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Abstract: Breast cancer is one of the most common malignancies in women. Patient-derived tumor
xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However,
PDX still exhibits differences from original human tumors, thereby challenging the molecular
understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted
from human to mouse model. In this study, we propose a novel computational method by
incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS),
random forest (RF), and rough set-based rule learning, to identify genes with significant expression
differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX
and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be
informative for the prediction of PDX and human tumors and can be used to construct a prediction
model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven
interpretable interactions within the informative gene were detected based on the rough set-based
rule learning. Furthermore, the seven interpretable interactions can be well supported by previous
experimental studies. Our study not only presents a method for identifying informative genes with
differential expression but also provides insights into the mechanism through which gene expression
changes after being transplanted from human tumor into mouse model. This work would be helpful
for research and drug development for breast cancer.

Keywords: Monte Carlo feature selection; breast cancer; random forest; patient-derived tumor
xenograft

1. Introduction

According to epidemiological data from the World Health Organization (WHO), breast cancer has
been confirmed to be the most frequently diagnosed cancer in women from developed and developing
countries and is accompanied with rising expectancy of average life span [1,2]. Early in 2011, more
than 508,000 women died from breast cancer, accounting for more than 58% in developing countries [1].
However, the incidence of breast cancer is higher in Western Europe (89.7/100,000) is higher than
those in Eastern Africa (19.3/100,000) and most developing countries (40/100,000); this finding reflects
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the specific regional distribution of breast cancer incidence [3] and suggests the need for development
of precise and effective methods for diagnosis and treatments.

To identify a cure for breast cancer, researchers have applied five levels of research, namely,
molecular, cellular, histopathological, animal model, and clinical levels [4]. Among these levels, the
animal model level not only confirms the conclusion obtained from studies on the other levels as an
integrated creature but also lays the foundation for further clinical studies [5,6]. In studies on this
level, mice are a typical and widely used species because of their high degree of genetic similarity
to human beings and simple cultivation requirements. However, murine tumors considerably differ
from human tumors at both genetic and molecular levels [7]. Therefore, a murine tumor model
cannot thoroughly reflect the characteristics of human tumors. To solve this limitation, scholars have
developed patient-derived tumor xenograft (PDX) model with various modified subtypes. In general,
PDX mouse model is produced by directly transplanting cancerous tissues from a unique patient into an
immune-deficient mouse model; this model can be used for studies on the biological, pharmacological,
or clinical characteristics of such tumor tissues [8,9]. In comparison with conventional xenograft
models using cell lines, the PDX model retains the molecular signatures and cancerous heterogeneity,
which includes the cancer stem cells of the original tumor [10].

Although the PDX mouse model maintains most of the characteristics of the original tumor,
genomic and transcriptional variations induced by murine microenvironment selection have been
characterized. In 2014, researchers from University of North Carolina (USA) found that in pancreatic
and colorectal cancer, the mutation frequencies of two oncogenic genes, namely, KRAS and PIK3CA,
were greatly altered by the murine microenvironment across passages; hence, at the genomic level, the
PDX mouse model cannot completely maintain the characteristics of in situ tumor tissues [11]. At the
transcriptomic level, a study on PDX tumor expression patterns of 58 patients with eight different
tumors reported that 48 genes were differentially expressed between the PDX mouse model and the
tumor tissues of the patients [12].

In this study, we obtained and used the gene expression data from a recent study [13] on PDX
mouse models and original breast cancer to identify differentially expressed genes, which are called
informative genes. We collected a total of 657 PDX and 174 human tumors. By using Monte Carlo
feature selection (MCFS), we evaluated the relevance of the gene expression in distinguishing the
original breast cancer and the PDX models. Subsequently, we compared several algorithms for building
classifiers including random forest (RF), rough set-based rule learning, support vector machine (SVM)
and dagging. We found that building classifier using RF algorithm with the 32 identified informative
genes could achieve the best performance, obtaining the highest Matthews coefficient correlation
(MCC) value of 0.777. This result demonstrated the predictive power of the 32 identified informative
genes in distinguishing PDX tumors from original human tumors. Furthermore, we applied rough
set-based rule learning method to detect human-interpretable rules to reveal the interactions between
the 32 informative genes. These genes rules, and interactions were found to be supported by previous
studies through a literature review.

