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Highly expressed genes evolve 
under strong epistasis from a 
proteome-wide scan in E. coli
Pouria Dasmeh1,2, Éric Girard1,2 & Adrian W. R. Serohijos   1,2

Epistasis or the non-additivity of mutational effects is a major force in protein evolution, but it has 
not been systematically quantified at the level of a proteome. Here, we estimated the extent of 
epistasis for 2,382 genes in E. coli using several hundreds of orthologs for each gene within the class 
Gammaproteobacteria. We found that the average epistasis is ~41% across genes in the proteome and 
that epistasis is stronger among highly expressed genes. This trend is quantitatively explained by the 
prevailing model of sequence evolution based on minimizing the fitness cost of protein unfolding and 
aggregation. The genes with the highest epistasis are also functionally involved in the maintenance of 
proteostasis, translation and central metabolism. In contrast, genes evolving with low epistasis mainly 
encode for membrane proteins and are involved in transport activity. Our results highlight the coupling 
between selection and epistasis in the long-term evolution of a proteome.

Resolving the link between genotype and phenotype or the fitness landscape is a central goal in molecular biol-
ogy and evolution. Knowledge of the structure of the fitness landscape will lead to a better understanding of the 
evolutionary origin of natural proteins and to solutions to practical evolutionary problems, from rational design 
of enzymes to the development of new antibiotics1. The fitness landscape is complex and a consequence of this 
complexity is epistasis or the dependence of mutational effects on genetic background2. The presence of epistasis 
implies that the effects of multiple mutations are non-additive and that their order of fixation matters. Indeed, 
epistasis directly affects the potential pathways to explore the fitness landscape2. Despite the many experimental 
and theoretical studies on detecting and elucidating its role in molecular evolution3,4, none has investigated the 
strength of epistasis at a proteome-wide level. Such an analysis can determine correlations between epistasis 
and genomics properties that could hint at a universal mechanism, if any, for epistasis in proteome evolution. 
Additionally, a mechanistic understanding of epistasis has practical applications; as yet, it is rarely accounted for 
in the molecular evolution toolboxes for quantifying from genomic sequences the strength of multiple evolution-
ary forces—mutation, drift and selection4,5.

Epistasis, or the non-additivity of mutational effects, has a direct role on the rate of protein evolution because 
this implies that the genetic background can attenuate the effect of the mutation and hence affect its likelihood of 
fixation. Nonetheless, this relationship between epistasis and rate of evolution is complex because of confound-
ing factors that also affect the rate of evolution, most important of which is selection. To estimate the epistasis 
experienced by genes in long-term evolution, one approach is to compare two rates of amino acid substitutions6. 
These two rates are the average pairwise substitution rate RdN/dS, which is background-dependent, and the rate 
of mutational usage Ru, which is background independent. Both rates are calculated from a multiple sequence 
alignment (MSA) of orthologs. Specifically, the extent of epistasis is quantified as
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RdN/dS is the average dN/dS (the ratio of non-synonymous substitution rate dN and synonymous substitution rate 
dS) for all pairs of orthologues in an MSA. RdN/dS is calculated over the entire length of the gene, thus it reflects the 
co-evolution between sites. This also implies that RdN/dS accounts for the background- and lineage-specificity of 
amino acid substitutions. The second rate,
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where u is the mutational usage and is the number of unique amino acids in each site in an MSA. L is the length 
of the protein. Ru represents the ratio between observed accessible amino acid substitutions in a site, (u−1), and 
all possible amino acid substitution assuming no selection, that is, (20−1) = 19. Unlike RdN/dS, Ru simply counts 
the number of unique amino acids per site, thus it does not reflect the co-evolution between sites in the protein. 
Therefore, Ru is independent of background and lineage. When all mutations are neutral, both Ru and RdN/dS are 
equal to 1. When random mutations are not neutral, such as in proteins where they are predominantly destabiliz-
ing and deleterious7, purifying selection will lead to Ru and RdN/dS less than 1. However, the presence of epistasis 
implies that genetic background further screens substitutions, thus the background dependent RdN/dS is slower 
than the background independent Ru. The expression for epistasis (Eq. 1) estimates how much epistasis or the 
background specificity of mutational effects slows down the rate of protein evolution. Kondrashov and coworkers6 
applied this method to estimate epistasis in the long-term evolution of 16 mammalian proteins and found epista-
sis to vary from ~40% to ~80%. This slowing down of evolutionary rates can also arise from the heterogeneity of 
fitness effects of mutations8.

