
New Genomic Structure for Prostate Cancer Specific
Gene PCA3 within BMCC1: Implications for Prostate
Cancer Detection and Progression
Raymond A. Clarke1,2., Zhongming Zhao3., An-Yuan Guo3, Kathrein Roper4, Linda Teng2, Zhi-Ming

Fang1, Hema Samaratunga5, Martin F. Lavin2,6*, Robert A. Gardiner6*

1 Prostate Cancer Institute, Cancer Care Centre, St George Hospital Clinical School of Medicine, University of New South Wales, Kogarah, New South Wales, Australia,

2 Division of Cancer and Cell Biology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia, 3 Department of Psychiatry and Center for the Study of

Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of Amerca, 4 Hopkins Marine Station, Stanford University, Stanford, California,

United States of America, 5 Sullivan & Nicolaides Pathology, Brisbane, Australia, 6 University of Queensland Centre for Clinical Research, Brisbane, Australia

Abstract

Background: The prostate cancer antigen 3 (PCA3/DD3) gene is a highly specific biomarker upregulated in prostate cancer
(PCa). In order to understand the importance of PCA3 in PCa we investigated the organization and evolution of the PCA3
gene locus.

Methods/Principal Findings: We have employed cDNA synthesis, RTPCR and DNA sequencing to identify 4 new
transcription start sites, 4 polyadenylation sites and 2 new differentially spliced exons in an extended form of PCA3. Primers
designed from these novel PCA3 exons greatly improve RT-PCR based discrimination between PCa, PCa metastases and BPH
specimens. Comparative genomic analyses demonstrated that PCA3 has only recently evolved in an anti-sense orientation
within a second gene, BMCC1/PRUNE2. BMCC1 has been shown previously to interact with RhoA and RhoC, determinants of
cellular transformation and metastasis, respectively. Using RT-PCR we demonstrated that the longer BMCC1-1 isoform - like
PCA3 – is upregulated in PCa tissues and metastases and in PCa cell lines. Furthermore PCA3 and BMCC1-1 levels are
responsive to dihydrotestosterone treatment.

Conclusions/Significance: Upregulation of two new PCA3 isoforms in PCa tissues improves discrimination between PCa and
BPH. The functional relevance of this specificity is now of particular interest given PCA3’s overlapping association with a second
gene BMCC1, a regulator of Rho signalling. Upregulation of PCA3 and BMCC1 in PCa has potential for improved diagnosis.
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Introduction

Prostate cancer (PCa) is the most commonly diagnosed internal

malignancy in men and the second leading cause of cancer-related

deaths. The etiology of PCa is uncertain with environmental,

hormonal and hereditary factors implicated. The initiation of PCa

(ie. the formation of a histologically identifiable lesion) is a

common event, being detected at autopsy series in nearly one-

third of men over age 45 [1]. Fortunately the majority of such

lesions do not progress to clinically significant tumors. However, in

patients with clinically-detected disease and who are considered to

have their tumor localized to the prostate, between 15% and 40%

have disseminated disease, not identifiable by current imaging

methods, for which there is currently no curative treatment. A

diagnosis of prostate cancer (from prostatic biopsies) is initiated

typically following an elevation in serum measurements of prostate

specific antigen (PSA), a protein normally secreted specifically by

prostate epithelial cells to form a component of ejaculate. PSA is

not a test for cancer and there is no threshold level of this enzyme

providing a high sensitivity and specificity with a continuum of risk

for all PSA values [2]. A raised serum PSA so often commits men

to the invasive and imprecise procedure of transrectal ultrasound

(TRUS) guided biopsies [3,4]. A further indictment of the

limitations of PSA in PCa detection is the disparity between

TRUS biopsy findings and those from radical prostatectomy with

the former under-calling pathology [5].

To improve detection and treatment of PCa, investigations have

been on-going to identify the genes involved in the initiation and

progression of the disease. Hereditary factors are considered to

play a greater role in the genesis of PCa than in any other

malignancy. Genomic-wide association studies and candidate gene

screens indicate that inheritance involves multiple small associa-
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tions the vast majority of which remain unknown in addition to

possibly complex epigenetic or gene-gene interactions. [6–12].

Differential display technology has been used successfully to

identify changes in the level of gene expression associated with the

transition from normal to tumour which include genes involved in

lipid signalling and metabolism; fatty acid synthesis; cell cycle

regulation; cell adhesion and stromal regulation; angiogenesis; ion

channel regulation, and signal transduction [13,14]. Using

differential display Bussemakers et al [15] identified a cDNA,

subsequently named prostate cancer antigen 3 (PCA3/DD3), that

was upregulated in 53 of 56 prostate cancers when compared with

non-malignant prostate tissue. The PCA3 gene (25 kb – Fig 1A),

which is differentially spliced, has a high frequency of termination

codons in all reading frames that suggested it was a non-coding

RNA (ncRNA). In addition, there was no evidence for expression

of a PCA3 protein [16]. Upregulation of the major ,2 kb PCA3

transcript, which excludes exon 2 (Fig 1A), was shown to be a

sensitive and specific marker for the diagnosis of PCa [15,16]. The

expression of polyadenylated transcripts of PCA3 suggested that it

may have a functional role which is supported to some extent by its

localization to the nucleus and failure to be detected in the

cytoplasm [16]. To date no role in cancer has been described for

PCA3 but it has been suggested that it may function in regulating

gene expression or participate in gene splicing [16]. ncRNAs have

been recently found in surprising abundance, with novel classes

and unexpected roles mediating evolution, organising chromo-

somal domains, chromatin remodelling and transcriptional

regulation (both activation and suppression) [17,18]. In addition

to PCA3, comparisons between benign prostate hypoplasia (BPH)

and PCa samples showed 14 of the 51 other ncRNAs that were

differentially expressed were also upregulated in PCa [19,20]. It is

also well established that a class of very small ncRNAs known as

microRNAs are altered in different tumour types and can act as

oncogenes or tumour suppressor genes [19,21,22].

In order to understand further the importance of the PCA3 gene

in PCa we undertook a more detailed investigation of this gene

and its chromosomal locus. This investigation points to a

considerably more complex transcriptional unit for PCA3 than

originally reported [15,16] including additional novel exons. We

describe a number of novel PCA3 splice variants with more specific

expression in PCa tissues and metastases. We also demonstrate

that PCA3 is embedded in the intron of a second gene, BMCC1, a

gene implicated in controlling oncogenic transformation [23] and

that both genes showed increased expression in PCa and

metastases.