2. Materials and Methods

Our entire data set contained 831 tumor cells, including 657 PDX and 174 tumor cells. The 831
tumor cells were encoded into feature vectors by the expression levels of 69 genes. The 69 genes
we used were derived from the work by Lawson et al. [13]. To investigate metastatic breast cancer,
Lawson et al. did a literature survey and collected a small set of genes that were highly possible as the
key genes in breast cancer and clearly involved in breast cancer related functions, such as stemness,
pluripotency, epithelial-to-mesenchymal transition (EMT), mammary lineage specification, dormancy,
cell cycle and proliferation. Based on the curated gene set, they designed a special single-cell array
called Biomark 96.96 dynamic array [13] which can measure the expression level of 116 genes. In our
study, since some genes were not expressed in many tumor cells and did not play important roles as
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indicated by the literature, we only analyzed 69 genes by filtering those with missing expression in
more than half of tumor cells.

Our method for identifying differentially expressed genes consisted of three steps: (i) applying
MCFS method [14–16] to rank features; (ii) using incremental forward selection (IFS) and RF [17,18]
methods to construct prediction model; and (iii) employing rough set-based rule learning [19] to detect
interactions between differentially expressed genes.

2.1. Data Preparation and Feature Construction

The expression levels of 116 genes in 1293 tumor cells from three patients with breast cancer
and the corresponding PDX models were obtained from a recent publication [13]. These genes
are involved in stemness, pluripotency, epithelial-to-mesenchymal transition, mammary lineage
specification, dormancy, cell cycle, and proliferation [13]; these processes suggest their crucial roles
in tumor development. For the missing data in the original dataset, we filtered out those genes with
missing data in more than half of tumor cells and those tumor cells with missing data in more than
half of 116 genes. The rest of the missing data retained in the dataset were imputed using the nearest
neighbor averaging method [20,21]; this filter process resulted to 69 genes and 831 tumor cells, in which
657 PDX mouse tumor cells and 174 original human tumor cells were found. The expression levels of
the 831 tumor cells were used as features to encode each cell in this study.

2.2. Monte Carlo Feature Selection Method

MCFS method is designed to select informative features for supervised classifiers by randomly
constructing a large number of tree classifiers from an original training dataset. MCFS assigns higher
relative importance (RI) to a feature if this feature is selected by more tree classifiers. Suppose the total
of s×t classification trees are constructed by selecting s subsets of m features (m� d, where d is the
total number of features), and constructing t trees for each of the s subsets. Each of the t trees is built
and trained by a random selection of training and test sets using the original training set. The RI of a
feature can be measured by estimating the overall number of splits involving the feature in all nodes
of all trees constructed. Particularly, the RI of a feature g can be estimated by the following equation

RIg =
st

∑
τ=1

(wAcc)
u

∑
ng(τ)

IG(ng(τ))(
no. in ng(τ)

no. in τ
)

v

, (1)

where wAcc is the weighted accuracy over all samples, IG(ng(τ)) is the information gain of the node
ng(τ),

(
no. in ng(τ)) is the number of samples in node ng(τ), (no. in τ) is the number of samples in

tree τ, and u and v are fixed real numbers.
In this study, we performed MCFS ranking by using the MCFS software package [14]. MCFS

program can output a list in which features were ranked according to their RI values. The ranking list
can be formulated as

F = [ f1, f2, . . . , fN ], (2)

where N is the total number of features (N = 69 in this study).

2.3. Incremental Forward Selection Method and Random Forest Classification

We used MCFS method to evaluate the importance of the 69 features, resulting in a feature list F.
However, determining the optimal number of features to be used is difficult. Therefore, IFS [22–24]
and RF methods [25,26] were employed to tell how many features should be used.

IFS method first constructed a series of candidate feature sets, denoted as F1, F2, . . . , FN , where
Fi = { f1, f2, . . . , fi} by incrementally adding features to precedent feature set according to their orders
in the ranking list. For example, F1 was composed of only the top 1 feature in the list F, F2 was composed
of the top 1 and top 2 features in the list F, and so on. To select the optimal feature set, i.e., determining
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the optimal features to be used, RF classification algorithm was then performed on all candidate feature
sets. The classification performance of each candidate model was evaluated by cross-validation [27,28]
(see Section 2.5 for details). The candidate model achieving the best performance was selected as
the optimal prediction model. Candidate feature set that corresponded to the optimal model was
determined as the optimal feature set. Features contained in the optimal feature set were actually the
informative genes identified to be differentially expressed between PDX and human tumor cells.

