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Abstract: In this retrospective pilot study, the DNA-methylation status of genes that have 

been demonstrated to be involved in melanoma carcinogenesis was analyzed in order to 

identify novel biomarkers for the risk assessment of melanoma patients. We analyzed DNA 

extracted from punch-biopsies from 68 formalin-fixed paraffin-embedded (FFPE) melanoma 

specimens. Using MethyLight PCR, we examined 20 genes in specimens from a training 

set comprising 36 melanoma patients. Selected candidate genes were validated in a test set 

using FFPE tissue samples from 32 melanoma patients. First, we identified the TNFRSF10D 

DNA-methylation status (TNFRSF10D methylated vs. unmethylated) as a prognostic 

marker for overall (p = 0.001) and for relapse-free survival (p = 0.008) in the training set. 

This finding was confirmed in the independent test set (n = 32; overall survival p = 0.041; 

relapse-free survival p = 0.012). In a multivariate Cox-regression analysis including all 
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patients, the TNFRSF10D DNA-methylation status remained as the most significant 

prognostic parameter for overall and relapse-free survival (relative-risk (RR) of death,  

4.6 (95% CI: 2.0–11.0; p < 0.001), RR of relapse, 7.2 (95% CI: 2.8–18.3;  

p < 0.001)). In this study, we demonstrate that TNFRSF10D DNA-methylation analysis  

of a small tissue-punch from archival FFPE melanoma tissue is a promising approach to 

provide prognostic information in patients with melanoma. 

Keywords: cancer biomarker; epigenomics; DNA-methylation; prognosis; translational 

cancer research 

 

1. Introduction 

The incidence of melanoma is increasing in white populations worldwide [1]. In advanced disease, 

median survival is very poor. Melanomas account for 90% of the deaths associated with cutaneous 

neoplasms [1]. The five-year risk of death of patients with advanced (Stage IV) disease is about  

80% [2]. Thus, the recognition of patients at risk for progression is crucial. The most relevant 

prognostic factors for primary melanoma without metastases are vertical tumor thickness (Breslow’s 

depth) and the presence or absence of histological ulceration; to a lesser extent, also mitotic activity 

and invasion level (Clark’s level). However, clinical experience demonstrates that some patients with 

thin neoplasms face recurrence, metastases and death after surgical excision, while others with thick 

melanomas do not. New prognostic markers, such as metallothionines or genetic subtypes defined by 

gene expression profiling, have been established; however, additional reliable markers to select 

patients for early therapy are still lacking [3,4]. Besides genetic alterations, changes in the status of 

DNA-methylation, a type of epigenetic alteration, are among the most common molecular alterations 

in human neoplasia, including melanoma [5–9]. Irreversible silencing of certain genes by  

DNA-methylation might enable cells to acquire new capabilities that may drive tumorigenesis. Here, 

we analyzed the DNA-methylation status of the 5' regions of 20 different genes that are involved in 

melanoma carcinogenesis and that have previously been shown to be aberrantly methylated in 

melanoma [7,9–17] or other human cancers [18]. 

In the present pilot study, we aimed to explore whether differences in the DNA-methylation pattern 

from formalin-fixed paraffin-embedded (FFPE) tissues may be useful as a prognostic marker for the 

further outcome of non-metastatic melanoma patients. 

2. Results and Discussion 

2.1. Training Set for Selection of Relevant Genes 

Using MethyLight PCR, we analyzed 20 genes that have been demonstrated to be involved in 

melanoma tumorigenesis (APC, CDH13, CDKN2A, CYP1B1, ENC1, ESR1, LOX, MAGEA1, MIR34A, 

PPP1R3C, PYCARD, RARB, RARRES1, RASSF1, SFN, SOCS1, TIMP3, TNFRSF10C, TNFRSF10D 

and TP73) [7,9–18] from FFPE tissue punches of 36 patients (training set). Association analysis 

between clinicopathological features, sex, age and methylation status of the analyzed genes revealed 
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no significant differences. Only MAGE1A showed higher DNA-methylation values (the percentage of 

fully methylated reference, PMR) in women (p = 0.001). In this set, we identified age, the Clark level, 

ulceration, tumor thickness, mitotic rate and TNFRSF10D DNA-methylation status (TNFRSF10D 

methylated vs. unmethylated) as univariate prognostic markers for overall survival (p = 0.049, 0.001, 

0.015, 0.008, 0.026 and 0.001). The Clark level, ulceration, tumor thickness and TNFRSF10D 

methylation status were found as univariate prognostic markers for relapse-free survival (p < 0.001, 

0.046, 0.008, 0.008; Table 1A). 