Results

Identification of novel PCA3 transcripts and experience in
PCa

The absence of a TATA box element within a human gene

promoter has been associated with promiscuous transcriptional

initiation. The PCA3 gene does not contain an upstream TATA

sequence and it was therefore of interest to determine whether any

additional transcription initiation sites existed for PCA3 (Fig 1A,

upper part). We carried out 59 RACE using PCa tissue expressing

PCA3 to look for additional start sites.

This approach demonstrated that exon 1 is 1150 bp longer than

previously reported (now 1270 bp) and contains 4 novel

transcription start sites (Supplementary Fig. S1 & Fig. 1A, lower

part). These novel transcription start sites are located 1150, 699,

640 and 136 bp (termed PCA3 isoforms 1–4, respectively)

upstream of the previously reported start site for PCA3 [15]. The

original transcript is referred to here as PCA3 isoform 5 (PCA3-5).

The presence of these longer transcripts in tumours was inversely

related to transcript length (results not shown). Transcription from

novel initiation site 4 (PCA3-4), juxtaposed immediately down-

stream of the FP2 region containing the 3 SRY consensus binding

sites (Supplementary Fig. S2), was significantly higher compared

with the other three upstream initiation sites as judged by qPCR

(results not shown). Transcription from initiation site 1 (PCA3-1)

was detected by 59 RACE in only a few samples.

We carried out 39 RACE to investigate any further complexity

at the 39 end of the transcript. Four additional polyadenylation

sites were detected using 39 RACE bringing the total number of

polyadenylation sites to seven, located at nucleotides 411, 542,

873, 1583, 1600, 2146 and 3545 respectively in exon 4 (Fig. 1A,

lower part). Of the 4 additional polyadenylation sites, only two

were associated with defined polyadenylation signal sequences,

AATAAA and ATTAAA respectively. We observed that a forward

Figure 1. Complexity of PCA3 transcripts. (A) Partial PCA3 gene structure as originally reported by Bussemakers et al. [15] with 4 exons (open
boxes , not to scale) with alternate splicing of exon 2 and three alternate transcription termination sites in exon 4. 59 RACE experiments
(Supplementary Fig. S1) identified 4 novel PCA3 transcription initiation sites (isoforms 1–4 marked by vertical arrows pointing down with nucleotide
sequence below located 1150 bp, 699 bp, 640 bp and 136 bp upstream of the original initiation site (renamed here isoform 5). 39 RACE identified
four novel polyadenylation sites (7 in total*) located in exon 4. The size of exon 1 is expanded from the original 120 bp to 1270 bp. Isoform 4 (PCA3-4)
is the most highly expressed of the four novel isoforms. Four overlapping ORFs initiate from a single ‘ATG’ start site (vertical arrow pointing up) within
PCA3-4 and terminate within one of the alternatively spliced exons (2a or 2b or 2c) or within exon 3. (B) RT-PCR amplification of BPH, PCa and PCa
metastasis samples using a forward primer from within the novel PCA3-4 transcription start site and a reverse primer from novel exon 2a. (C)
Complete structure of the PCA3 gene. Shading identifies the newly identified regions of the PCA3 gene which has 6 exons with alternate splicing of
exon 2a (93 bp) and exon 2b (93 bp) and exon 2c (original exon 2, 165 bp). and (D) RT-PCR amplification of PCA3 using the same forward primer and
a reverse primer from novel exon 2b and (E) RT-PCR amplification of PCA3 using a forward primer from PCA3-5F (within the original transcription start
site) and a reverse primer spanning exons 1 and 3 [15].
doi:10.1371/journal.pone.0004995.g001

Complex Structure of PCA3 Gene
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primer based on the new sequence (PCA3-4) together with a

reverse primer for exon 2 very efficiently amplified PCA3 in PCa

(7/8) and metastases samples (7/8) but failed to detect PCA3 in

BPH samples (0/8) (Fig 1B). Clinical information on these patients

is provided in Supplementary Table S1. These primers not only

amplified a cDNA fragment of the expected size (265 bp) but also

2 higher molecular size bands in some samples (Fig 1B,

Supplementary Fig. S3). The additional bands were excised from

the gel and sequenced to reveal the presence of 2 novel PCA3

exons both 93 bp in size (Fig 1C). These two differentially spliced

exons (2a and 2b) which have bona-fide consensus splice sites at

their ends had their expression confirmed by RT-PCR amplifi-

cation using novel exon specific primers Amplification of PCA3

using the PCA3-4F primer together with a primer corresponding

to exon 2a detected 5/8 PCa and 4/8 metastatic samples and

again provided excellent discrimination with BPH (Fig 1D).

Similar results were demonstrated using PCA3-4F and a reverse

primer for exon 2b (results not shown). This improves on the use of

the original primer set employed by Bussenmakers et al [15] which

also detected a less intense signal in most BPH cases as is evident

from data obtained here (Fig. 1E). The identification of exons 2a

and 2b brings to 6 the total number of PCA3 exons (Fig. 1C).

These data indicate that multiple novel transcripts for PCA3 are

differentially expressed in PCa.

Nucleotide sequence analysis identified four putative ORFs

initiating from a single ATG located 54 nucleotides within the

novel PCA3-4 isoform (Fig 1A, lower part). The first of these, 70

amino acids (aa) in length, extended through exons 1 and 4 aa into

a novel exon 2a. The second, 82 aa in length, extended through

exon 1, skipped exon 2a, and extended 16 aa into exon 2b. The

third, 76 aa in length, also extended through exon 1, skipped

exons 2a and 2b and extended 10 aa into exon 2c. The fourth,

73 aa in length, also extended through exon 1, skipped exons 2a

and 2b and 2c and extended 7 aa into exon 3. These ORFs initiate

83 nucleotides upstream of the original transcript (PCA3-5)

described by Bussemakers et al. [15] and could not have been

predicted in previous analyses of the original transcript which did

not identify any significant ORFs. It will be of interest to

determine whether these ORFs code for proteins.

PCA3 is embedded within intron 6 of the BMCC1 gene
To understand better the close correlation between PCA3 gene

expression levels and prostate cancer we investigated the evolution

and organisation of the PCA3 gene locus (Fig 2A). We used the

PCA3 mRNA sequence (3923 bp, AF103907) to search homolo-

gous sequences in other genomes. Using a cutoff E-value

,161024 in the BLAST search, significant hits were found only

in mammalian genomes. Exon 4 is the most conserved region of

the gene. One segment (403 bp) in exon 4 was found in all the

available mammalian genomes (evolutionary conserved region-

(ECR_ex4c arrowed ‘B’ in Figs 2B and 3A & 3B). This segment,

along with the human PCA3 gene sequence, was used to extract

the genomic sequences for PCA3 homologs in other species. As a

result, we obtained human PCA3 homologs in 14 mammals,

including 4 non-human primates.

