208 0.0159 0.0089 0.0437

Deleteriousness 9 2 1 4

depression likely fit either an autosomal dominant or a recessive
Mendelian inheritance gene model (Table 2). Hence, variants
that did not fit Mendelian inheritance were excluded; 93
variants were consequently retained, including 84 SNVs and
nine InDels. Furthermore, because the estimated incidence rate
of depression worldwide is about 2–6% (52), driver genetic
variants aremore likely to be rare variants than common variants.
Accordingly, common variants (with an allele frequency >

0.05 in the population) were also removed from the candidate
list by referring to ExAC and the 1000 Genome project.
Moreover, a deleteriousness analysis was conducted to evaluate
the penetrance of the variants on depression. Only four SNV
variants were considered to have high penetrance for depression:
OGDHL rs2293239, TBX1 rs41298838, IL16 rs201457933, and
FBXO15 rs79499419 (Table 3).

Of these four candidate variants, we speculated that OGDHL
rs2293239 was most likely the driving genetic force behind
depression in this family. This speculation was based on several
pieces of evidence: (1) OGDHL rs2293239 was predicted as
highly deleterious by 9/13 algorithms; (2) this variant had a

slightly higher frequency in the CONVERGE Chinese depressive
women cohort (14) than in the non-psychotic controls (OR
= 1.2602); (3) a literature search revealed that OGDHL is
related to psychological diseases such as Alzheimer’s disease
(53), childhood disintegrative disorder (54), and cerebral atrophy
(55); and (4) OGDHL is highly expressed in all regions of
the human brain according to the Tissue Atlas database (56,
57). Together, these findings suggest that OGDHL rs2293239
is connected with depression. The genetic status of OGDHL
rs2293239 in the present family is illustrated in Figure 3A, and
the genotypes of this allele were further confirmed by additional
Sanger sequencing (Figure 3B). Of the 17 family members,
all depressive members carried this variant in a heterozygous
genotype. However, we must note that four healthy third-
generations also carried this heterozygous mutation but had not
yet exhibited depressive or other psychotic disorders (at the time
of writing).

Mutations in OGDHL May Cause Impaired
Glutamate Metabolism
OGDHL is known compete with oxoglutarate dehydrogenase
(OGDH) in forming the complex E1 subunit, which is essential
for catalyzing the conversion of 2-oxoglutarate (α-ketoglutarate)
to succinyl-coenzyme A and CO2 in the citric acid cycle.
According to Sen et al. (58) and Bunik et al. (53, 59), OGDH
and OGDHL are isozymes that are located in different organs.
OGDHL is mainly located at the mitochondrial matrix in the
brain, and uses TPP as a cofactor (Figure 3C).

OGDHL has two functional domains: the E1 dehydrogenase
component (PfamID: PF00676) and the transketolase pyrimidine
binding domain (PfamID: PF02779) (Figure 3B). The OGDHL
rs2293239 variant that was identified in the family was
located in the transketolase pyrimidine binding domain, and
resulted in a non-synonymous translation from arginine to
serine at position 725 (N725S). Because there are currently
no OGDHL structures available in the PDB database, we
constructed one using homology modeling. The OGDHL
was found to work as a dimer, and cofactor TPP binding
occurred at the site between two monomers. We simulated
the homodimer of OGDHL coupled with TPP as well as
with Ca2+ and Mg2+ (Figure 3D). The binding pattern was
analyzed and the critical residues within are illustrated in
Figure 3D.