2.2. Test Set for the Validation of Relevant Genes 

For validation of the results obtained with the training set, we analyzed the TNFRSF10D  

DNA-methylation status in an independent test set consisting of FFPE tissues of 32 melanoma 

patients. Furthermore, in this analysis, TNFRSF10D DNA-methylation was confirmatively shown to 

be highly significantly associated with a poor overall and relapse-free survival (p = 0.041 and  

p = 0.012, respectively; Table 1B). 

Table 1. Univariate survival analysis in melanoma patients. (A) Training set; (B) Test set; 

(C) Overall samples. Significant p-values in bold. 

(A) Training Set   

Variable 

Overall Survival Relapse-Free Survival 

No. Patients 
(Died/Total) 

p-Value  
(Log-Rank-Test) 

No. Patients  
(Relapsed/Total) 

p-Value  
(Log-Rank-Test) 

Sex     
Male 12/24 0.712 11/24 0.717 
Female 5/12  5/12  

Age     
<60 9/24 0.049 10/24 0.239 
≥60 8/12  6/12  

Clark level     
2/3 4/11 0.001 3/11 <0.001 
4 9/21  9/21  
5 4/4  4/4  

Ulceration     
No 7/22 0.015 7/22 0.046 
Yes 10/14  9/14  

Tumor thickness     
≤2 mm (T1/T2) 5/13 0.008 6/13 0.008 
2.01–4 mm (T3) 2/8  1/8  
≥4.01 mm (T4) 10/15  9/15  

Mitotic rate     
≤1/mm2 3/12 0.026 3/12 0.052 
>1/mm2 14/24  13/24  
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Table 1. Cont. 

(A) Training Set   

Variable 

Overall Survival Relapse-Free Survival 

No. Patients 
(Died/Total) 

p-Value  
(Log-Rank-Test) 

No. Patients  
(Relapsed/Total) 

p-Value  
(Log-Rank-Test) 

Interferon alpha therapy     
No 15/28 0.302 14/28 0.374 
Yes 2/8  2/8  

TNFRSF10D     
Unmethylated 11/29 0.001 11/29 0.008 
Methylated 6/7  5/7  

(B) Test Set     

Sex     
Male 5/12 0.929 5/12 0.98 
Female 10/20  9/20  

Age     
<60 7/22 0.003 7/22 0.031 
≥60 8/10  7/10  

Clark level     
2/3 3/7 <0.001 3/7 <0.001 
4 6/18  5/18  
5 6/6  6/6  

Ulceration     
No 11/23 0.887 10/23 0.942 
Yes 4/9  4/9  

Tumor thickness     
≤2 mm (T1/T2) 5/12 0.919 5/12 0.992 
2.01–4 mm (T3) 7/13  6/13  
≥4.01 mm (T4) 2/5  2/5  

Mitotic rate     
≤1/mm2 6/18 0.077 6/18 0.141 
>1/mm2 9/14  8/14  

Interferon alpha therapy     
No 9/24 0.003 8/24 0.002 
Yes 6/8  6/8  

TNFRSF10D     
Unmethylated 11/28 0.041 10/28 0.012 
Methylated 4/4  4/4  
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Table 1. Cont. 

(C) Overall Samples   

Variable 

Overall Survival Relapse-Free Survival 

No. Patients 
(Died/Total) 

p-Value  
(Log-Rank-Test) 

No. Patients  
(Relapsed/Total) 

p-Value  
(Log-Rank-Test) 

Sex     
Male 17/36 0.683 16/36 0.734 
Female 15/32  14/32  

Age     
<60 16/46 <0.001 13/22 0.013 
≥60 16/22  23/74  

Clark level     
2/3 7/18 <0.001 6/18 0.011 
4 15/39  14/39  
5 10/10  10/10  

Ulceration     
No 18/45 0.085 17/45 0.116 
Yes 14/23  13/23  

Tumor thickness     
≤2 mm (T1/T2) 10/25 0.084 11/25 0.113 
2.01–4 mm (T3) 9/21  7/21  
≥4.01 mm (T4) 12/20  11/20  