2.4. Rough Set-Based Rule Learning

After obtaining the informative genes, the rough set-based rule learning algorithm can be applied
to detect interaction between informative genes. The detected interactions were represented as rules.
A rule is a terminology to describe a relation between rule conditions (the left-hand-side of the rule) and
the rule outcome (the right-hand-side). For example, in our study, a rule can be presented as IF–THEN
relationship based on gene expression: IF Gene1 = high AND Gene2 = low THEN type = human cell.
Details for creating rough set-based rule model are presented below, including an introduction of
rough set theory, and the repeated incremental pruning to produce error reduction (RIPPER) algorithm
which was used to generate decision rules based on rough set theory.

Rough set is described briefly as follows. A decision (classification) system A can be defined as:

A = (U, A ∪ {d}), (3)

where U denotes all the objects, A represents all the condition attributes (features), and d is the decision
attribute (class label). An attribute a ∈ A can be regarded as a function such that a(x) is the value of the
attribute a of object x. Generalized decision attribute ∂A can be defined to replace d, to deal with the
situation where the values of all the condition attributes of some objects are the same, but the values of
the decision variable d of these objects are different [29]. A function, discerns(a, x, y, d), is defined as the
situation in which object x and y are discernable using attribute a in term of the generalized decision
variable ∂A. A symmetric |U| × |U|matrix, called discernibility matrix Md

A, is defined as follows

Md
A[i, j] = Md

A
(

xi, xj
)
=
{

a ∈ A
∣∣discerns

(
a, xi, xj, d

)}
i, j = 1, 2, . . . , |U|, (4)

The entry Md
A
(

xi, xj
)
, i.e., the (i, j)th entry of the matrix Md

A, contains all the attributes that can
separate object xi from object xj. For example, an entry Md

A
(
xi, xj

)
= {a1, a2, a5}means that xi and xj

can be distinguished by a1, a2 or a5.
A Boolean product-of-sums (POS) function, called discernibility function f d

A(x) that is relative to
object x, can be computed from the row x of Md

A as follows

f d
A(x) = ∏

y∈U

{
∑ a∗

∣∣∣a ∈ Md
A(x, y) and Md

A(x, y) 6= ∅
}

, (5)

where a∗ corresponds to the membership of attribute a. Function f d
A(x) is composed of some

conjunctions and each conjunction contains some terms corresponding to a non-empty entry of the row
x of Md

A. For example, f d
A(x) =

(
a∗1
∨

a∗3
∨

a∗5
) ∧

(a∗1
∨

a∗2) contains two conjunctions indicating that
two entries of the row x of Md

A are not empty with one set as {a1, a3, a5} and another set as {a1, a2}.
Finding the set of all the prime implicants of f d

A(x), all the reducts, RED(A, x, d), that are relative to an
object x can be determined, where a reduct is a minimal set of features that can separate x from other
objects equally well with the full set of attributes A. A reduct preserves the boundaries between the
approximation regions defined by the rough set [29]. A discernibility function gd

A(U) can be defined to
discern all objects as follows

gd
A(U) = ∏

x∈U
f d
A(x), (6)
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Accordingly, the reducts RED(A, d) of the whole decision system are the prime implicants of
gd

A(U). The Boolean POS function f d
A(x) and gd

A(U) can often be considerably simplified according to
multiplicative idempotence and absorption [29]. However, finding all reducts using f d

A(x) or gd
A(U) is

non-deterministic polynomial (NP)-hard, and for many applications only one reduct is needed. In our
work, a heuristic method called Johnson Reducer algorithm [29] is applied to find a single reduct
which is generally close to minimal size.

Johnson Reducer [30], which is based on a discernibility function, first initializes the set of
the reduct R(A, x, d) to be empty. Then (1) find the attribute a that appears most frequently in the
remaining conjunctions of the discernibility function; (2) add attribute a to R(A, x, d); (3) remove all
the conjunctions that contain a. Repeat (1), (2) and (3) until all conjunctions are removed from the
discernibility function.