To evaluate the impact of the rs2293239 mutation on protein
activity, we also simulated the structure of the OGDHL N725S
variant. Compared with the wild-type protein, the N725S
mutation induced a 5.39 Å conformational change (Figure 3D),
which caused the binding affinity of the TPP–OGDHL dimer to
decrease from −12.94 kcal/mol (wild-type) to −8.75 kcal/mol
(N725S variant). It was speculated that this change in OGDHL
activity may eventually impair glutamate metabolism and raise
glutamate concentrations in the brain. Therefore, we measured
glutamate levels in the peripheral blood (because of the difficulty
in obtaining cerebrospinal fluid) of the family members. The
depressive family members had higher blood glutamate levels
than the healthy family members (analysis of variance). This
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FIGURE 3 | Functional annotation of the oxoglutarate dehydrogenase-like (OGDHL) rs2293239 variant. (A) OGDHL rs2293239 genotypes of the family members are

highlighted in gray. The OGDHL rs2293239 genotype was validated by both whole-exome and Sanger sequencing. (B) The rs2293239 variant (N725S) was located at

the transketolase pyrimidine binding domain of OGDHL, near the rs773888308 (S778L) variant that was identified in the study by Yoon. (C) The function of OGDHL in

glutamate metabolism. (D) The conformation of OGDHL was altered by the rs2293239 mutation, and the binding affinity with cofactor thiamine pyrophosphate (TPP)

was weakened by the mutation.
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result supported our hypothesis that the rs2293239 variant may
impair OGDHL function and increase intracellular glutamate.

Endophenotype of the OGDHL Variant
Brain imaging can provide helpful information for identifying
endophenotypes in the central nervous system that are caused
by genetic mutations. Previously, Yoon et al. reported that the
homozygous mutation S778L in OGDHL, which is located at
a domain near rs2293239, caused severe neurodegeneration in
a 13-year-old patient (55). In the current study, we performed
brain imaging analyses for the family members in as much
detail as possible (Figure 1). The images were evaluated in three
separate analyses. First, we compared the volumes of 15 distinct
subcortical structures between five depressive family members
and eight healthy family members. There was a significant (t-
test, p = 0.03908) volume increase in the left amygdala in
the depressive family members (Figure 4A). This result was
consolidated by the permutation test, which randomized the
depressive and healthy members 10,000 times (p < 0.05) for the
differential volume analysis. This finding agreed with the results
of previous studies, that MDD patients have comparatively larger
amygdalae (60–62). However, there were no significant volume
differences in the left amygdala between nine rs2293239 carriers
and four family members with wild-type OGDHL. Interestingly,
a slight but non-significant volume increase (t-test, p = 0.07) in
the left cerebellum was also noted in the nine rs2293239 carriers
(Figure 4B). In both comparative analyses, no changes in the
shape of subcortical or cerebellar structures were observed.

Second, we examined the integrity of neural tract skeletons
by analyzing dMRI images using a TBSS method. MRI data did
not reveal any significant differences among the five patients
diagnosed with depression, including structural, functional, and
DTI alterations. No significant skeleton defects or structural
differences were identified between either the rs2293239 carriers
or the depressive family members and the controls (Figure 4C).
Finally, we attempted to evaluate changes in brain activity.
However, in our fMRI analysis of a time-series of blood oxygen
level changes, we did not detect any significant differences
in activity in the connections between 39 distinct brain
regions (Figure 4D). Therefore, it was considered that the
OGDHL rs2293239 variant was unlikely to induce depression by
interfering with cerebral cortex activity in this family.

DISCUSSION

OGDHL Variant May Be One of the Major
Genetic Factors of Depression Onset
Depressive disorders are heterogeneous in their pathophysiology.
To date, identifying the major pathological factors for depression
onset in each individual has been something of a “mission
impossible,” and the development of precise therapeutic regimens
for individuals has also been challenging. Genetic mutations
are estimated to account for approximately one-third of all
depressive disorders (5, 6, 63, 64). Because genetic factors are
inherited from generation to generation, they are the most likely
common pathological factors to be identified for depressive
disorders. Many studies of twin, pedigree, and case–control