Two mRNA sequences (AB050197 and BC019095) were

initially annotated upstream and downstream of PCA3. These

two mRNA sequences were recently merged and annotated as two

isoforms of the BMCC1 gene (also called PRUNE2, NCBI Gene

ID: 158471). According to these mapping locations, the PCA3 gene

is located within intron 6 of the longer BMCC1 isoform 1 (BMCC1-

1). To confirm this we searched for PCA3 sequences elsewhere in

the human genome and obtained only one hit which exactly maps

to the BMCC1 gene locus. The BMCC1 gene is ,295 kb in length

Figure 2. PCA3 is embedded within BMCC1. (A) The PCA3 gene (above) is embedded within the intron 6 of BMCC1 (PRUNE2) isoform 1 (BMCC1-1).
Gray boxes denote exons of BMCC1 and black boxes denote exons of PCA3. The two genes are in the opposite orientation (NCBI Build 36). Three other
isoforms of BMCC1 have also been described, none of which include the complete set of exons present in BMCC1-1. (B) VISTA plot of BMCC1 gene.
Peak heights indicate degree of conservation between species of exons (blue) and evolutionary conserved regions (ECR within introns - pink)
compared with human. Note that gene orientation is different in Fig 2A, upper and lower panels. We estimated the mutation rate at the DNA
sequence level by comparing human and chimpanzee sequences and using a divergence time of 6 million years (Myr). The mutation rate in the PCA3
gene was estimated to be 1.2661029 per nucleotide per year, higher than that (1.0061029 per nucleotide per year) in the non-PCA3 portion of the
BMCC1 gene, suggesting the PCA3 region might have a moderately higher mutation rate. Three highly conserved ECRs within BMCC1 are arrowed (A,
B & C); Arrow ‘A’ (ECR_in1, 277 bp) is an extremely conserved non-coding sequence with 91% similarity between human and opossum that is
positioned within intron 1 of PCA3; Arrow ‘B’ (ECR_ex4c, 403 bp) an ECR positioned within PCA3 exon 4 which is conserved in all mammals and
appears to have been the focal point for the linear evolution of the PCA3 gene (see Fig. 3); Arrow ‘C’ (361 bp) is the most highly conserved ECR (a
conserved non-coding sequence with 99% similarity between human and opossum) within BMCC1 (intron 6) immediately downstream of PCA3.
doi:10.1371/journal.pone.0004995.g002
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and has an opposite gene orientation to PCA3. Recent expression

studies indicate that BMCC1 processing is more complex than

initially thought and comprises four variant isoforms that were not

fully annotated on NCBI (Build 36.2). Fig. 2A illustrates the

structural relationship between the PCA3 and BMCC1 genes.

BMCC1 isoform-2 (BMCC1-2/PRUNE2-2/BC019095/

NM_138818) comprises the first 6 exons of BMCC1 as annotated

on NCBI (Build 36.2). BMCC1-2 terminates immediately upstream

of the PCA3 gene. Isoform-3 (BMCC1-3/BMCC1/ABO50197)

reported by Machida et al. [23] does not overlap BMCC1-2 but

rather comprises 13 distinct exons (exons 7–19) positioned

immediately downstream of PCA3. The transcription initiation

site for isoform-4 (BMCC1-4/KIAA0367/BNIPXL/AY43213)

reported by Soh and Low [24] is located still further downstream

within the second exon of BMCC1-3. Isoform-1 (BMCC1-1/

PRUNE2-1/NM_015225) on the other hand, is a recent

computationally generated reference gene assembly comprising

the 19 exons (NM_015225) derived from merging BMCC1-2 and

BMCC1-3 and which had, until now, lacked full transcript support.

Here we used RT-PCR primers spanning BMCC1-2 and BMCC1-

3 (Fig. 2A) and nucleotide sequence analysis (results not shown) to

verify the existence of the BMCC1-1 transcript and confirmed its

expression in PCa tissues (See Fig. 4A). The larger size of BMCC1-

1 is also consistent with the ,12 kb mRNA transcript identified by

Machida et al. [23]. PCA3 locates within intron 6 (,110 kb) of

BMCC1-1. PCA3 represents approximately 25 kb of this intron but

it is in the opposite orientation to BMCC1. Three of the BMCC1

protein isoforms BMCC1-1 (3088 aa – NM_015225), BMCC1-3

(2724 aa) [23] and BMCC1-4 (769 aa) [24] have different coding

start sites, however, all three are in-frame and contain the

downstream BCH coding domain.

Has the BMCC1 gene been under selection?
Since PCA3 is embedded or nested within BMCC1 it was of

interest to study evolutionary changes in this gene. BLAST

searches revealed that BMCC1 homologs are present in mammals,

Figure 3. Linear evolving structure (39R59) of the PCA3 gene. (A) Vista plot displaying conserved structures of the PCA3 gene. Only primates
appear to have a complete PCA3 gene. The two evolutionary conserved regions shared by BMCC1 and PCA3 (see Fig. 2B) are arrowed (arrow A ,
ECR_ex4c and arrow B , ECR_in1). Both ECRs appear conserved in mammals (identity .90%). ECR_in1 is also present at this site in chicken and
lizard but not in fish, frog, or invertebrates. (B) ECR_ex4c appears focal to the linear evolving structure of PCA3. (C) Summary of mammalian PCA3
exons sharing high conservation compared to human. The gene structure annotation was based on Bussemakers et al. [15]. The level of conservation
of PCA3 exons during the course of mammalian evolution increases 39R59 based on the presence of meaningful ECRs in each exon. The exact
sequence identity for the complete exon between human and other species is shown in Supplementary Table S2. It is important to note that no ECR
from PCA3 exons was found in any non-mammalian species in this analysis.
doi:10.1371/journal.pone.0004995.g003