Based on the reduct, the RIPPER algorithm is applied to generate decision rules. RIPPER,
proposed by Cohen [31] in 1995, is a rule learning algorithm which is capable of handling large noisy
datasets effectively. RIPPER is the improved version of Incremental Reduced Error Pruning (IREP) [32]
which combines both the separate-and-conquer technique used first in the relational learner FOIL [33],
a system learning Horn clauses from data expressed as relations, and the reduced error pruning
strategy proposed by Brunk and Pazzani [34]. RIPPER algorithm is described briefly in Figure 1.
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Figure 1. The repeated incremental pruning to produce error reduction (RIPPER) algorithm. RIPPER
starts from an empty rule and splits the training set into a growing set and a pruning set. Then it
repeatedly grows rules that achieve the highest Foil’s information gain using the growing set and
prunes the rules using the pruning set until certain conditions are met. Finally, a global pruning is
applied to prune the rules to gain the final rule set.

In our study, we fulfilled the detection of rules by using the Johnson Reducer algorithm [29],
which was also implemented in the MCFS software package [14,35].

2.5. Measurements

Tenfold cross-validation [27,36–46] was used to evaluate the prediction performance. For each
fold, prediction performance was measured by the MCC. Final results were summarized as the 10-fold
average. MCC considers the sample numbers among classes and is generally regarded as a balance
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measurement to indicate prediction accuracy even though sample numbers among classes are of very
different sizes. In this study, we adopted MCC for the performance measurement because the numbers
of the two classes (human cell and PDX cell) were of great imbalance (174 vs. 657).

Given the involved n samples, denoted by s1, s2, . . . , sn, and N classes, represented by 1, 2, . . . , N.
True classes of samples were defined as matrix Y = (yij)n×N , where yij = 1 if the si belongs to class j;
otherwise, this variable is set to 0. Predicted classes of samples were defined as matrix X = (xij)n×N
X =

(
xij
)

n×N , where xij = 1, if si is predicted to be class j; otherwise, xij = 0. Thus, MCC is defined as

MCC =
cov(X, Y)√

cov(X, X)cov(Y, Y)
, (7)

where cov(X,Y) was covariance function of X and Y, which can be computed by

cov(X, Y) =
1
N

N

∑
k=1

cov(xk, yk) =
1
N

n

∑
i=1

N

∑
k=1

(xik − xk)(yik − yk), (8)

where xk and yk denote the kth column of X and Y, respectively; xk and yk denote the mean values of
numbers in xk and yk, respectively.

The range of MCC is between −1 and 1. With high MCC value, the classifier yields a good
performance (1 means the given classifier yields a perfect classification, 0 indicates a classification no
better than random prediction, and −1 represents a total misclassification).

3. Results

In this study, we collected the expression levels of 69 genes in 831 tumor cells, which included
657 PDX and 167 human tumor cells. By using MCFS, we ranked the 69 genes according to their
RI on the tumor cell classification. Then, by applying IFS and RF methods, we drew the IFS-curve,
which illustrated the relationship between the number of features used for building the model and
the corresponding performance measured by the MCC value (see Figure 2). As shown in Figure 2,
when using the top 32 genes to build the model, the prediction performance can reach the highest
MCC value of 0.777. Details of the IFS curve can be found in Supplementary Material I.
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Figure 2. Incremental forward selection (IFS) curve illustrating the relationship of the prediction
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Matthews coefficient correlation.

Furthermore, we compared our method to other similar methods, including the rough-set based
method as mentioned above, the SVM [47] and the dagging [48]. The comparison result was shown in
Table 1. As can be seen in Table 1, using RF with the top 32 features achieved the highest MCC, the
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32 genes were identified as informative genes for predicting PDX and human tumor cells. Also, we
performed enrichment analysis (multiple testing corrections) on the 32 identified genes. The significant
Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) enrichment results of
32 genes with false discovery rate (FDR) < 0.05 can be found in Supplementary Material II.

Table 1. Comparison on performance of different models. The RF model with top 32 features achieved
the highest MCC (0.777). RF: random forest; SVM: supporter vector machine; MCFS: Monte Carlo
feature selection.

