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Abstract

We performed integrative network analyses to identify targets
that can be used for effectively treating liver diseases with mini-
mal side effects. We first generated co-expression networks (CNs)
for 46 human tissues and liver cancer to explore the functional
relationships between genes and examined the overlap between
functional and physical interactions. Since increased de novo lipo-
genesis is a characteristic of nonalcoholic fatty liver disease
(NAFLD) and hepatocellular carcinoma (HCC), we investigated the
liver-specific genes co-expressed with fatty acid synthase (FASN).
CN analyses predicted that inhibition of these liver-specific genes
decreases FASN expression. Experiments in human cancer cell
lines, mouse liver samples, and primary human hepatocytes vali-
dated our predictions by demonstrating functional relationships
between these liver genes, and showing that their inhibition
decreases cell growth and liver fat content. In conclusion, we
identified liver-specific genes linked to NAFLD pathogenesis, such
as pyruvate kinase liver and red blood cell (PKLR), or to HCC
pathogenesis, such as PKLR, patatin-like phospholipase domain
containing 3 (PNPLA3), and proprotein convertase subtilisin/kexin
type 9 (PCSK9), all of which are potential targets for drug
development.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is characterized by the

accumulation of excess fat in the liver and is associated with

obesity, insulin resistance (IR), and type 2 diabetes (T2D). NAFLD

includes a spectrum of diseases ranging from simple steatosis to

nonalcoholic steatohepatitis (NASH) and plays a major role in the

progression of cirrhosis and hepatocellular carcinoma (HCC), a

cancer with one of the highest mortality rates worldwide (Kew,

2010). Although NAFLD is the most common cause of chronic liver

disease in developed countries, and its worldwide prevalence

continues to increase along with the growing obesity epidemic,

there is no approved pharmacological treatment for NAFLD. NAFLD

is projected to become the most common indication leading to liver

transplantation in the United States by 2030 (Shaker et al, 2014).

The incidence of HCC has also increased significantly in the United

States over the past few decades, in parallel with the epidemic of

NAFLD (Petrick et al, 2016). Hence, there is an urgent need to

develop new strategies for preventing and treating such chronic

hepatic diseases.

Biological networks can be used to uncover complex systems-

level properties. Systems biology combining experimental and

computational biology to decipher the complexity of biological

systems can be used for the development of effective treatment

strategies for NAFLD, HCC, and other complex diseases (Mardinoglu

& Nielsen, 2015; Yizhak et al, 2015; Mardinoglu et al, 2017b;

Nielsen, 2017). To date, several metabolic processes that are altered

in NAFLD (Mardinoglu et al, 2014a, 2017a; Hyötyläinen et al, 2016)

and HCC (Agren et al, 2012, 2014; Björnson et al, 2015; Elsemman

et al, 2016) have been revealed through the use of genome-scale
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metabolic models (GEMs), a popular tool in systems biology. GEMs

are reconstructed on the basis of detailed biochemical information

and have been widely used to determine the underlying molecular

mechanisms of metabolism-related disorders (Mardinoglu &

Nielsen, 2012, 2015, 2016; Mardinoglu et al, 2013b, 2015; Yizhak

et al, 2013, 2014a,b; Bordbar et al, 2014; Björnson et al, 2015;

O’Brien et al, 2015; Shoaie et al, 2015; Zhang et al, 2015; Uhlen

et al, 2016).

Recently, we have integrated GEMs for hepatocytes (iHepato-

cytes2322; Mardinoglu et al, 2014a), myocytes (iMyocytes2419;

Varemo et al, 2015), and adipocytes (iAdipocytes1850; Mardinoglu

et al, 2013a, 2014b) with transcriptional regulatory networks

(TRNs) and protein–protein interaction networks (PPINs) to gener-

ate tissue-specific integrated networks (INs) for liver, muscle, and

adipose tissues (Lee et al, 2016). The INs allowed us to comprehen-

sively explore the tissue biological processes altered in the liver and

adipose tissues of obese subjects, thus accounting for the effects of

transcriptional regulators and their interacting proteins and

enzymes. Although INs provide physical interactions between pairs

or groups of enzymes, transcription factors (TFs), and other

proteins, these physical interactions may not necessarily have close

functional connections.