Figure 4. PCA3 and BMCC1-1 expression patterns in prostate cancer. cDNA was prepared from patient tissue specimens including eight BPH,
PCa or PCa metastases, respectively, for use in the following PCR reactions. (A). RT-PCR carried out on BPH, PCa and metastases (MET) with different
sets of primers for PCA3 and BMCC1 Upper row; BMCC1-2 RT-PCR using a forward primer for BMCC1 exon 5 (BMCC1-Ex5F) and a reverse primer
specific for the extended form of exon 6 (BMCC1-Ex7R) unique to BMCC1-2 2nd row; BMCC1-1 specific RT-PCR using primers for BMCC1 exon 6
(BMCC1-Ex6F) and exon 7 (BMCC1-Ex7R). 3rd row; BMCC1-BCH region specific RT-PCR using primers BCHF and BCHR. 4th row; PCA3 was amplified
(35 cycles) with primers specific to PCA3 isoform 5 exon 1 (PCA3-5F and the Ex1/3R primer). 5th row; b2microglobulin control PCR (B). RT-PCR
comparative expression analysis of PCA3, BMCC1-1 and the BMCC1-BCH region for ALVA41, DU145, LNCaP and PC3 prostate cancer lines, RPWE1 a
normal prostate cell line, JHP a control lymphoblastoid cell line, RM654 a lymphoblastoid cell line from a patient with AOA2 and MCF7 a breast cancer
cell line. RT-PCR was carried out with the primer sets specific for PCA3 isoform 5 (PCA3-5F) and Exon 1/3 (Ex1/3R) and for BMCC1-1 and the BMCC1-
BCH region as indicated above. (C) Semi-quantitative PCR analysis of PCA3 and BMCC1-1 expression in the LNCaP cell line in response to
dihydrotestosterone. Results were normalised relative to levels of b2microglobulin. Four cell cultures were starved of serum for 2 days prior to
incubation with dihydrotestosterone (mg/ml). Results were normalised and expressed as mean fold increase relative to the level of expression before
treatment. Error bars are standard deviations and p values were determined from comparison with untreated samples using a Student’s t-test.
doi:10.1371/journal.pone.0004995.g004
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chicken and lizard but not in African frog, fish or invertebrates

(Fig 2B). We used VISTA software to perform global alignment of

BMCC1 homolog genes. The alignment in Fig 2B demonstrates

that BMCC1 is only conserved from human to dog/mouse with the

exception of a number of extremely conserved ECR that extend

from human to lizard (including those arrowed A and C in Fig. 2B).

These ECR are located largely between BMCC1 intron 6 and

exon 9 (including within PCA3). We compared amino acid

sequences based on human and chimpanzee BMCC1-1 CDS

sequences. The total amino acid length is 3088 (human) and 3089

(chimpanzee). After we aligned human and chimpanzee sequenc-

es, we found 40 non-synonymous mutations and 21 synonymous

mutations. For the whole region, the ratio of non-synonymous

over synonymous substitution rate (dN/dS) is 0.90. A dN/dS ratio

greater than 1 in a coding region often suggests positive selection.

Exon 8 is the longest exon in BMCC1 and has 6598 bp, which

encodes 2199 amino acids. We found the majority of non-

synonymous mutations are in exon 8 and the number of non-

synonymous mutations [25] is almost three times that of

synonymous mutations [12]. The dN/dS ratio was 1.38,

suggesting a recent positive selection at this subregion. Further-

more, we found that 39 of the 40 non-synonymous substitutions in

the BMCC1 gene were in exons 8 and 9, which had only 14

synonymous substitutions. There was only one substitution, which

is synonymous, in exon 7. When we examined exons 8–9 or exons

7–9, we consistently found that the dN/dS ratio was greater than 1

(exons 8–9, 1.30; exons 7–9, 1.22), suggesting a positive selection

in the neighbouring region of PCA3.

PCA3 emerged in mammals and recently evolved in
primates

PCA3 is not as well conserved in mammals as BMCC1 and was

not detected previously in rodents [15]. To determine the origin of

PCA3 we compared PCA3 gene sequences across species. We

performed a global alignment of the 15 mammalian PCA3

orthologs. Fig. 3A displays a VISTA plot of the conserved regions

within the PCA3 gene region. A more detailed VISTA plot

focusing on PCA3 exons 2–4 is provided in Fig. 3B. As described,

the PCA3 gene is highly conserved in primates. For example, when

compared with the human PCA3 sequence, all four exon sequences

and the majority of the intron sequences in the four primates have

high identity with human (Fig. 3A).

Comparison of sequence conservation among these 15 mam-

mals, revealed a linear pattern of change relative to these four

exons during the course of mammalian evolution. Exon 4 is by far

the largest exon (3454 bp) and for comparative purposes exon 4

was divided (59R39) into 3 regions [a, b and c˜ corresponding to

the three termination sites described by Bussemakers et al. [15].

ECR_ex4c, the conserved segment of exon 4c described earlier

(arrowed ‘B’ in Fig. 2B and Fig. 3) appears in all 15 mammals

including the opossum, which is an out-group of the 14 eutherians.

While opossum has only this one conserved region relative to the 4

PCA3 exons, the rodents have 1–2 small additional ECRs in exon

4b (Fig. 3A and 3B). Exon 4a appeared first in rabbit. Exon 3 was

detected in elephant, tree shrew, cow, dog, pig, horse, and in all

primates, but not in rabbit, rodents, or opossum. According to the

VISTA plot a meaningful exon 2 is only present in pig, horse and

all primates (Fig. 3B).

Finally, exon 1 is present in primates only (Fig. 3A). This linear

evolutionary pattern of gene formation is summarized in Fig. 3C

where results suggest that: (1) vestiges of the PCA3 gene emerged in

mammals; (2) these vestiges subsequently underwent a linear

pattern of evolution: exon 4cRexon 4c/4bRexon 4c/4b/

4aRexons 4/3Rexons 4/3/2Rexons 4/3/2/1; and (3) PCA3

appears to mature in primates with all sharing a full complement

of exons (Fig. 3C). The exact sequence identity for each of the

complete human PCA3 exons compared with other species is

shown in Supplementary Table S2.

BMCC1 is upregulated in PCa and androgen inducible
Since PCA3 is upregulated in PCa and since we showed here

that this gene is embedded in a second gene BMCC1, implicated in

cellular proliferation, we determined whether BMCC1 was also

differentially regulated in PCa. We used a set of RT-PCR primers

that span that region of the BMCC1 gene (exons 6 and 7), specific

for the full-length BMCC1-1 transcript. Expression of BMCC1-1

was evident in normal prostate and BPH specimens and was

upregulated in PCa and metastases (Fig 4A, Supplementary Fig.

