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The histological grading of carcinoma has been one of the central applications of task-specific deep
learning in pathology. The deep learning method has pushed away the regression approach, which has
been exploited for two-class classification, to address multi-class classification. However, the applica-
bility of the regression approach on multi-class carcinoma grading has not been extensively investigated.
Here, we show that the regression approach is sufficiently compatible with classification regarding the
four-class grading of clear cell renal cell carcinoma using 11,826 histological image patches from 16
whole slide images. Using convolutional neural network models (DenseNet-121 and Inception-v3), we
found that regression models predict as accurately as classification models, achieving an accuracy of
0.990 at the highest, with fewer prediction errors by two or more grades. Furthermore, we found that the
predictions by the regression models qualitatively capture intra-tumor heterogeneity of grades using the
composite image patches. Our results demonstrate that the regression approach offers advantages in
making a core of the multi-class grade prediction tools for practice.

© 2025 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice

nses/by-nc-nd/4.0/).
1. Introduction

Carcinoma grading on histopathological images has been one of
the central applications of task-specific deep-learning techniques
in pathology today. These studies stretch across a wide range of
cancers/tumors, including the well-studied organs, such as brain
[1,2], breast [3e5], and prostate [6,7]. The simplest form of the
grading problems is the binary classification. This type of problem
comprises malignant/benign classification of colon cancer [8] and
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breast cancer [9], and low/high-grade classification of clear cell
renal cell carcinoma (ccRCC) [10]. Some of these problems were
addressed by machine learning models performing regression.
Although regression is widely recognized as one of the established
approaches to address histological binary classification, the
approach loses its presence in multi-class grading problems. For
such problems, the classification approach is taken almost domi-
nantly, as can be seen in the studies, including three-class grading
of oral squamous cell carcinoma [11], five-class Gleason grading of
prostate cancer [12], and four-class grading of brain tumor [1].
However, the applicability of the regression approach on histo-
logical multi-class carcinoma grading has not been extensively
examined. It is possible that the regression machine learning
models attain higher predictive performance than classification
models, because they retain the relations among the carcinoma
grades which often correspond with the progression and/or
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prognosis. Despite the pathological importance of such informa-
tion, it is usually lost in the multi-class classification, which is
implemented in a one-vs-rest manner [13].

Additionally, the regression approach is expected to offer a
unique advantage on carcinoma grade prediction, i.e. the detection
of intra-tumor heterogeneity (ITH). ITH refers to the heterogeneity
within the tumor of a single case ranging from genomic to
phenotypic level, including carcinoma grades [14]. ITH is known to
be closely related to the progression, prognosis, and treatment
outcomes [14,15]. Therefore, its detection is vital for understanding
the biomedical conditions of the patients and planning effective
treatments accordingly. If the detection capability of the regression
models on ITH is proven, they can be implemented in the grading
supportive tools for practice. Such tools enable efficient and ITH-
sensitive grading without any time- and labor-expensive addi-
tional experiments/procedures. In this study, we examine the
predictive performance of the regressionmodels on the histological
multi-class grading problem and ITH detection of carcinoma, taking
ccRCC as an example.

ccRCC is the most prevalent subtype of renal cell carcinoma that
develops from renal epithelia [16e18]. Carcinoma of this subtype is
known by the aggressive phenotype and poor prognosis [17,19,20].
Histologically, ccRCC is categorized into one of the four grades,
namely grade 1 (G1) to grade 4 (G4), according to the World Health
Organization/International Society of Urological Pathology (WHO/
ISUP) histological grading of renal cell tumors [21,22]. According to
this criterion, G1 to G3 are graded by the nucleolar prominence;
nucleoli are unobtrusive and distinct under 400-fold magnification
in G1 and G2 tumors, respectively, and they are conspicuous under
100-fold magnification in G3 tumors. G4 is characterized by atyp-
ical nuclear pleomorphism and/or sarcomatoid or rhabdoid differ-
entiation. This grading is validated to be prognostically significant
[23]. Notably, ccRCC is well known for the formation of the ITH
[24e28]. The established multi-class grading system and formation
of the ITH make ccRCC suitable for evaluating the predictive per-
formance of the regression models in this study.