Model Feature No. MCC Sensitivity Specificity Accuracy

RF 32 0.777 0.996 0.672 0.929
RF 57 (MCFS cutoff) 0.695 0.995 0.598 0.905

Rough Set 57 (MCFS cutoff) 0.665 0.950 0.680 0.893
SVM 41 0.695 0.995 0.563 0.904

Dagging 58 0.599 0.996 0.436 0.878

To somewhat open the RF model, we applied the rough set-based rule learning method to detect
human-interpretable IF–THEN rules to reveal the interactions between the 32 informative genes.
Finally, seven IF–THEN rules were detected (see Table 2). Details of the seven IF–THEN rules were
provided in Supplementary Material III, including support values, coverage, ranking of the rules, etc.
Moreover, in the Section 4, comprehensive interaction analysis as well as visualization of the seven
IF–THEN rules were provided.

Table 2. Seven rules quantitatively defining the criteria for classification. These rules were produced
by the MCFS software package. If a tumor cell satisfies the first six criteria, it would be classified into
Human tumor; otherwise, it would be classified into PDX tumor.

Rules Criteria Classification

Rule 1 KRT19 ≥ 1.939224 Human tumor
KRT5 ≤ 0.148786
CDH3 ≤ 0.868794

Rule 2 EMP1 ≥ 4.237572 Human tumor
CAV2 ≤ 1.610886

Rule 3 TP53 ≤ 0.291193 Human tumor
CXCR4 ≥ 4.367387
TGFBR2 ≤ 1.868461

Rule 4 CXCR4 ≤ −2.474571 Human tumor
CD44 ≥ 0.086944
PTEN ≥ 0.143515
VIM ≤ 0.647694

Rule 5 PARP2 ≥ 3.111536 Human tumor
Rule 6 PLCB4 ≥ 3.744729 Human tumor

AKT1 ≤ −0.070679
Rule 7 Other conditions PDX tumor

PDX: Patient-derived tumor xenograft.

4. Discussion

Based on the detailed expression profile of PDX mouse tumor tissue and the corresponding
clinical tissue, we applied our newly presented computational method for the identification of core
differentially expressed genes between PDX model and clinical sample. The 32 important genes used
for constructing RF prediction model are listed in Table 3. All these genes have been identified to be
differentially expressed in clinical tumor samples and PDX mouse model by recent publications, which
validated the efficacy and accuracy of our predicted genes. Furthermore, most of these differentially
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expressed genes contribute to tumorigenesis; this finding implies the potential difference of oncogenic
mechanisms in PDX mouse model from in situ. This study at the transcriptomic level may not only
deepen our understanding on the tumorigenesis in PDX tumor mouse model but also further reveal
the potential restriction of PDX tumor mouse model due to the differential expression profile between
PDX tumor tissue and clinical samples. The detailed analysis of optimal genes can be seen below.

Table 3. Thirty-two differentially expressed genes identified as optimal features.

HUGO Symbol HUGO Name RI

EMP1 epithelial membrane protein 1 0.16895404
PARP2 poly(ADP-ribose) polymerase 2 0.15058246
KRT19 keratin 19 0.12158414
MUC1 mucin 1, cell surface associated 0.11115772
CXCR4 C-X-C motif chemokine receptor 4 0.07917199
PROM1 prominin 1 0.06480689
ERBB2 erb-b2 receptor tyrosine kinase 2 0.048957534
ERBB3 erb-b2 receptor tyrosine kinase 3 0.04209958
KRT5 keratin 5 0.037512265
ID4 inhibitor of DNA binding 4, HLH protein 0.03389286

PTEN phosphatase and tensin homolog 0.029668033
NTRK2 neurotrophic receptor tyrosine kinase 2 0.022596486

PGR progesterone receptor 0.020494139
TP53 tumor protein p53 0.019557578

CDH3 cadherin 3 0.01846532
BMI1 BMI1 proto-oncogene, polycomb ring finger 0.013900218

TGFBR2 transforming growth factor beta receptor 2 0.013375987
CCNB1 cyclin B1 0.013296658
PLCB4 phospholipase C beta 4 0.013219586
CLDN4 claudin 4 0.013182897
CXCL12 C-X-C motif chemokine ligand 12 0.010324035