S4). This was confirmed using primers corresponding to the BCH

C-terminal region of BMCC1 and for BMCC1-2. Indeed

amplification of this isoform gave better discrimination between

PCa and BPH (Fig. 4A, upper panel). Extending these experiments

to PCa and other cell lines revealed that both genes were highly

expressed, specifically in the PCa cell line LNCaP (Fig. 4B). In

addition BMCC1-1 was detected in a second PCa cell line DU145

but at lower levels. PCA3 is also expressed in DU145 but required

further rounds of amplification for detection. The shorter BMCC1

isoforms (BMCC1-3 and/or BMCC1-4) were also detected (using

primers specific for the BCH region) in an EBV-transformed

lymphoblastoid cell line (JHP), but the longer BMCC1-1 isoform

was not detected (Fig 4B). Previous data have shown that the level

of PCA3 can be induced in LNCaP cells after treatment with

dihydrotestosterone, which mimics the effects of binding of the

androgen receptor (DHT) [16]. We determined whether BMCC1-

1 was also responsive to hormonal induction. The results in Fig. 4C

demonstrate that both PCA3 and BMCC1 are maximally induced

in the LNCaP cell line at a concentration of 0.5 mM DHT.

Discussion

We have revealed here a number of novel findings for the PCA3

biomarker gene that is dramatically upregulated in PCa. Busse-

makers et al. [15] had previously shown that PCA3 consisted of 4

exons and that different transcripts arose due to alternate splicing

of exon 2 and the presence of 3 polyadenylation sites in exon 4.

Our data reveal that the transcriptional unit for PCA3 is

considerably more complex than this. In addition to the

transcription start site reported by Bussemakers et al. [15] we

have identified 4 additional transcription start sites extending

upstream by over 1 kb which increases the size of exon 1 to

1.27 kb. The transcripts initiating at these novel sites are

differentially expressed with the shorter isoform 4 (PCA3-4) more

highly expressed in PCa and metastases. Schalken et al. [16]

established that a fragment of 500 bp immediately upstream from

the original transcription start site (described here as PCA3-5) has

all the critical activator and repressor sites to drive PCA3

expression. Our description of additional PCA3 start sites further

upstream of the two shorter isoforms (PCA3-4 and PCA3-5) is

contained within a larger transcriptome and that it is likely that

other control elements exist further upstream. This arrangement of

the transcriptome is not novel as many genes are arranged in

complex overlapping and interlaced patterns in eukaryotic

genomes [26]. In that report bypassing mechanisms are invoked

for processing at the 39 end of the transcript. This may also be the

case at the 59 end. We also describe 2 new differentially spliced

exons (exons 2a and 2b) for PCA3 which are located between exon

1 and the original exon 2 (now exon 2c) [15]. Transcripts

containing sequence from any or all of these alternatively spliced
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exons are expressed at low levels and were detected primarily in

PCa specimens and metastases. RT-PCR specific for these novel,

alternatively spliced exons provides real potential to improve

discrimination between BHP and PCa and metastases.

Another novel aspect of this study is the demonstration that the

PCA3 gene is embedded or nested within intron 6 of the BMCC1-1

gene. Our results indicate that this overlap between the two genes

appears to have recently evolved through concurrent evolutionary

changes to both BMCC1 and PCA3 genes. Both PCA3 and the full

length BMCC1 isoform, BMCC1-1, appear to have recently

evolved. Only fragments of the PCA3 gene are evident in the

non-primate mammals tested and exons 7–9 of BMCC1-1,

immediately upstream of the PCA3 gene, are also poorly conserved

in non-primate mammals. This is consistent with hybridization

data by Bussemakers et al. [15] showing the presence of PCA3

gene sequences in monkey, cow, pig, goat and sheep, faintly

detected in the dog but absent in rodents. The detection of vestiges

of the PCA3 gene within the BMCC1 gene in non-primates suggests

that PCA3 has evolved in concert with a central section of BMCC1

(between exons 7 and 9). This contrasts with the relative

conservation of BMCC1 exons 1–6 (corresponding to the

BMCC1-2 isoform) and exons 13–16 which span the BCH coding

region shared by BMCC1-1 with BMCC1-3 and BMCC1-4 [23].

PCA3 is transcribed in an anti-sense orientation relative to BMCC1

which could lead to interference with BMCC1 expression.

However, the fact that both PCA3 and BMCC1-1 are both

upregulated in PCa and PCa metastases could indicate a positive

level of coordinated control and explain their paralleled

evolutionary selection at least in humans.

This is the first report to describe the longer BMCC1 isoform 1

(BMCC1-1) and the first to demonstrate BMCC1-1 expression

patterns. We provide evidence for the expression and upregulation

of BMCC1-1 and other BMCC1 isoforms in PCa and metastases. In

a previous report which evaluated expression of BMCC1-4

(BNIPXL) the BCH domain at the C-terminus, which is

homologous to the BCH region of the BNIP2 and BPGAP1 genes,

was shown to target Rho proteins with potential to inhibit cellular

proliferation [24]. This inhibitory effect, however, was moderated

with the inclusion of an increased N-terminal sequence from

BMCC1-4 (BNIPXL, 769 aa), an arrangement that may be further

moderated or altered with the inclusion of the vastly increased N-

terminal sequence from BMCC1-1 (3088 aa), which has yet to be

tested. Specifically, the BCH domain of BMCC1 targets RhoA and

RhoC (members of the Ras superfamily of small GTPases that cycle

between inactive GDP-bound and active GTP-bound states) and

Lbc and p115RRhoGEF (RhoA-specific guanine nucleotide

exchange factors). Both RhoA and RhoC induce stress fibers.

RhoA participates in oncogenic transformation whereas RhoC

promotes tumor metastasis and cell migration [27,28]. Rho proteins

also regulate cell morphology, motility, vesicular transport,

membrane trafficking, lipid signalling, cell cycle progression and

gene transcription and dysfunctional regulation of Rho signalling

leads to cancer [27,29]. Overexpression of the BCH domain

reduces active RhoA levels while knockdown has the reverse effect

[24]. BMCC1 upregulation (evaluated using downstream RT-PCR

primers that span exons 8 and 9) in human neuroblastoma

correlates with a more favourable prognosis consistent with a role

in inducing apoptosis [23]. In this study we observed upregulation of

BMCC1-1, BMCC1-2 and the BCH region shared by BMCC1-1

with BMCC1-3 and BMCC1-4, in both PCa and metastases.

However, it is not yet clear what role the combined upregulation of

the various BMCC1 isoforms may play in PCa.