In this work, we developed convolutional neural network (CNN)
models for the four-class histopathological grading of ccRCC to
examine the applicability of the regression approach onmulti-class
carcinoma grading. Furthermore, we analyzed the applicability of
our regression models on ITH utilizing composite images
mimicking ITH. Our results cast light on the advantages regression
models offer in predicting histological multi-class grading of car-
cinoma. This study will promote the use of the regression approach
for a practical carcinoma grading tools to support medical practi-
tioners for more efficient and accurate grading.

2. Results and discussion

2.1. Image patches

After selecting whole slide images (WSIs) of uniform grade, four
WSIs were randomly sampled for each grade for further analyses to
balance the amount of data among the grades (Table 1). The limited
number ofWSI images was intentionally chosen to demonstrate the
Table 1
Number of WSIs and image patches.

Grade The WSIs of
uniform grade

The WSIs used
for analyses

Image
patches

1 4 4 3,521
2 63 4 3,305
3 35 4 2,328
4 4 4 2,672
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conceptual applicability of regressionmodels inmulti-class grading
rather than creating a clinical diagnostic tool. We adopted the
widely used image patch approach [29e31] in this study. From the
manually annotated carcinoma region on these WSIs, patches with
a side of approximately 200 mm were randomly segmented. The
size of the patcheswas determined as theminimal area required for
reliable grade diagnosis, empirically deduced from our observa-
tions, including experienced pathologists. To minimize the load of
the data annotation, a total of 11,826 patches were labeled
following the grades given to the individual WSI they were
segmented from (Fig. 1). To complement the insufficiency of the
training data, the patches of G3 and G4 were augmented as
described in MATERIALS AND METHODS section.

2.2. Regression model predicts ccRCC grades as accurately as
classification model with fewer prediction errors

DenseNet-121 and Inception-v3, the CNN models widely used
for pathological image analyses [30,32e34], were employed to
examine the generality of the results across the model architec-
tures. The effectiveness of fine-tuning for developing histopatho-
logical deep-learning models was reported [35,36]. Models at the
epoch of the least mean validation loss, i.e. DenseNet-121 at epoch
48 (regression and classification) and Inception-v3 at epoch 47
(regression) and 44 (classification) were adopted for further ana-
lyses for the highest predictive performance (Supplementary
Fig. 1).

The root mean square error (RMSE) of the predictions made by
the DenseNet-121 and Inception-v3 regression models were 0.116
and 0.125, respectively. Astonishingly, the distributions of the
predictions showed sharp peaks at the actual grades (Fig. 2a). This
result confirmed that the regression models successfully captured
the histopathological grading of ccRCC, and showed that the pre-
dictions of the regression models were robust to the micro varia-
tions within the images of each grade. The k-means clustering on
the predictions of the regression models (in continuous values)
split them into four classes corresponding to G1 through G4
(Fig. 2b). Multiple attempts of clustering confirmed that its results
were stable. The categorical predictions converted thus resulted in
a high overall accuracy of 0.990 (DenseNet-121) and 0.985
(Inception-v3) (Fig. 2ceTable 2). These values were comparable to
those of the classification CNN models: 0.989 (DenseNet-121) and
0.995 (Inception-v3) (Fig. 2deTable 2). This result shows that the
predictive performance of the regression models was equivalent to
that of the commonly used classification models on the four-class
grading of ccRCC. The result further suggests that a clustering al-
gorithm as simple as k-means clustering is sufficient to convert the
predictions of the regression models to categorical predictions. The
same tendency shown by the two CNN models verifies the gener-
ality of this argument among the CNN architectures.

A careful comparison of the predictions identified that the
regression models made fewer critical prediction errors, where
predicted and the actual grades differed by more than one grade (a
G2 sample predicted as G4, for instance) (Fig. 2c and d). This ten-
dency was distinct in DenseNet-121; the regression models made
one critical error (0.020% of the samples), whereas the classification
models made 14 critical errors (0.28% of the samples). We found
that the majority of the critical mispredictions, especially G1 and
G2 as G4, happened when there was a nontrivial portion of non-
carcinoma tissues (Supplementary Fig. 2). This result implies that
the presence of the non-carcinoma tissue in the patch is the
necessary condition for such mispredictions and that both regres-
sion and classification models cannot exert their predictive ability
well on such samples. It should be emphasized that, in practice, a
fewmispredictions are virtually negligible, because the predictions



Fig. 1. Representative image patches of each grade.