Results
Proteome-wide espistasis in E. coli.  To determine if epistasis is indeed experienced by all genes in a 
proteome we estimated epistasis in the evolution of 2,382 genes in E. coli using thousands of orthologs within 
the class gammaproteobacteria (see Methods and Supporting Information). We calculated Ru and RdN/dS from the 
multiple sequence alignment of each gene (Methods). The rates Ru and RdN/dS and the epistasis for each gene are 
shown in Fig. 1a and their distributions in Fig. 1b. Since epistasis is expected to slow down the rate of evolution, 
the lineage-independent rate Ru is greater than the lineage- and background-dependent RdN/dS (note the deviation 
from Ru = RdN/dS line in Fig. 1a; Wilcoxon signed-rank test, p-value <10−16). The average Ru and RdN/dS are 0.36 ± 
0.09 and 0.20 ± 0.08, respectively, which lead to a proteome-wide epistasis of ~41% (Fig. 1b; full data is listed in 
Table S1). This estimate implies that epistasis and background specificity of mutational effects in proteins slows 
down the evolutionary rates of proteins in E. coli, on average, by ~41%. The magnitude of epistasis is broadly 
distributed with some genes experiencing epistasis of up to ~80% (Fig. 1b). These estimates over several thousand 
genes is slightly lower than the value calculated by Breen et al.6 for 16 mammalian proteins.

Next, we checked for the robustness of our results to factors that may influence the calculation of substitution 
rates and epistasis. First, the evolutionary rates, in particular Ru that count the number of unique amino acids, 
are sensitive to the number of orthologs in an MSA. Too few orthologs may lead to undersampling of Ru and to 
negative values for epistasis. However, as shown by the plot of epistasis versus the number of orthologs (Fig. S1), 
this artifact is present only in genes with MSA alignments less than 200 orthologs. Second, a distinction should 
be made between fixed and non-fixed amino acids. In principle, fixed amino acids are substitutions that are kept 
in long-term evolution while non-fixed amino acids are segregated in the population at short time scales and are 
eventually lost. Since Equation 1 estimates epistasis in long-term protein evolution, non-fixed amino acid states 
or polymorphisms can inflate the mutational usage Ru and epistasis. To account for the bias due to non-fixed 
polymorphic states in our amino-acid usage calculation, we used a correction based on the probability of occur-
rence of non-fixed amino acids at given site in the alignment (Fig. S2 and Supporting Information). The average 
correction to Ru due to non-fixed polymorphism is only ~±2% (Fig. S2). Table S2 presents amino acid usage 
correction along with the probability of observing a non-fixed state as fixed for all genes. Lastly, the calculation 
of RdN/dS could be sensitive to the counting method. We control for this effect by using several counting methods 
(five heuristic and two maximum-likelihood codon-based approaches) for dN, dS, and dN/dS (Figs S5, S6, S7 and 
Table S3) and chose the most unbiased (Methods). Altogether, our estimates of epistasis are robust to the number 
of orthologs, presence of polymorphisms, and approaches for counting substitution rates.

Relationship of epistasis with genomic properties.  The rate of protein evolution is influenced by sev-
eral factors ranging from molecular, to cellular, and to population level9. We determined if epistasis is also influ-
enced by these factors. Specifically, we calculated the correlation between epistasis and publicly available data 
on mRNA expression level, protein abundance, gene essentiality, protein-protein interaction (PPI), and codon 
adaptation index (CAI) (Fig. 1c, Table S4 see Methods). We found that epistasis shows a weak yet significant pos-
itive correlation with number of orthologs, PPI, mRNA and protein expression levels, as well as CAI. As shown 
previously10, RdN/dS negatively correlates with expression level (r = −0.24, p-value < 10−16) implying that highly 
expressed genes are under strong purifying selection. Since Ru also reflects selection, it similarly shows negative 
correlation with expression level (r = −0.18, p-value < 10−10). However, the weaker anti-correlation between Ru 
and expression level compared to that of RdN/dS leads to a positive correlation between epistasis and expression 
level (r =  + 0.17, p-value < 10−9) (Fig. 1d). This finding implies that background specificity significantly slows 
down the rate of evolution among highly expressed genes.