We have also shown here that BMCC1-1 expression is

responsive to androgen treatment. The coordinated control of

these two overlapping genes could operate through the action of

an androgen responsive transcription factor like SRY [25] and/or

through chromatin affects and/or the effects of trans-acting

enhancer elements that may include the extremely conserved non-

coding sequences identified here within and adjacent to the PCA3

gene (ECRs arrowed B&C in Fig. 2B) [27]. SRY is of particular

interest since it interacts with and negatively regulates androgen

receptor (AR) activity [25]. AR appears to suppress epithelial

proliferation in the mature prostate; therefore, any significant

increases in SRY could be linked to increased epithelial

proliferation [25]. It is possible that the co-expression of PCA3

and BMCC1 has an activation effect. It is well established that

enhancers play an important role in chromatin opening to

facilitate transcription activation and immunoglobulin gene

recombination [30]. In the present case enhanced transcription

of PCA3 may open up the locus and in turn increase the level of

BMCC1 transcription. The shortest BMCC1 isoform 4 (BMCC1-

4/BNIPXL) may have pro-apoptotic affects [24] but this has not

been tested in PCa and the role of the much longer BMCC1

isoform 1 (BMCC1-1) has yet to be investigated. The BCH

domain at the C-terminus of BMCC1 facilitates homodimerisation

and heterodimerisation with other proteins containing a BCH

domain [23,24]. The significance of these homo and heterodi-

meric interactions, particularly as they relate to Rho signalling,

must now be re-evaluated because of the existence of multiple

BMCC1 isoforms and their upregulation in PCa and metastases.

While we have demonstrated that PCA3 and BMCC1-1 are both

upregulated in PCa it is important to point out that they are

transcribed in the opposite orientation and thus it is possible that

the PCA3 transcript or regulatory factors involved in PCA3

transcription or its suppression or splicing/processing could

directly influence the transcription or processing of the primary

BMCC1-1 transcript during cancer development. PCA3 is a

putative ncRNA and ncRNAs are known to play important roles

in transcriptional regulation (both activation and suppression),

gene silencing, RNA splicing, and DNA imprinting and

demethylation [17]. ncRNAs are involved in many diseases

including cancer and neurological disorders [18–22,31]. PCGEM1

is another example of a ncRNA found over-expressed in prostate

cancer [20] but it differs from PCA3 in that it does not locate in an

intronic region of another gene. Our finding that PCA3 locates

within an intron of the BMCC1 gene and is transcribed in the

opposite orientation suggests that it may serve as an intronic anti-

sense transcript. Intronic anti-sense transcripts may play important

roles in PCa; for example, Reis et al. [32] found that 6 of the top

12 transcripts that were most correlated to prostate tumor

differentiation were intronic anti-sense transcripts. In the mouse

genome, Kiyosawa et al. [33] identified 899 pairs of transcripts, in

which one transcript lies in an intron(s) of another transcript and

has an opposite orientation. Overlapping genes are a relatively

common feature of eukaryotic genomes where, like PCA3, they are

often found embedded/nested entirely within an intron of the

other gene [33,34]. For example, intron 27 of the human

neurofibromatosis type 1 gene has three embedded genes: OMG,

EV12B, and EV12A. Most overlapping genes are transcribed in

opposite orientations and generate natural anti-sense transcripts

[33,35] and a growing body of evidence indicates the potential for

overlap to affect gene regulation. For example, an overlap between

the rTSalpha and thymidylate synthase (TS) genes causes site-specific

cleavage and down-regulation of the TS mRNA through a natural

RNA-based anti-sense mechanism [36]. Another example comes

from the two overlapping isoforms of the human c-erbAlpha gene

where natural anti-sense transcripts inhibit the alternate splicing of

mRNA, probably by blocking the accessibility of cis regulatory
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elements [37]. It has been proposed that SRY also has potential to

act as a direct modulator of RNA splicing [38]. The multiple

isoforms and alternate splicing of both PCA3 and BMCC1 provide

avenues for similar investigations.

In summary we have demonstrated greater complexity in PCA3

transcripts than previously reported and shown that the complete

PCA3 gene is embedded in the intron of a second gene, BMCC1.

Both of these genes are upregulated in PCa and are androgen

responsive. At this stage it is not clear whether PCA3 or associated

regulatory factors interfere with or enhance the expression and

function of BMCC1 proteins. However, it is intriguing to speculate

that this may be the case and it will be of great interest to

investigate how this might impact on the development of PCa.

The differential splicing and expression of 2 novel exons, exon 2a

and 2b, which are highly enriched in PCa and metastases promises

to add a further degree of sensitivity for the detection of PCa. At

present the use of RT-PCR to detect expression of PCA3 in post-

prostatic, massage urine is available commercially as a test for

prostate cancer (www.PCA3.org). The preliminary data described

here using additional sequence information on the PCA3 gene

together with the observation that another gene BMCC1 is also

overexpressed in PCa, increase the potential to provide a better

diagnostic test as well as a prognostic tool in predicting tumour

development or aggressiveness.

Materials and Methods

Specimen collection
All tissue specimens were collected following written consent at

Royal Brisbane and Women’s Hospital, Queensland, as approved

by the Royal Brisbane and Womens Hospital Ethics Committee.

Primary prostate cancer tissue specimens were obtained from

patients undergoing radical prostatectomy or transurethral

resection of prostate with secondary tumours harvested from

lymph node metastases in patients with castrate-resistant prostate

cancer. Tissue was obtained from the radical prostatectomy

specimens by open biopsy from the region identified by TRUS

biopsy findings. To ensure that there was a high probability of

cancer being present, sections were cut from all four sides of the

specimen and which confirmed malignancy. The presence of

cancer in the TURP fragments was confirmed by the same

process. The 3 patients who had radical prostatectomies (PCa1,

PCa3, PCa8 – Supplementary Table S1) had clinically localized

prostate cancer (margin negative and seminal vesicle negative) but

with 30–60% of the glands containing tumour). PCa2 and PCa6

had castrate – resistant prostate cancer having received bilateral

orchidectomy and LHRH against therapy, respectively. PCa4 and

PCa7 had metastic prostate cancer on presentation. PCa4

commenced androgen deprivation therapy during his recuperation

immediately following TURP and PCa7 had a bilateral orchidec-

tomy immediately following TURP under the same anaesthetic.

PCa5 had a T2c stage tumour. Mets 1–8 had lymph nodes

harvested by open and laproscopic procedures to provide antigen

for a vaccine study. All had castrate – resistant prostate cancer

with metastatic bone disease evident on radioisotope bone scan for

patients 1, 5 and 7.

Benign prostatic hyperplasia (BPH) tissue specimens were

obtained from men who underwent either transurethral resection

of the prostate (TURP) or an open enucleative prostatectomy.