Mitotic rate     
≤1/mm2 9/30 0.005 9/30 0.012 
>1/mm2 23/38  21/38  

Interferon alpha therapy     
No 24/52 0.261 22/52 0.24 
Yes 8/16  8/16  

TNFRSF10D     
Unmethylated 22/57 <0.001 21/57 <0.001 
Methylated 10/11  9/11  

2.3. Overall Prognostic Significance Merging the Training and the Test Set 

The comprehensive univariate analysis of all 68 patients together identified age (<60 vs. ≥60),  

the Clark level, mitotic rate and TNFRSF10D DNA-methylation status as prognostic parameters for 

poor overall survival (p < 0.001, <0.001, 0.005, <0.001; Table 1C), as well as for poor relapse-free 

survival (p = 0.013, 0.011, 0.012, <0.001; Table 1C). The Kaplan–Meier survival analysis for 

TNFRSF10D DNA-methylation is depicted in Figure 1. 
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Figure 1. Kaplan–Meier survival analysis: (A) the overall survival and (B) relapse-free 

survival of 68 melanoma patients. 

 

Finally, we analyzed all patients, including the variables, sex, age, Clark level, presence of 

ulceration, tumor thickness, interferon alpha therapy and TNFRSF10D DNA-methylation status, using 

a multivariate Cox regression model. The TNFRSF10D DNA-methylation status remained the most 

significant prognostic parameter for overall and relapse-free survival. Patients with methylated 

TNFRSF10D showed a 4.6-fold higher risk of death (95% CI: 2.0–11.0; p < 0.001) and a 7.2-fold 

higher risk of relapse (95% CI: 2.8–18.3; p < 0.001) than patients with unmethylated TNFRSF10D 

(Table 2). After exclusion of a subgroup of 16 patients, who received an adjuvant interferon alpha 

therapy, TNFRSF10D DNA-methylation still remained the highest significant prognostic parameter in 

the multivariate analysis for overall (p = 0.004) and relapse-free survival (p = 0.001). 

Table 2. Multivariate survival analysis of 68 melanoma patients. RR, relative-risk. 

Significant p-values in bold. 

Variable 

Overall Survival Relapse-Free Survival 

RR of Death 
(95% CI) 

p-Value 
RR of Relapse or 
Progression (95% CI) 

p-Value 

Sex     
Male 0.5 (0.2–1.6) 0.11 0.4 (0.2–0.9) 0.03 
Female     

Age     
<60 2.1 (0.9–4.6) 0.07 1.6 (0.75–4.1) 0.20 
≥60     

Clark level     
2/3 3.0 (1.6–5.9) 0.001 4.9 (2.4–10.1) <0.001 
4     
5     
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Table 2. Cont. 

Variable 

Overall Survival Relapse-Free Survival 

RR of Death 
(95% CI) 

p-Value 
RR of Relapse or 
Progression (95% CI) 

p-Value 

Ulceration     
No 1.4 (0.6–3.5) 0.47 1.1 (0.5–2.8) 0.78 
Yes     

Tumor thickness     
≤2 mm (T1/T2) 0.9 (0.6–1.6) 0.82 0.8 (0.5–1.3) 0.39 
2.01–4 mm (T3)     
≥4.01 mm (T4)     

Mitotic rate     
≤1/mm2 1.4 (0.5–3.9) 0.49 1.6 (0.6–4.5) 0.37 
>1/mm2     

Interferon alpha therapy     
No 2.2 (0.8–5.9) 0.11 2.7 (1.1–7.5) 0.03 
Yes     

TNFRSF10D     
Unmethylated 4.6 (2.0–11.0) <0.001 7.2 (2.8–18.3) <0.001 
Methylated     

2.4. Discussion 

The prognostic biomarkers currently used in melanoma do not adequately predict disease recurrence 

and overall survival in a significant subset of patients. Therefore, novel biomarkers are highly required 

to overcome these problems. 