Fig. 2. The regression models vs. classification models on the four-grade prediction. (a) Violin plot of the predictions of the regression models. (b) Jitter plot of the predictions of the
regression models colored by the predicted classes. (c, d) Confusion matrix on the predictions of the regression (c) and classification (d) models.
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Table 2
The accuracy of the classification and regression models on the four-grade prediction.

WHO/ISUP grade Classification: DenseNet-121 Classification: Inception-v3 Regression: DenseNet-121 Regression: Inception-v3

G1 0.984 0.995 0.973 0.984
G2 0.994 0.994 0.994 0.984
G3 0.987 0.993 0.995 0.977
G4 0.992 0.998 0.997 0.997

Overall 0.989 0.995 0.990 0.985
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are given based on the distribution of the multiple patches cropped
from the WSIs. Nevertheless, the methods to prevent such critical
mispredictions are worth considering to enhance model reliability.
Restricting the input images to those entirely covered by carcinoma
Fig. 3. Grade predictions of the regression models on the composite images mimicking the g
navy boxes) were merged to yield a composite image. (b, c) The box plot of the grades pre
expected grades.
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regions and adopting machine learning models to filter out image
patches with non-carcinoma tissue are two possible countermea-
sures. The fewer critical errors of the regression models are
considered to be rooted in the maintenance of the relationships
rade ITH. (a) An example of the composite images. The segments of the two images (in
dicted by the regression (b) and the classification (c) models. The pink line shows the
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among the ccRCC grades, i.e. carcinoma of a grade (e.g. G2) is more
similar to that of a neighboring grade (e.g. G1, G3) than non-
neighboring grade (G4). This information is lost in the one-vs-rest
multi-class classification, as it reduces the four grades (G1 to G4)
to the binary classes (grade of interest or not). The critical errors
must be minimized, if not none, for the machine learning models to
make reliable supportive tools of carcinoma grading in practice. Our
results show a strong advantage of the regression models over the
classification models in the context of being adopted for the prac-
tical carcinoma grade prediction tools.

2.3. Regression CNN models can detect the grade ITH of ccRCC

As a proof-of-concept study, we prepared hypothetical ITH im-
age patches and made our regression and classification models
predict their grades. The hypothetical ITH patches were generated
by concatenating the segments of the two patches at different ra-
tios (Fig. 3a, see MATERIALS AND METHODS section for details).
These composite imageswere considered the simplest mimic of the
grade heterogeneity where carcinomas of different grades coexist
locally. To allow flexible expression of the ccRCC grades, we
extended the definition of the grades from the classical four in-
tegers (1, 2, 3, and 4) to allow decimal. The grades of the composite
imageswere calculated as theweighted average of the grades of the
source patches, where the proportions of the segments were
treated as the weights (Supplementary Table 1, pink line in Fig. 3b
and c). The predictions of the classification models were computed
as the expected values of the grade using the computed probabil-
ities of the image belonging to each grade.

To ensure that the procedure of combining images did not affect
the grade predictions, the composite images were made from the
patches of identical grades. Both for the regression and classifica-
tion models, the center of the predictions on these images agreed
well with the expected grades of the images (Supplementary Fig. 3).
This result confirmed that the merge of the patch segments did not
influence the predictions of our CNN models. In the regression
models, a linear-like relationship was found between the center of
the prediction distributions and the expected grades of the com-
posite images made from two different grades (Fig. 3b). Remember
that the CNN models were only trained with the classical four-
grade data. This observation validates our flexible grade expres-
sion and suggests that the regression CNN models can predict
grades reflecting the grade heterogeneity within a single image
patch. This tendency was absent for the classification models
(Fig. 3c). In classification models, the grade predictions were in-
clined towards the more populating grade (in case of 25%e75%
composition) or spread between the two grades of the source
patches (in case of 50%e50% composition). This result demon-
strates that the classification models tend to advocate one class
over the others in grade prediction and are insensitive to grade
heterogeneity. Our analysis revealed that the regression CNN
models can detect grade ITH by allowing continuous grade
expression.