Tissue fragments were frozen immediately using liquid nitrogen

and transported on dry ice for storage at 270uC with closely

adjacent tissue specimens placed in OCT and snap frozen or

formalin fixed and paraffin-embedded. Tissues prepared for

histology immediately adjacent to harvested specimens (BPH

and PCa 1-8, Supplementary Table S1) were examined. In adition

confirming the diagnosis of BPH or prostate cancer, respectively

sections were also examined to determine the proportion of

epithelial cells to stromal cells.

RNA isolation and cDNA synthesis
Total RNA was extracted from prostate tissues using Trizol

(Invitrogen) following manufacture’s protocol. Subsequent DNase

treatment was performed with DNase I (NEB Biolabs: Cat

No. M0303S), ethanol precipitated, resuspended in DEPC-treated

water and quality controlled via spectrophotometry and gel

electrophoresis. All RNA was confirmed to be of good quality

and thus suitable for subsequent experiments if the A260/280

ratio was .1.7 and little RNA degradation was evident by gel

electrophoresis. 1 mg of total RNA extracted was reverse

transcribed using 250 ng of random hexamers (Promega) in a

standard 20 ml reaction including 4ml of first strand buffer

(Invitrogen), 2 ml of 0.1M DDT (Invitrogen), 1 ml of 10 mM

dNTP (Promega), 1 ml RNase inhibitor (2500 U) (Promega) and

1 ml of reverse transcriptase (10,000 U) (Invitrogen). After

annealing of the hexanucleotides for 10 minutes at 72uC, cDNA

synthesis was performed for 42uC for 90 minutes followed by an

enzyme inactivation step at 70uC for 15 minutes. All cDNA

products were diluted in a ratio of 1:10 and stored at 220uC
before use.

Search for PCA3 gene in different species
To search the PCA3 homologous genes in non-human genomes,

we performed BLASTN search of the longest PCA3 mRNA

sequence (accession ID: AF103907) against all the publicly released

genomes deposited in the Ensembl (http://www.ensembl.org/) or

the NCBI (http://www.ncbi.nlm.nih.gov/) databases. We also

performed BLASTN search against several genomes (orangutan,

marmost, rabbit, elephant and tree shrew) that have been

completed but not officially published. These genome sequences

were retrieved from the genome sequencing centers at the

Washington University in St. Louis (http://genome.wustl.edu/)

and the Broad Institute (http://www.broad.mit.edu/mammals/).

Evolutionary conserved regions (ECRs)
ECRs were identified by VISTA (http://genome.lbl.gov/vista/)

[39] with the human sequence as the reference. An ECR was

defined as an alignment with a minimum length of 100 bp and at

least 70% identity [40]. We analyzed ECRs by sequence

comparison of human with other species.

Molecular evolutionary analysis
Alignment of multiple genomic sequences was performed by

ClustalW (v1.8.3) [38]. Detection of signature of adaptive selection

was performed by PAML (version 4) [40]. Specifically we used the

yn00 program in the PAML package to calculate the ratio of non-

synonymous over synonymous substitution rates (dN/dS) between

human and chimpanzee BMCC1 genes. We estimated the

mutation rate in the PCA3 gene and non-PCA3 portion of the

BMCC1 gene. The mutation rate was estimated by the nucleotide

substitution rate between human and chimpanzee sequences using

a human–chimpanzee divergence time 6 million years ago [41].

Identification of transcription start sites: 59RACE
1 mg of total prostate tissue RNA were reversed transcribed

using 1 ml of reverse transcriptase (10,000 U) (Invitrogen), where

each reaction was primed with 1 ml of 12 mM 59-CDS primer A

(59-(T)25VN-39) (Clontech) and 1 ml of 12 mM SMART II A oligo
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(59-AAGCAGTGGTATCAACGCAGAGTACGCGGG-39) (Clon-

tech). After annealing of the hexanucleotides for 10 minutes at 70uC,

cDNA synthesis was performed using Superscript II (Invitrogen) at

42uC for 90 minutes followed by an enzyme inactivation step of 72uC
for 7 minutes with addition of 100 ml of Tricine-EDTA buffer. The

59RACE clones were amplified with 59 RACE DD3 primers

(59GCAGGTGGCCACTCCCATCATGCAAG - 39) and 106
Universal Primer A mix (Clontech) following manufacturer’s protocol

(Clontech). The following PCR program was applied: 5 cycles of

94uC for 30 seconds and 72uC for 2 minutes, 5 cycles of 94uC for

30 seconds, 70uC for 30 seconds and 72uC for 2 minutes, and 30

cycles of 94uC for 30 seconds, 68uC for 30 seconds and 72uC for

2 minutes. The 59RACE PCR products generated were excised and

clone into pGEMT (Promega) vector. Positive clones generated were

sequenced using Big Dye chemistries.

39 rapid amplification of cDNA ends (39-RACE) of PCA3
transcripts

39-RACE libraries were generated from normal, BPH, PCa, and

metastatic PCa RNA with Superscript III (Invitrogen: Cat

No. 18080-093) using primers and protocols described in the

SMART RACE User Manual (BD Biosciences Clontech). Subse-

quent PCR was performed using a gene specific primer located in

exon 3 (59-CCACACACACAGGAAGCACAAAAGG-39). As the

largest product from this PCR was only 1.5 kb and previous reports

described a much longer expected transcript [1,2], a second primer

(59-GGGCACTCTTGTGAGCCACTTTAGGG-39), located in

exon 4, was designed to ‘‘walk’’ along the PCA3 transcript. To

ensure no further or longer transcripts were present, a third primer

(59-CCCACCACTAACCTGAATGCCTAGACCC-39) was de-

signed at the end of the last transcript identified using the second

primer, which corresponded to the area just upstream of the

previously reported end of exon 4 [15,16]. This RACE PCR

resulted in no products as visible by gel electrophoresis, indicating

exon 4 does not extend further then previously reported.

Non-quantitative RT-PCR
Primers for cDNA-specific RT-PCR assay were designed as

described below:

(I) Primers for PCA3

(a) PCA3-5F, 59- AGAAATAGCAAGTGCCGAGAA-39,

(b) Ex2R, 59- ACTCAGAAAGTGCCGTCGAT-39

(c) PCA3-4F, 59- TATTCTGAAGTCAGAGTGTTC-

CAG - 39

(d) Ex1/3R, 59 - CTTATTTCTCACCTCTGTATCAT-

CAGG - 39

(e) Ex2aR, 59- GTACCTGCCTTCATGTCACATTG - 39.