In this pilot study, we identified TNFRSF10D DNA methylation status in paraffin-embedded 

melanoma tissues to be an independent prognostic biomarker for relapse-free survival and overall 

mortality in non-metastatic melanoma patients. Surprisingly, ulceration and tumor thickness were 

significantly associated with survival only in the training set, whereas the invasion level (Clark’s level) 

was a significant, prognostic feature consistently in all analyses performed in this work. Due to the 

small sample size of this pilot study, a subsequent validation study in a larger, independent patient 

cohort must be performed. In our study, the prognostic value of TNFRSF10D concerns mainly  

the group of patients with methylated TNFRSF10D in the tumors. Recently, TNFRSF10D  

DNA-methylation has also been shown to be an independent prognostic and predictive marker in the 

serum of patients with MYCN nonamplified neuroblastoma [19]. Interestingly, recently published data 

indicated that TNFRSF10D is epigenetically silenced in human melanoma [9,16], as well as in  

cancers of breast, lung, mesothelioma, prostate, bladder, cervix, ovary, brain and in hematopoietic 

malignancies [20]. Bonazzi et al. found that 72% of the analyzed melanoma cell lines had no 

TNFRSF10D mRNA expression and that the transcript level of TNFRSF10D was correlated inversely 

with promoter methylation [16]. They identified that 66% of the analyzed cell lines and 30% of the 

analyzed fresh frozen melanoma samples showed a high degree of methylation. In our study,  

we identified TNFRSF10D DNA-methylation in only 16% of all analyzed specimens. This discrepancy 

probably reflects the different levels of TNFRSF10D DNA-methylation in melanoma cell lines, 
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metastatic tumor tissues and primary tissues. Bonazzi et al. observed a five-fold average increase in 

TNFRSF10D mRNA expression in five melanoma cell lines after treatment with the DNA-demethylating 

agent, 5-aza-2'-deoxycytidine [16]. TNFRSF10D belongs to the tumor necrosis factor (TNF) receptor 

superfamily. This receptor contains an extracellular tumor necrosis factor-related apoptosis-inducing 

ligand (TRAIL) binding domain, a transmembrane domain and a truncated cytoplasmic death domain. 

The second known TRAIL decoy receptor, TNFRSF10C, lacks this intracellular death domain 

completely. Therefore, both receptors appear unable to induce apoptosis. Considering that TNFRSF10D, 

as well as TNFRSF10C have been presumed to function as oncogenes, because of their postulated  

anti-apoptotic effect [20], our data seem to be controversial at first sight. However, recently, Venza et al. 

have shown that an ectopic overexpression of TNFRSF10C and/or TNFRSF10D in melanoma cell lines 

led to a significant reduced growth rate and a clear increased apoptotic response [21]. In the context of 

our data, it seems that the methylation and silencing of TNFRSF10D may represent a special feature of 

more aggressive cancer cells. 

3. Experimental Section 

3.1. The Patient Study Cohort and Study Design 

We retrospectively analyzed prospectively collected melanoma specimens (FFPE tissues) from 

melanoma patients treated at the Department of Dermatology and Venereology, Innsbruck Medical 

University, Innsbruck, Austria. Samples have been collected during primary surgery. Sixty-eight 

patients (32 women and 36 men) diagnosed between 1983 and 2004 with primary, invasive,  

non-metastasized melanoma were included in this study (T1–T4, tumor-node-metastasis (TNM) 

classification American Joint Committee of Cancer 2001). Patients had no metastases at the time of 

diagnosis or surgery, respectively. Thirty-four melanomas were located on the trunk, 34 on the limbs. 

The tumor thickness was 0.5–2 mm (T1/T2), 2.01–4 mm (T3) and >4 mm (T4) in 25, 23 and  

18 patients, respectively; tumor thickness was unknown in two patients. Twenty-three patients showed 

ulcerated melanomas. All patients underwent surgery with 1–2 cm excision margins, according to 

standard guidelines, and 16 patients received adjuvant interferon alpha. The median age was 53.4 years 

(21.9–90.7 years). Thirty and 32 patients relapsed/died, respectively, due to the consequences of the 

melanoma after a median follow up period of 2.0 (interquartile (IQ)-range 6.2) and 3.4 (IQ-range 5.5) 

years, respectively. The patient study cohort was a priori randomly split into a training and a test set, 

consisting of 36 and 32 patients, respectively. The study was approved by the local medical research 

ethics committee (Reference Number UN3856, 26 January 2010) and conducted in accordance with 

the Declaration of Helsinki. Reporting Recommendations for Tumor Marker Prognostic Studies 

(REMARK) were adhered to where applicable [22,23]. 
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3.2. DNA Extraction and Bisulfite Conversion from Formalin-Fixed Paraffin-Embedded (FFPE) Tissues 

DNA was isolated from punches gained from FFPE melanoma specimens using the DNeasy Tissue 

Kit (Qiagen, Hilden, Germany) in order to assure that mainly melanoma tissue was collected. 