To further check the biological significance of proteins evolving under high epistasis, we performed Gene 
Ontology (GO) enrichment analyses11 on the lowest and highest quantiles of epistasis (see Table S5). The lowest 
quantile corresponds to genes with epistasis less than 18% and lower, and the top quantile with epistasis greater 
than 53%. Interestingly, essential processes such as amino acid and nucleobase synthesis, ATP and RNA binding 
and proteostasis were significantly enriched among the genes evolving with high epistasis (Table S6). For example, 
the genes glyA and prs encoding the Serine hydroxymethyltransferase and Ribose-phosphate pyrophosohokinase, 
evolve with ~65% epistasis with ~1000 orthologues and are essential enzymes in the synthesis of amino acids and 
nucleobases. Other examples are the chaperone protein DnaK with 63% (944 orthologues) and elongation factor 4 
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(EF4) with 67% epistasis (953 orthologues). In contrast to highly epistatic genes, those evolving with low epistasis 
are mainly transmembrane proteins (Table S7). It is well-established that membrane proteins are dramatically 
less conserved that water soluble proteins and have higher evolutionary rates due to adaptation to the changing 
environment12 which could then influence the estimated epistasis using Eq. 1. Altogether, our proteome-wide 
estimates demonstrate that highly expressed genes not only experience stronger purifying selection, but also 
greater epistasis in their long-term evolution. This result highlights the coupling of selection and epistasis in 
proteome evolution13.

Model of sequence evolution based on protein folding explains proteome-wide correlation 
between epistasis and expression level.  The negative correlation between evolutionary rate RdN/dS and 
expression level is well-established10,14,15. This observation has been explained by a model of sequence evolution 
based on selection against protein misfolding due to mistranslation10 or genetic mutations14,16. The biological 
rationale is that misfolded proteins can form aggregates  that are toxic to the cell17,18. To determine if the same 
hypothesis can quantitatively explain the trend between epistasis and mRNA expression level, we combine the 
population genetic formalism for evolutionary rate with protein folding thermodynamics14,19–21. Assuming that 
cellular fitness F is inversely proportional to the total number of misfolded proteins in the cell, it may be formally 
written as10:

Figure 1.  Proteome-wide estimate of epistasis in E. coli. (a) Background-dependent evolutionary rate RdN/dS is 
significantly slower than the background-independent rate of mutational usage Ru (Wilcoxon signed-rank test, 
p-value < 10−16). (b) The average epistasis is ~41 ± 16% among 2,382 genes in E. coli. (c) Epistasis is positively 
correlated with genome-wide factors: mRNA and protein expression levels, essentiality of proteins, number of 
protein-protein interactions and codon adaption index (CAI) (see Table S4 for the correlation coefficients and 
p-values). Boxes labeled “ns” are not significant (p-value > 0.05). (d) Highly expressed genes experience strong 
epistasis (Spearman r = +0.17, p-value < 10−9), which can be explained by a model of sequence evolution based 
on selection against protein misfolding and aggregation (blue line; see also Figs S3, S4 and S10).
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Equation 2 expresses the probability that the protein product of gene k is unfolded as a function of its stability 
ΔGk. The energy factor β = 1/kbT where kbT ~ 0.59 kcal/mol at room temperature. This probability multiplied by 
the cellular abundance of the gene Ak gives the number of misfolded copies (Fig. S10). The summation extends 
over all genes Γ in the proteome. The parameter c is the fitness cost of each misfolded protein (~10−7) (ref.18). 
As shown previously10,14 and in our specific dataset (Figs S3 and S4), this fitness function recapitulates the trend 
between dN/dS and expression level. But to arrive at epistasis, we also need a theoretical estimate for the muta-
tional usage Ru. In a recent work19, we showed that Ru is the rate of evolution of the most stable sequence in an 
MSA. By simulating sequence evolution (Supporting Information), we can arrive at a theoretical MSA evolved 
under the fitness function (Eq. 2) and then calculate Ru (Fig. S4).