Co-expression connections are enriched for functionally related

genes, and co-expression networks (CNs) allow the simultaneous

investigation of multiple gene co-expression patterns across a wide

range of clinical and environmental conditions. In this study, we

constructed CNs for major human tissues including liver, muscle, and

adipose tissues and studied the overlap between functional connec-

tions and physical interactions defined by CNs and INs, respectively.

We also constructed CNs for HCC to investigate the functional rela-

tionship between genes. Finally, we used these comprehensive biolog-

ical networks to explore the altered biological processes in NAFLD

and HCC and identified liver-specific gene targets that may be used in

the development of effective treatment strategies for NAFLD and HCC

with likely minimal negative side effects.

Results

Generation of CNs for human tissues

A common observation in gene expression analysis performed for

different clinical conditions is that many genes known to be func-

tionally related often show similar expression patterns, thus poten-

tially indicating shared biological functions under common

regulatory control. Thus, identifying co-expression patterns instead

of only differential expression patterns may be informative for

understanding altered biological functions. To identify genes with

similar gene expression profiles, we retrieved RNA-seq data

comprising 51 tissues, including liver, muscle, and subcutaneous

and omental adipose, along with other major human tissue samples

(Dataset EV1), from the Genotype-Tissue Expression (GTEx) data-

base (GTEx, 2013). To measure the tendency of gene expression

correlation, we calculated the Pearson correlation coefficients (r)

between all gene pairs in 46 human tissues (Dataset EV1) with more

than 50 samples, and we ranked all genes according to the calcu-

lated r. We used the top 1% correlation value of each tissue as a

cutoff indicating that two genes were co-expressed (average

r = 0.576 for 46 tissues) and therefore had the same number of co-

expression links for all tissues, thus yielding 1,498,790 links, and

combined them to construct the tissue-specific CNs. The resulting

CNs were as follows: Liver tissue contained 11,580 co-expressed

genes, muscle tissue contained 10,728 co-expressed genes, and

subcutaneous and omental adipose tissue contained 12,120 and

11,117 co-expressed genes (Dataset EV1).

Given the connectivity of tissue-specific co-expression links, we

found groups of highly co-expressed genes, termed co-expression

clusters, by using the random walk community detection algorithm

(Pons & Latapy, 2005; Fig 1A). Among these clusters, we selected

the most highly co-expressed key clusters on the basis of their clus-

tering coefficients (average clustering coefficient = 0.522). We

found that genes associated with key co-expression clusters in

tissues significantly overlapped with tissue-specific genes presented

in the Human Protein Atlas (HPA; Uhlen et al, 2015), when global

proteomics and transcriptomics data were available for more than

30 human tissues. Our analysis indicated that 75.6% of 41 HPA-

matched tissues had key co-expression clusters significantly

enriched in tissue-specific genes (hypergeometric test P < 0.01),

thus suggesting the tissue-specific roles of the genes associated with

the key clusters (Dataset EV2).

To investigate tissue-specific functions of the genes associated

with the key co-expression clusters, we performed gene ontology

(GO) enrichment analysis by using the GO biological processes (BP)

terms in MSigDB (Subramanian et al, 2005; hypergeometric test

P < 1.0 × 10�4; Fig EV1). For example, in liver tissue, we found that

genes associated with key co-expression clusters were enriched in

terms comprising the immune response, hemopoiesis, and fatty acid

metabolic processes (Fig 1B), whereas in testis tissue, co-expression

clusters were enriched in cell cycle, metabolism, and reproduction

(Fig EV1C and Dataset EV3). Likewise, we investigated the enrich-

ment of the genes associated with key co-expression clusters in

other metabolically active tissues, including skeletal muscle and

subcutaneous and omental adipose tissues, compared with the

significantly enriched GO BP terms in liver tissue, and found that

the GO BP term “hemopoiesis” was enriched only in liver tissue,

whereas “muscle development” was enriched only in skeletal

muscle (Fig EV1A). In both subcutaneous adipose tissue and liver

tissue, genes associated with the key clusters were significantly

enriched in fatty acid metabolic processes (Fig EV1B). Hence, our

analysis indicated that genes involved in fatty acid metabolism are

significantly co-expressed in liver and adipose tissues.