Sodium bisulfite-modification of genomic DNA (700 ng) was performed using the EZ DNA 

Methylation-Gold Kit (Zymo Research, Orange, CA, USA), according to the manufacturer’s instructions. 

3.3. DNA Methylation Analysis 

Thirty nanograms of bisulfite-modified DNA were analyzed by means of MethyLight analysis,  

as described previously [24]. Briefly, two sets of primers and probes, designed specifically for  

bisulfite-converted DNA, were used: a set representing fully methylated DNA for the gene of interest 

and a reference set, collagen, type II, alpha 1 (COL2A1), to normalize for input DNA. Primers and 

probes for APC, COL2A1, CDH13, CDKN2A, CYP1B1, ENC1, ESR1, LOX, MAGEA1, MIR34A, 

PYCARD, PPP1R3C, RARB, RARRES1, RASSF1, SFN, SOCS1, TIMP3, TNFRSF10C, TNFRSF10D 

and TP73 are listed in Tables S1 [25,26]. 

To control for the amount of input bisulfite-modified DNA, this value was normalized to the extent 

of amplification of a COL2A1 DNA sequence lacking CpG dinucleotides. The specificity of the 

reactions for methylated DNA was confirmed separately using SssI (New England Biolabs, Ipswich, 

MA, USA)-treated human white blood cell DNA (heavily methylated). The SssI treated DNA was 

additionally used for the standard curve preparation, which is required for the quantification. The 

percentage of fully methylated molecules at a specific locus was calculated by dividing the 

GENE:COL2A1 ratio of a sample by the GENE:COL2A1 ratio of SssI-treated white blood cell DNA 

and multiplying by 100 (the percentage of fully-methylated reference, PMR). PMR values have been 

calculated for all analyzed genes. If less than 50% of the samples were methylated for a specific gene 

(a gene was deemed methylated if the PMR value was >0), we categorized the samples in 

“unmethylated” and “methylated” and performed the analyses with these dichotomized variables.  

Only in 3 genes were more than 50% of the samples methylated (ESR1, SFN and MAGE1). For these 

genes we used the PMR values for the following statistical analysis. 

3.4. Mitotic Rate 

The mitotic rate per square millimeter of tumor tissue was evaluated by counting mitotic figures on 

hematoxylin and eosin (H&E)-stained tissue sections. 

3.5. Statistical Analysis 

Disease-free and overall survival were calculated from the date of diagnosis to the date of relapse, 

death or last follow-up. Disease-free and overall survival curves were calculated with the  

Kaplan–Meier method. Univariate analysis of overall survival according to clinicopathological factors 

(age, Clark-level, tumor thickness, presence of ulcerations, etc.) or DNA-methylation status was 

performed using a two-sided log rank test. A multivariate Cox proportional hazards model was applied 

to estimate the prognostic effect of TNFRSF10D DNA-methylation. A p-value <0.05 was considered 

statistically significant. SPSS 19.0 was used for all statistical analyses (SPSS Inc., Chicago, IL, USA). 



Int. J. Mol. Sci. 2014, 15 11993 

 

 

4. Conclusions 

Our data demonstrate that DNA-methylation analysis of the TNFRSF10D promoter from a small 

tissue punch from archival paraffin-embedded melanoma tissue is able to provide independent 

prognostic information in order to identify patients with a higher risk for aggressive progress. 

Further studies are needed to elucidate how TNFRSF10D promoter hypermethylation is associated 

with poor prognosis and aggressive proliferation in melanoma. Additionally, further research needs to 

be conducted to assess if TNFRSF10D hypermethylation in serum samples from melanoma patients could 

be an indicator of poor prognosis in melanoma, as has been shown in neuroblastoma patients [19]. 
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