EGFR epidermal growth factor receptor 0.010273729
CD44 CD44 molecule (Indian blood group) 0.009676576
LGR5 leucine rich repeat containing G protein-coupled receptor 5 0.008659011

NOTCH4 notch 4 0.007799821
BCL2 BCL2, apoptosis regulator 0.007518955
CAV2 caveolin 2 0.007474113

VEGFC vascular endothelial growth factor C 0.006789302
TGFBR1 transforming growth factor beta receptor 1 0.006149265

VIM vimentin 0.005953075
TGFB2 transforming growth factor beta 2 0.005226418
KRT8 keratin 8 0.00506866

HUGO: Human gene nomenclature; RI: relative importance.

4.1. Differentially Expressed Genes

Among our predicted differentially expressed gene, EMP1 is at the top rank. In encoding a
tumor-associated membrane protein, this gene has been confirmed to be downregulated during the
passage and transplantation of breast cancer tumor cells [12,13].

The second gene PARP2 has also been predicted to have differential expression patterns
in our study. According to recent publications, this gene has been confirmed to contribute to
DNA repair regulation in tumor tissues; this finding is quite common and significant in tumor
malignant tissues [49,50]. Studies based on PDX model further confirmed that this gene mediates the
chemotherapy resistance of breast cancer and has a differential expression pattern between breast
cancer PDX model and corresponding tumor tissue in situ [50,51]. Previous findings demonstrated
that during the transplantation processes, the biological process of DNA repair is inhibited, which
indicates that PARP2 might be lowly expressed in PDX model [52].
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The third ranked gene KRT19 has been widely reported to contribute to breast cancer
tumorigenesis by its involvement in the organization of myofibers [53,54]. This gene is differentially
expressed in PDX model compared with the original tumors not only in breast cancer but also in
pancreatic cancer and hepatocellular carcinoma [55–57]. The upregulation of this gene helps maintain
the structural integrity of epithelial cells [58]. During the transplantation of primary tumor into the
mouse model, epithelial cell integrity became unstable in the PDX mouse model; this finding indicates
that this gene can be downregulated in PDX model [58]. Interestingly, the homolog of KRT19 and
KRT5 is also in the optimal feature set. The products of these two genes may form a specific dimer and
contribute to specific biological processes as a whole [59]; this observation suggests that this gene can
also be differentially expressed in the PDX mouse model.

In encoding a specific membrane glycoprotein, MUC1 is usually expressed in the epithelial
female cancer subtypes (e.g., ovarian cancer and breast cancer) and regarded as the biomarker of
cancer cell stemness [60–62]. A recent study on the stemness of cancer cells confirmed that during
the passage of PDX mouse model, the stemness of cancer cells is gradually shaped by the murine
microenvironment [62]; this finding indicates that the expression of MUC1 can be altered in this
progress. Similarly, another gene involved in the stemness maintenance of cancer cells, PROM1 [55,63],
can also have differential expression patterns.

CXCR4 encodes a specific G protein coupled receptor, which has been widely reported to be
expressed on the immature CD34+ hematopoietic stem cells [64,65]. Recent studies on breast cancer
found that the expression profiles of CXCR4 are very diverse among the primary tumor of breast cancer,
the metastatic tumor tissues, and the PDX tumors filtered by specific murine microenvironment [66,67].

In our results, two specific Erb-B2 Receptor Tyrosine Kinase (ERBB)-pathway-associated genes,
i.e., ERBB2 and ERBB3, have been predicted as potential distinctive biomarkers. ERBB family signaling
pathway has been widely reported to contribute to transcriptional regulation during the tumorigenesis
of breast cancer [68]. Further studies on the detailed expression pattern of these two genes in clinical
tumor tissues and PDX models confirmed that after the selection of murine tumor microenvironment
and PDX model passage, the expression patterns of ERBB2 and ERBB3 have been systematically
regulated for further adaption to the murine mouse microenvironment [55,69].

Another gene, ID4, has also been identified as a breast-cancer-associated gene, which participates
in the regulation of basic helix-loop-helix transcription factors [70,71]. Although no direct evidence is
found on the differential expression pattern in paired PDX mouse model and tumor tissues in situ,
the expression of creatine kinase is altered due to the microenvironment of PDX mouse model [72,73].
As the negative regulator of creatine kinase, the expression pattern of ID4 may also be changed in a
different microenvironment.