cohorts have been performed worldwide, and have identified
a variety of depression susceptibility genes, such as SLC6A4,
APOE, DRD4, GNB3, HTR1A, MTHFR, and SLC6A3 (11).
Unfortunately, however, many of these susceptibility genes have
not been be repeated in larger populations or in other cohorts
(16). GWAS studies have complemented the population gap,
but the common somatic variants identified by these studies
mostly have low penetrance for depressive disorders. The poor
interpretation and repetition of GWAS results have also meant
that such findings have been questioned (11, 16). Notably,
using low-coverage whole-genome sequencing, a 2015 case–
control study of 5,303 Chinese women with recurrent MDD
and 5,337 controls identified two risk loci, at noncoding regions
in SIRT1 and LHPP (14). A similar result was obtained in a
large Japanese cohort study, which identified that the SIRT1
rs10997875 variant was associated with MDD (65). Furthermore,
a mouse study suggested that hippocampal SIRT1 signaling can
mediate depression-like behaviors (66), and a clinical trial also
observed significantly reduced peripheral blood SIRT1 mRNA
in depressive patients compared with healthy controls (67).
Together, these findings indicate that SIRT1 is highly susceptible
to depression and may be a good therapy target. However,
opposing findings have also been reported; in one study, mice
with global SIRT1 overexpression had elevated anxiety and
increased susceptibility to depression (68). In the current study,
we also evaluated SIRT1 variants and their penetrance in the
family. Of three distinct susceptible variants (an exonic variant,
rs2273773, and two novel intronic variants) that were identified
in and near SIRT1, none showed a significant association with
depression. In fact, none of the common variants identified in
this family were associated with depression.

Instead of seeking common somatic variants, we discovered
rare germline variants with high penetrance for depression
in the present study. Via a series of bioinformatic analyses,
we mined four potential driver variants: OGDHL rs2293239,
TBX1 rs41298838, IL16 rs201457933, and FBXO15 rs79499419
(Table 3). These variants satisfied multiple criteria: a strong
association with depression, low frequency in the population (less
than or nearly equal to the depression incidence rate in Chinese),
high deleteriousness, and fit a Mendelian inheritance model.

T-box transcription factor (TBX1) is a probable
transcriptional regulator that is involved in development.
TBX1 is responsible for most of the physical malformations
present in 22q11.2 deletion syndrome, or DiGeorge syndrome,
which is a congenital disease that has been implicated in various
behavioral abnormalities including schizophrenia and other
neuropsychiatric/behavioral disorders (69–71). A recent study
also reported that TBX1 in the mouse hippocampus might be
linked to monosaccharides–D-ribose-induced depressive-like
behavior (72). In the present study, the rare variant rs41298838
was predicted to be highly deleterious to TBX1 function, which
made it a potential driving variant for familial depression.
However, a close review of this variant in the general population
revealed that it has a comparatively high allele frequency
(more than 10%) in non-psychotic Asians, according to the
ExAC database. In addition, WES analysis and karyotyping
did not identify 22q11.2 deletions or other chromosomal
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FIGURE 4 | Association analysis of the brain endophenotype with the oxoglutarate dehydrogenase-like (OGDHL) rs2293239 variant. (A) Volume comparison of the

subcortical brain structures. The depressive family members had a significantly enlarged left amygdala compared with the healthy family members (t-test, p = 0.0391);

(Continued)
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FIGURE 4 | however, this volume difference was not significant between rs2293239 carriers and non-carriers. (B) The rs2293239 carriers had a comparatively larger

left cerebellum compared with the non-carriers, but this difference was not significant (t-test, p = 0.07). (C) Comparison of brain activity between rs2293239 carriers

and non-carriers based on the connectome of 39 distinct brain regions, via an analysis of the time-series of blood oxygen level changes determined by functional

magnetic resonance imaging (MRI). (D) Neural tract skeleton integrity analysis based on diffusion MRI. No significant skeleton defects were detected.