Increased co-regulation results in increased co-expression

We have previously presented INs for metabolic tissues, including

liver, muscle, and adipose tissues, and have identified the physical

links between TFs and target proteins and enzymes (Lee et al,

2016). Here, we investigated the overlap between the INs and CNs

and analyzed the potential deregulation of metabolism in metaboli-

cally active human tissues by using the topology on the basis of the

regulatory interactions and protein–protein interactions of INs by

comparing the mean co-expression of actual networks with that of

networks randomly permutated by 1,000 repetitions (Fig 1C). We

found that most of the actual tissue regulatory networks (RNs;

Fig 1D) and PPINs (Fig 1E) showed higher co-expression than

randomly permutated networks in liver and other metabolic tissues
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(Figs EV2A and B, and EV3A and B). We also observed that regula-

tory interactions built from in vitro differentiated adipocytes (Lee

et al, 2016) had less specificity than co-expression calculated by

using subcutaneous adipose tissue RNA-seq data demonstrating

higher tissue specificity (Fig EV2B).

Target proteins regulated by the same TFs or interacting with the

same proteins may have similar gene expression patterns (Zhang

et al, 2016). Hence, we examined the co-expression of co-regulated

gene pairs in RNs and found that their mean co-expression was

higher in actual RNs than in randomly permutated RNs in the liver

(Fig 1F) and other metabolic tissues (Fig EV2C and D). Moreover,

we examined the co-expression of gene pairs that were not regulated

by the same TFs and found that their mean co-expression was lower

in actual liver RNs than in randomly permutated RNs in liver tissue

(Fig 1H) and other metabolic tissues (Fig EV2E and F). Similarly,

we examined the co-expression of co-interacting gene pairs for the

same proteins in PPINs and found relatively lower mean co-expres-

sion in actual liver PPINs than in randomly permutated PPINs in

liver tissue (Fig 1G) and other metabolic tissues (Fig EV3C and D),

as compared with the mean co-expression of the actual RNs. We

also found that mean co-expression in PPINs was lower in actual

PPINs than in randomly permutated PPINs in liver tissue (Fig 1I)

and other metabolic tissues (Fig EV3E and F) when we compared

proteins that did not interact with the same proteins. Our analysis

indicated that physical interactions defined by the RNs and PPINs

can be used to explain protein co-expression. Moreover, we

observed that the two target proteins regulated by the same TFs

may have similar expression patterns, whereas two target proteins

interacting with the same protein may have less similar expression

patterns.

Target proteins may be regulated by more than one TF in RNs,

thus potentially affecting their expression patterns. In this context,

we determined the co-expression of two target proteins regulated

by the same TFs and found that an increased number of co-bound

TFs were likely to be associated with increased mean

co-expression levels in liver (Fig 1J), skeletal muscle, and adipose

tissues (Fig EV2G and H). We also repeated a similar analysis in

PPINs on the basis of the two target proteins that co-interacted

with the same proteins and found that the increased number of

co-interacting proteins was not directly proportional to increased

mean co-expression although the mean co-expression levels were

high in the liver (Fig 1K) and other tissues analyzed (Fig EV3G

and H). Our analysis indicates that protein interactions provide

evidence for increased co-expression by RNs compared with PPINs

in metabolic tissues.

We also identified the TFs and proteins that were highly co-

expressed with their target genes or proteins in RNs and PPINs,

respectively (|r| > 0.1 and Kolmogorov–Smirnov (KS) two-sided

test, P < 0.05) (Fig 1L, Datasets EV4 and EV5). We investigated the

biological functions associated with these TFs and proteins using

DAVID (Huang et al, 2009) and found that the TFs in liver RN were

enriched in the regulation of transcription and cell differentiation

(false discovery rate [FDR] < 0.01) and that the proteins in liver

PPIN were enriched in RNA splicing (FDR < 0.01), which is

involved in post-transcriptional regulation. To identify the most

influential TFs in the co-expression of gene pairs, we used the most

highly co-expressed gene pairs (top 1%), established the co-binding

matrix of bound TFs on the basis of RNs, and calculated the variable

importance score by using the Random Forest model in the liver

(Fig 1M and Dataset EV6). Among the top 1% most influential TFs

(76 TFs), for example, YY1, CTCF, RAD21, SREBF1, and SREBF2,

we found TFs enriched in liver development, interphase of the

mitotic cell cycle, and response to lipids (FDR < 0.001), thus

suggesting that many influential TFs are involved in liver-specific

functions.

Highly co-expressed metabolic pathways in the liver

On the basis of physical and functional links provided by the

networks, we examined which metabolic pathways are regulated

Figure 1. Characteristics of tissue-specific co-expression networks (CNs).