Highly expressed (and more abundant) genes are under strong purifying selection; thus, Ru and RdN/dS neg-
atively correlate with mRNA level, both in theory (Fig. S4) and in E. coli (Fig. S3). More interestingly, the theo-
retical dependence of Ru vs. mRNA is weaker than RdN/dS vs. mRNA leading to stronger epistasis among highly 
expressed genes (Fig. S4). Thus, selection against protein misfolding can explain the genomic observation that 
highly expressed and more abundant genes experience stronger epistasis (Fig. 1c,d). A geometric interpretation 
of epistasis is the curvature of the fitness landscape; indeed, for the genotype-phenotype relationship based on 
folding stability (Eq. 2), the landscape exhibits greater curvature at higher expression levels (Fig. S10).

Discussion
Our study, for the first time, provides proteome-wide estimate of epistasis in E. coli. On average, a protein in E. 
coli evolves with ~41% epistasis. One interpretation of this result is that the rate of protein evolution is reduced 
by 41% due to background dependence of mutational effects. Moreover, we found that highly expressed proteins 
evolve with stronger epistasis, which can be explained by selection against protein misfolding. Our results high-
light the coupling between selection and epistasis, which has been demonstrated in specific proteins4,22, but not 
in the long-term evolution of a proteome.

We also tested the enrichment of functional groups among genes under high or low epistasis. We found that 
genes evolving with high epistasis are involved in essential processes such as the maintenance of proteostasis and 
rRNA and ATP binding. This finding is in line with previous observations that genes with high intergenic plei-
otropy in yeast are often involved in more cellular processes than low pleiotropic genes23. Here we systematically 
showed that intragenic epistasis has the same pattern in E. coli. We anticipate that future studies on the molecular 
evolution of proteins evolving with high epistasis could provide a mechanistic understanding of epistasis at the 
residue level. Furthermore, genes evolving with high epistasis are noteworthy as they tolerate maximum number 
of novel amino acids and thus are highly evolvable. The methodologies employed in this study can aid in selecting 
such genes at a genome-wide level. In addition, the coupling between epistasis, abundance and essentiality as 
described in this work can be used to update substitution matrices and phylogenetic trees of highly expressed 
proteins.

The extent of epistasis as reported in this work depends on amino acid usage and evolutionary rate of pro-
teins, and both quantities were shown to vary in different habitats and can be influenced by environmental con-
ditions24,25. To investigate the role of habitat and lifestyle on epistasis, we estimated epistasis in the evolution 
of E. coli orthologous proteins within the two classes of alpha- and betaproteobacteria. Bacterial species within 
the classes alpha and betaproteobacteria generally live in low and high nutrient environments, respectively26,27. 
We retrieved 2098 orthologs for E. coli proteins within the class alphaproteobacteria and 2174 within the classes 
betaproteobacteria. We then compared epistasis across the three classes, while controlling for the unequal number 
of orthologues (see Methods).

As shown in Fig. 2a, the average Ru is slightly higher for orthologs in alphaproteobacteria (<Ru> = 0.33 ± 0.09) 
than betaproteobacteria (<Ru> = 0.28 ± 0.09) and gammaproteobacteria (<Ru> = 0.29 ± 0.09) with p-values of 
~10−16 (Wilcoxon signed-rank test). Evolutionary rate, RdN/dS, when corrected for the level of divergence (dS), is 
not significantly different (p-value = 0.15) between alpha and betaproteobacteria with <RdN/dS> = 0.062 ± 0.023 
and 0.068 ± 0.032, respectively (Fig. 2b). This makes the average epistasis ~0.76, 0.67 and 0.80 for alpha, beta and 
gammaproteobacteria. Note that epistasis is overestimated (i.e., compared to previously reported 41%) due to the 
smaller number of orthologues in this comparison. Therefore, proteins in alpha and betaproteobacteria evolve 
with 5% and 16% lower epistasis compared to their orthologs in gammaproteobacteria mainly because of differ-
ences in mutational usage (Fig. 2c). As elegantly showed by Akashi and Gojobori, mutational usage is significantly 
different in bacteria with different metabolic profiles28. We anticipate that biosynthetic cost minimization, among 
other factors, may underlie the differences in the extend of mutational usage and hence epistasis in the evolution 
of proteins within these classes of proteobacteria phylum.