arrangements in the family members. These data challenge
the idea that TBX1 rs41298838 might be a good candidate
for familial depression. Interleukin (IL)-16 is the ligand of
cluster of differentiation (CD)4, and can stimulate a migratory
response in CD4+ lymphocytes, monocytes, and eosinophils.
Several studies have used IL-6, as well as other cytokines, as
indicators for monitoring the immune response in the treatment
and pathogenesis of affective disorders (73, 74). However, no
substantial evidence indicates that IL-6 is directly involved
in the development of depressive or other affective disorders.
F-box only protein 15 (FBXO15) is the substrate-recognition
component of the E3 ubiquitin ligase complex, which is involved
in ubiquitin–proteasome-mediated protein degradation. To date,
knowledge of the function of FBXO15 remains very limited, and
its association with affective disorders or nerve diseases has not
yet been well studied. Nonetheless, considering the uncertain
relevance of IL-16 and FBXO15 for depressive disorders, we did
not prioritize them in the functional investigation.

Compared with TBX1, IL-16, and FBXO15, we found that
OGDHL was strongly associated with depressive disorders in
a range of different aspects. First, a series of bioinformatic
analyses indicated that the OGDHL rs2293239 variant had a
strong association with depression onset in the present family.
The rs2293239 variant is a very rare mutation in global
population (about 0.1%); it is comparatively more frequent
in Asian populations (about 2%), and its allele frequency is
nearly equal to the incidence rate of depression in Asian
populations (75). A previous case–control cohort study (14)
reported that the rs2293239 variant occurs more frequently
in Chinese depressive women than in nonpsychotic controls
(OR = 1.2602). These data suggest that rs2293239 may not
be a common driving genetic force for all cases of depressive
disorders. However, the rs2293239 mutation in the transketolase
pyrimidine binding domain is likely very deleterious, as predicted
by nine algorithms in the present study. Via a structure–activity
relationship analysis, we revealed that the mutation may cause an
important conformational change (about 5.39 Å) in the protein,
which would decrease the binding affinity of OGDHL dimer with
its cofactor TPP. OGDHL, which competes with the dominant
playerOGDH, is the rate-limiting component of the oxoglutarate
dehydrogenase complex in glutamate metabolism. Inhibition of
OGDH(L) results in a two- to three-fold increase in glutamate
in neuronal cells (76). Glutamate is a major neurotransmitter
in more than 80% of neurons (77), and abnormal glutamate
production in neurons and glial cells can cause severe depressive
symptoms (78). Thus, we measured serum glutamate levels in the
depressive family members. An additional literature search also
supported the relationship between OGDHL and psychological
diseases. For example, an early study proposed that OGDHL
might be linked to neurotransmitter synthesis and Alzheimer’s

disease (53). Furthermore, aberrant OGDHL copy number may
be associated with childhood disintegrative disorder (54). In
particular, the homozygous mutation rs773888308 (S778L) of
OGDHL, which is a mutation at the transketolase pyrimidine
binding domain near rs2293239 (N725S), was found to cause a
severely hypoplastic corpus callosum and abnormal cerebellum
in a 13-year-old patient (55). This previous work strongly
supports our speculation that the rs2293239 mutation likely
impairs OGDHL catalytic activity, thus resulting in increased
intracellular glutamate and eventually inducing depression.