(II) Primers for BMCC1

(a) BMCC1-Ex5F, 59-TTTCAAGTGGATGACCATG-

GAATCAG -39

(b) BMCC1-Ex6R, 59 -CAGACTGCAATTGTGG-

GAAATCAATC -39

(c) BMCC1-Ex6F, 59-CTAAAGGAGCTGTCAGATGG -39

(d) BMCC1-Ex7R, 59 -GAGTACACAGCAATCTGTCG

-39

(e) BCHF, 59 – ATCATTGTGTTTGCCGCCTG -39

(f) BCHR, 59 – CTTCTTCCAGCATGGCCAAC-

TAAGGC -39

(III) Other Primers

(a) SRYF, 59 - TCCTCAAAAGAAACCGTGCAT -39

(b) SRYR, 59 – AGATTAATGGTTGCTAAGGACTG-

GAT -39

(c) PSAF, 59 – GCATCAGGAACAAAAGCGTG – 39

(d) PSAR, 59 – CCTGAGGAATCGATTCTTCA -39

(e) b2MF, 59 – GTCTTTCTATCTCTTGTACTA-

CACTGAA -39

(f) b2MR, 59 – AACTATCTTGGGCTGTGACAAAG -39

Non-quantitative RT-PCR was carried out on a PCR

thermocycler (MJ research) with gene specific primers. Each

reaction contained 5 ml of the diluted cDNA template, 2.5 ml of

106 PCR buffer, 0.2 ml of 25 mM dNTPs, 1 ml of each of the

forward and reverse primer stocks (10 mM), 1.5 ml of 25 mM

MgCl2 and 0.25 ml of AmpliTaq Gold polymerase (Applied

Biosystems). The following PCR conditions were applied: initial

denaturation of 94uC for 10 minutes followed by 40 cycles of 94Cu
for 30 seconds, 58uC for 30 seconds and 72uC for 40 seconds and

a final extension of 72uC for 15 minutes.

Quantitative PCR
Quantitative real-time polymerase chain reaction was carried

out on the Corbett Rotor-Gene 3000 (Corbett Research, Australia)

with gene specific primers (reference genes: BMCC1-1, PCA3-4

(with Exon 1/3R primer) and b2M, using Qiagen SYBR-GREEN

qPCR Mastermix (QIAGEN, Germany). Each reaction contained

7.5 ml of qPCR mastermix, 5 pM of each forward and reverse

primer and 5 ml of the diluted cDNA template. The following

cycling conditions were applied: 95uC for 15 minutes, followed by

45 cycles of 95uC for each 20 second period, 58–59uC for

20 seconds and 72uC for 20 seconds. Data for each cycle was

acquired at the elongation step and each reaction was carried out

in triplicate. Relative gene expression levels were calculated using

methodology described in Pfaffl [42].

Supporting Information

Figure S1 59RACE extension of PCA3 mRNA from prostate

cancer tissue revealed four novel transcription start sites (isoforms

1–4) located 1150 bp, 699 bp, 640 bp and 136 bp respectively

upstream of the original PCA3 start site (renamed here isoform 5).

After 59 RACE the reactions were electrophoresed on separate

agarose gels beside a 100 bp size standard ladder.

Found at: doi:10.1371/journal.pone.0004995.s001 (0.14 MB TIF)

Figure S2 (A) Alignment of the promoter immediately upstream

of the PCA3 isoform 4 (PCA3-4) transcription start site (arrowed)

for different primates. Three overlapping SRY transcription factor

consensus binding sites unique to the human promoter (AAA-

CAAA - underlined) are located within the FP2 transcription

factor binding footprint described by Schalken et al. [16]. (A)

Alignment of the promoter immediately upstream of the PCA3

isoform 4 (PCA3-4) transcription start site (arrowed) for different

primates. Three overlapping SRY transcription factor consensus

binding sites unique to the human promoter (AAACAAA -

underlined) are located within the FP2 transcription factor binding

footprint described by Schalken et al. [16]. In the region upstream

(1200 bp) of PCA3 a similar level of sequence conservation is

maintained (.85%) for the four primates (Fig 3C). However, in

primates, a notable difference is observed within a transcription

factor (FP2)-binding site located 195 bp upstream of the PCA3
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transcription unit previously defined using DNAse footprinting

[16]. The apparent expansion of a tetranucleotide repeat ‘CAAA’

within this FP2 site in human gives rise to three overlapping

consensus binding sites for SRY, a Y-linked transcription factor,

that are absent from the other primates.

Found at: doi:10.1371/journal.pone.0004995.s002 (0.05 MB TIF)

Figure S3

Found at: doi:10.1371/journal.pone.0004995.s003 (0.17 MB TIF)

Figure S4

Found at: doi:10.1371/journal.pone.0004995.s004 (0.18 MB TIF)

Table S1 BPH 3* had prostate cancer and had a TURP for

bladder outflow of obstruction. All of the resected hyperplastic

transition zone was scrutinised histologically and was unequivo-

cally BPH and not PCa BPH 5 had an enucleative (Millin’s-type)

prostatectomy for BPH causing urinary retention: a pre-operative

PSA was not performed as the patient had an indwelling urethral

catheter PCa 2 & PCa 6 had previously undergone bilateral

orchidectomy and had been given LHRH analogue therapy

continuously, respectively, and therefore had castrate resistant

prostate cancer PCa 4 commenced non-surgical androgen

suppression therapy while he was recuperating from this TURP

PCA 7 had a bilateral orchidectomy immediately following his

TURP under the same anaesthetic an enucleative (Millin’s-type)

prostatectomy for BPH causing urinary retention: a pre-operative

PSA was not performed as the patient had an indwelling urethral

catheter PCa 2 & PCa 6 had previously undergone bilateral

orchidectomy and had been given LHRH analogue therapy

continuously, respectively, and therefore had castrate resistant

prostate cancer PCa 4 commenced non-surgical androgen

suppression therapy while he was recuperating from this TURP

PCA 7 had a bilateral orchidectomy immediately following his

TURP under the same anaesthetic

Found at: doi:10.1371/journal.pone.0004995.s005 (0.01 MB

DOC)

Table S2 The identity was based on the VISTA global

alignments using human sequence as the reference. The identity

was calculated by the number of identical nucleotides in an

alignment divided by the length of human exon sequence.

Identities ,50% are not shown in the table. aNucleotide ‘‘Ns’’

and large gaps were excluded, so the identities in the table might

be different when the whole sequences were used.

Found at: doi:10.1371/journal.pone.0004995.s006 (0.01 MB

DOC)
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