This work focused on the E. coli proteome; however, it will be interesting to generalize these observations in 
other well-studied model organisms such as yeast, worm, fly, mouse, and human, where selection (detected by 
dN/dS) has been shown to strongly correlate with expression level10. Demonstrating these results across all king-
doms of life could generalize the finding that selection due to folding stability is a universal mechanism for some 
of the epistasis experienced in the long-term evolution of a proteome.

Methods
Sequences and alignment.  List of genes for Escherichia coli K-12 MG1655 was taken from NCBI. 
From this list (4140 genes), KEGG ids (total of 3059 ids) were used to retrieve functional orthologs within 
Gammaproteobacteria class. Ortholog sequences were available for 2814 of the 3059 genes. To optimize alignment, 
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sequences 15% longer or shorter from the reference E. coli gene were removed from the set. DNA sequences were 
converted to protein sequences prior to alignment and calculation of amino-acid usage. For the protein align-
ments, we used default parameters except for the allowed positions with gaps that were set to half, to allow gaps at 
positions where less than 50% of sequences had gaps.

Bioinformatics.  The amino-acid usage measure can be used to obtain an estimation of dN/dS ratio under 
the assumption of non-epistatic evolution. The amino-acid usage <u> is defined as the number of different 
amino-acids observed at one site, averaged over all sites in an alignment. We can then estimate non-epistatic dN/
dS from <u> using (u − 1)/19 where (u − 1) is the number of amino-acid states into which the current amino 
acid can be substituted, divided by 19 amino-acid possibilities. The choice of a proper and unbiased method 
to estimate dN/dS is crucial in the current work. We thus systematically checked performance of five different 
heuristic counting approaches and two maximum-likelihood (ML) codon models for 3124 genes in E. coli and 
concluded that the simplest model of Nei and Gojobori29 gives the most unbiased dS and dN/dS estimates which 
reasonably fit values from accurate yet computationally expensive ML methods. For the complete analysis check 
Supplementary methods and Table S4. All the GO-enrichment analyses were done using DAVID bioinformatics 
resources30.

To compare epistasis among the three classes of alpha-, beta-, and gammaproteobacteria, we focused on pro-
teins with more than 300 orthologs within each class. This number was chosen to insure we have more than 500 
genes and thus the proteome-wide estimate of epistasis is within 95% confidence level and a margin of error of 
less than five percent31. We then estimated Ru, dN, dS and RdN/dS for the exact number of 300 orthologs for each 
gene. When more orthologs within each class were available, we randomly selected 300 sequences and calculated 
the average of all quantities for ten repeats. As the number of orthologs are significantly smaller for the classes 
alpha- and betaproteobacteria, Ru is underestimated for proteins in these classes. As a result, epistasis would be 
overestimated for orthologous proteins in alpha- and betaproteobacteria. To resolve this issue, we applied the 
same procedure for E. coli proteins within the class gammaproteobacteria and calculated evolutionary rates and 
epistasis.

Theoretical model.  To calculate the extent of epistasis, we used an expression for substitution rates that 
takes the stability effects of mutations into account (Equation 1). Fitness is proportional to the number of mis-
folded copies in the cell which in turn is a product of total abundance and the probability of being in the folded 
state. This decomposition enables us to utilize the known distribution of mutational effects on protein stability 
to determine the distribution of fitness effects and calculate evolutionary rates accordingly (see Supplementary 
information for full analysis). The fitness landscape (Equation 2) contains protein abundance, thus we  converted 
mRNA abundance to protein abundance using their well-established correlation (Supplementary information).  
The calculation of the rate of mutational usage Ru and pairwise rate of evolution RdN/dS based on the fitness land-
scape of Equation 2 is described in the Supplementary information.
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