OGDHL Variant May Cause Brain Structural
Changes
In 2017, Yoon et al. attributed the homozygous OGDHL
mutation rs773888308 (S778L) to severe neurodegeneration and
encephalatrophy in a girl (55). In the present study, we also
measured brain structural changes using MRI techniques, and
revealed that depressive family members had a significantly
enlarged left amygdala compared with healthy family members.
This finding agreed with the results of previous cohort studies,
that MDD patients have a larger amygdala and smaller anterior
cingulate compared with normal controls, with medium to
large effect sizes (60–62). Notably, the endophenotype change
in the amygdala was not observed in all carriers of OGDHL
rs2293239 in the family; three third-generation young variant
carriers did not exhibit changes in either the volume or the
shape of the amygdala. MDD patients have been reported
to have comparatively enlarged amygdalae (79), however this
phenomenon may be related to long-term antidepressant use
given that the enlargement is less reliably observed in non-
medicated patients with MDD (80). It has been suggested that
anti-depressive pharmacotherapy associated induction of brain-
derived neurotrophic factor and other neuroprotective factors
may have a volume-augmenting effect on the amygdala (81).
However, these three variant carriers had a comparatively,
although non-significantly (p = 0.07), enlarged left cerebellum
compared with the non-carriers. In addition, no neural tract
defects were identified in the depressive family members
via dMRI examination. Moreover, a further case–control
comparative analysis of the connectome of different cerebral
cortex nodes (regions) did not identify any significant changes
in cerebral activity, as indicated by a time-series of blood oxygen
levels. It is therefore reasonable to suspect that the changes in
cerebral substructures caused byOGDHL rs2293239may account
for the depressive disorders of this family. However, because
this genetic alteration was heterozygotic, it may be that OGDHL
protein function is only partially defective, and that brain
structural changes progress so slowly that depressive symptoms
are not apparent in teenagers. It will be necessary to perform
animal experiments in the future to validate this hypothesis.
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FIGURE 5 | Possible mechanism by which depressive disorders may be induced by the oxoglutarate dehydrogenase-like (OGDHL) mutation.

Taking all of our results and the evidence from previous
literature together, we propose that OGDHL rs2293239 is
likely one of the major genetic driving forces of depression
onset in the present family, via the following mechanism
(Figure 5). The rs2293239 variant decreases the binding affinity
of the OGDHL dimer to its crucial catalytic cofactor TPP,
thus weakening its transketolase activity. This alters the
glutamate metabolism balance in cells, resulting in increased
glutamate concentrations in the brain. As a result of long-
term glutamate imbalance, brain structures may change, such
as enlargement of the amygdala or cerebellum; furthermore, as
a result of glutamate unbalance and brain structural changes,
depressive symptoms appear. This hypothesis is partially
supported by a recent study that demonstrated that glutamate
concentrations in the amygdala may be related to depressive
moods (82).

Nevertheless, there are several uncertainties in the
aforementioned hypothesis. The impact of the rs2293239 variant

on glutamate metabolism has not yet been experimentally
validated, although both computational simulations in the
present study and previous work (76) suggest that an inhibition
or defect of OGDHL can cause aberrant glutamate metabolism.
In the family in the present study, the glutamate concentrations
in the amygdala, cerebellum, and other brain structures are
unknown because of the difficulty in obtaining cerebrospinal
fluid. However, the relatively high peripheral serum glutamate
concentration in this family partially supports our hypothesis
because rs2293239 is a germline mutation, and should therefore
take effect all over the body. Furthermore, causality has not
yet been confirmed between brain structural changes and this
variant. Although a study by Yoon et al. (55) suggested a
strong association between an OGDHL homozygotic mutation
and neurodegeneration, the penetrance of heterozygotic
mutations for brain structural changes requires further
verification by animal experiments. Notably, the rs2293239
variant was the most likely driving mutation mined from
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hundreds of thousands of germlines SNVs, Indels, and CNVs
via a series of conditions. It is not the only genetic factor in
familial depression, but it might be the most dominant one.
Indeed, the relatively weak association (OR = 1.2602) of this
variant with Chinese depressive women (14) suggests that it
may not be a common driving genetic force for all cases of
depressive disorders.

CONCLUSION

We identified a novel rare variant of OGDHL, rs2293239,
that may serve as the driving force for depression onset
in a Chinese pedigree. Combining multi-omics integration
and multimodal imaging analysis, or imaging genetics, we
revealed the possible mechanism underlying familial depression
in this pedigree. This work enhances the current molecular
understanding of the complex pathogenesis of depressive
disorders. Furthermore, it provides new options for prioritizing
better clinical therapeutic regimens and suggests a new
protein target for the design of highly specific drugs to treat
depressive disorders.
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