3. Conclusion

We examined the applicability of the regression CNNmodels for
predicting the histological grade of carcinoma using ccRCC as an
example. Our study revealed that the regressionmodels can classify
carcinoma grades as accurately as the classification models with
enhanced prediction reliability. This feature equips the regression
models with a strong advantage over the classification models
when implemented in the practical supportive tools for carcinoma
grading, where such errors must be minimized. We further inves-
tigated the sensitivity of the regression models to ITH using mixed-
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grade images as a proof of concept. Our results showed that the raw
predictions of the regression models roughly reproduced the ex-
pected grades of the composite images, suggesting that the
regression CNN models can detect ITH. This feature was absent in
the classification models. Our findings suggest that the regression
models should be sufficiently compatible with the classification
models with the additional advantages of i) making fewer critical
prediction errors and ii) detecting ITH, for the histological four-
class grading of ccRCC. Examining the generality of our findings
with other types of cancers is one indispensable direction for future
studies. This work will stimulate further studies of the regression
machine learningmodels onmulti-class carcinoma grading and ITH
detection to develop practically supportive tools for medical prac-
titioners, enabling more efficient and accurate carcinoma gradings.

4. Materials and methods

4.1. Ethics

One hundred and twenty-five patients who underwent radical
nephroureterectomy (RNU) for ccRCC at Keio University Hospital
between 2000 and 2017 were identified. Tissue samples were ob-
tained from consenting patients in the present study, which was
approved by the Ethics Committee of Keio University (ethical
committee number: 20200189) and National Center for Child
Health and Development Research Institute (ethical committee
number: 2020e196). All specimens were fixed in 10% formalin and
embedded in paraffin, and all hematoxylin and eosin-stained slides
were reviewed by a genitourinary pathologist (board-certified
pathologist, S.M., with 34 years of experience in pathology). The
WSIs were taken using NanoZoomer digital pathological image
(Hamamatsu Photonics) magnified by a factor of 20.

4.2. Image patches

The WSIs of uniform grade were selected. From the WSIs,
patches of 435 pixels by 439 pixels (approximately 200 mm square)
were randomly cropped from the manually annotated carcinoma
region. The number of patches was determined to be proportional
to the area of the carcinoma region (1 patch/1,333 mm2). The
pathologist (M.N., more than 30 years of experience) discarded the
patches of non-carcinoma tissue, ungradable carcinoma tissue, and
wide background. The grades of the patches followed those of the
WSIs diagnosed by S.M. based on WHO/ISUP grading guidelines
[21,22]. Patches of G3 and G4 were augmented by PyTorch [37] to
abound training data for the CNN models. Here, the following
techniques were randomly applied: horizontal flip, vertical flip,
rotation, posterization, grayscale, color jitter (on brightness,
contrast, saturation, hue), and partial erasing. The composite im-
ages mimicking the grade ITH were made by concatenating the
segments of the two image patches from G1 to G4 in a randomly
determined pair except for the combinations between the grades of
which the discrepancy was greater than one. Two images were
combined at the proportion of either 25% or 50% and the expected
grades for the composite images were computed as the mean of the
grades considering the proportion. For each composition, 250
composite images were prepared.

4.3. CNN models

The CNN models for ccRCC grade prediction were developed
from DenseNet-121 [38] and Inception-v3 [39] trained on
ImageNet-1K dataset using fine-tuning. The number of nodes in the
final fully connected layer was replaced to one (regression models)
or four (classification models). Parameters in all the layers were
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optimized to the ccRCC images using Adam [40] as the optimizer
until 50 epochs under the batch size of 64. Cross-validation was
performed five times to evaluate the performance of our models. A
model was trained and validated for each trial with 10,000 (2,500
patches per grade) and 1,000 (250 patches per grade) image
patches, respectively. After the validation images were separated
from the whole dataset, training samples were randomly selected
from the remaining images. If the remaining images were insuffi-
cient to make 2,500 training images per grade, augmented images
of that grade were added to the training dataset. It should be noted
that validation images did not overlap among the trials. The best-
performing CNN models were identified as those at the epoch
with the least mean validation loss in the five trials. The predictions
of the regression model (grade in continuous values) were con-
verted to the categorial classes by k-means clustering (nclusters ¼ 4)
on all the predictions using scikit-learn [41]. The accuracy was
computed from all the predictions made in the five trials. The
grades of the composite images were predicted by the best-
performing CNN models. Note that there was no overlap in the
training and source patches of the composite images. The models
were developed and managed using PyTorch.

4.4. Web application

Python CGI for grade predictions of the regression CNN models
was developed and is available at Docker Hub (https://hub.docker.
com/r/mayushibata/rcc) as a Docker container [42].

Data availability

The image patches and the CNN models are available upon
request.
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