A recent study on single-cell transcriptome of PDX mouse model reported a series of genes with
differential expression patterns in the PDX mouse model compared with the original tumors [13]; this
series included PTEN, NTRK2, PGR, and TP53, which are identified in this study as the differentially
expressed genes.

4.2. Rules of Quantitative Expression Level Requirements

As we have mentioned above, we detected seven specific rules to distinguish primary tumor
tissues and PDX tumor tissues based on the expression levels of 14 genes. In the seven rules, the
first six provided criteria for classifying a tumor cell into the original human tumor, which also
represents the primary tumor-specific gene expression patterns (see Table 2). Among the 14 genes,
seven genes, i.e., KRT19, EMP1, CXCR4, CD44, PTEN, PARP2, and PLCB4, were required to have high
expression levels in the original tumor cells, whereas others should have low expression levels. As we
discussed above, some of these genes, such as KRT19, EMP1, and PARP2, have evidence from previous
studies, which indicate their higher expression levels in the original tumors compared with PDX tumor
cells [12,13,52,58].
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Further, to facilitate our understanding of the seven rules, we visualized the seven rules by using
Ciruvis, a web-based tool for rule networks and interaction detection using rule-based classifiers,
as suggested in the literature [74]. The result is shown in Figure 3, from which we found that, strong
interactive relationships involved genes of KRT19, KRT5 and CDH3 (interactions of dark red color).
Thus, we provided full analysis on the interactions among KRT19, KRT5 and CDH3.
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visualization, Ciruvis assigned specific colors for genes and placed genes into a circle. Meanwhile,
Ciruvis indicated the strength of interaction among genes by using the degree of red color on the
interactions. The darker the red color is, the stronger the interaction among genes.

First, the dimerizing of Krt5 with Krt14 has been confirmed to be involved in the regulation of
EMT in tumorigenesis [75–77]. Further studies on the protein–protein interactions confirmed that this
heterodimer could also interact with another component of cytokeratins, Krt6b [78]. As a functional
mediator, Krt6b connects Krt5 with Krt19 through protein–protein interaction [79]. Krt6b shows
negatively correlated expression pattern with Krt19 during tumorigenesis [80]. Therefore, the strong
interaction between KRT19 and KRT5 has been indicated by previous experiments.

Second, the Ciruvis figure also show strong correlations between KRT5 and CDH3, which encodes
a member of the cadherin superfamily. A previous study in 2010 [81] reported that BRCA1 repressed
the expression of various cytokeratins including Krt5. It is also known that BRCA1 product manipulate
the expression pattern of both KRT5 and CDH3 [81], suggesting the correlation and co-regulation of
the expressions of these two genes.

Third, the correlation of KRT19 and CDH3 is suggested by the previous studies which reported
the participation of these two genes in the essential proliferation and metastasis associated pathway
MAPK/ERK cascade in tumorigenesis [82,83]. Furthermore, KRT19 shows co-expression pattern with
various CDH3 associated genes like CDH1 [84], EGFR [85] and CTNNB1 [54] in certain pathological
conditions, indicating that there may be potential biological relevance between KRT19 and CDH3.

In summary, these findings strongly support the correlations of both functions and expression
patterns among the three genes KRT19, KRT5 and CDH3, which are all related to EMT associated
pathological processes in human tumors, but not in PDX mouse model.
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5. Conclusions

Through a new computational method, we identified the differentially expressed genes and
quantitative rules that can classify the PDX tumor and the original tumor with high accuracies.
Multiple well-known oncogenes and tumor suppressors are differentially expressed; this finding
indicates the risk of using those genes as therapeutic targets in breast cancer through PDX mouse
model. Therefore, our study not only provides a functional tool to distinguish the primary tumor from
PDX tumor by gene expression levels but also reveals the detailed gene expression alterations and
shaping characteristics in murine microenvironment. In this work, we employed SVM, RF, dagging
and rough set classifiers due to the small samples problem. Some of the latest classifiers, such as
ensemble classifier [86], will be tested in future work.
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Supplementary Material I: Incremental forward selection by using Random Forest, Supplementary Material
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Material III: Details of rough-set based model.
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