A We generated co-expression networks for 46 tissues that had more than 50 samples from GTEx RNA-seq data. In each tissue, we found groups of highly co-
expressed genes, called co-expression clusters, by using a community detection algorithm. Among these groups, we selected key co-expression clusters on the basis
of their clustering coefficients.

B For example, in liver tissue, we found genes from key co-expression clusters significantly enriched in biological processes required for liver function, such as fatty
acid metabolism, hemopoiesis, and immune response. All nodes in the network stand for co-expression clusters, and edges are connected when genes belonging to
those clusters were highly connected more frequently than at random. Node sizes are proportional to the number of genes involved in the respective clusters.

C–K In liver tissue, we investigated co-expression of physical interactions from the liver regulatory network (RN) or liver protein–protein interaction network (PPIN) (red
lines). We also generated randomly permutated gene pairs from those physical interactions by 1,000× (blue dashed lines) and compared them with actual gene
pairs from RN or PPIN (D and E, respectively). We identified co-regulatory interactions from RN or PPIN (F and G, respectively), which indicate gene pairs co-bound
by the same TFs or co-interacting with the same proteins, and compared them with randomly permutated gene pairs; here, we examined only the co-regulated
gene pairs with the highest numbers of co-bound TFs or co-interacting proteins (top 0.1%). In addition, we identified gene pairs that had no co-regulation by TF
binding or protein interactions (H and I, respectively) and compared them with randomly permutated gene pairs. We found that gene pairs from actual physical
interactions (D and E) or co-regulatory interactions (F and G) had higher co-expression than at random; however, gene pairs with no co-regulations (H and I) had
lower co-expression than at random. We examined the co-expression profiles of co-regulated gene pairs according to their co-bound TFs (J) or co-interacting
proteins (K). Here, we found that only co-regulations from RN were associated with increased co-expression, whereas co-regulations from PPIN were not, thus
suggesting that RN has more specificity for increasing co-expression.

L We examined which TFs or proteins were highly co-expressed with their bound target genes or interacting proteins by comparing their gene pairs with the overall
expression by Kolmogorov–Smirnov two-sided test (P < 0.05) and the absolute value of mean co-expression (|r| > 0.1).

M To find the most influential TFs in co-expression, we established a feature matrix between highly co-expressed gene pairs (top 1%) and their co-bound TFs and
fitted it to a Random Forest model; we considered co-bound TFs as predictor variables and co-expression values as response variables. From this model, we
calculated variable importance scores of TFs, and on the basis of these scores, we identified the most influential TFs in co-expression in liver tissue. The top 1%
most influential TFs included YY1, CTCF, RAD21, SREBF1, and SREBF2 and were enriched in liver development, interphase of the mitotic cell cycle, and response to
lipids.

◀
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specifically in the liver. We first identified the group of metabolic

reactions catalyzed by highly co-expressed enzymes in liver tissue

by using the Human Metabolic Reaction database (HMR2;

Mardinoglu et al, 2014a). Taking the maximal co-expression of

enzymes between two metabolic reactions, we established a reac-

tion co-expression matrix among all reactions (Fig 2A). From this

matrix, we identified hundreds of clusters of reactions with highly

co-expressed enzymes by using hierarchical clustering (Dataset

EV7). By comparing their co-expression in liver tissue with the

co-expression in adipose subcutaneous and skeletal muscle

tissues, we identified metabolic reaction clusters that were co-

expressed only in liver tissue (Fig 2B). On the basis of Fisher

Z-transformed differences in tissue co-expression, we identified

ten reaction clusters of the most differential co-expression levels

between liver and muscle tissue (left, Fig 2B) or between liver

and adipose tissue (right, Fig 2B); four reaction clusters over-

lapped in both cases.

Among those clusters, we determined the TFs that were highly

co-bound with enzymes of those reaction clusters by using the

hypergeometric test (P < 0.05) and found that each reaction cluster

was governed by different sets of TFs (Fig 2C and Dataset EV8). For

example, metabolic nuclear receptors, such as the farnesoid X recep-

tor (FXR or NR1H4), pregnane X receptor (PXR or NR1I2), and

RXRB, were highly co-bound with enzymes catalyzing the reaction

in cluster 14, whereas SREBF2, a regulator of lipid homeostasis, was

highly co-bound with enzymes catalyzing reactions in cluster 9.

These findings indicated that enzymes catalyzing reactions in clus-

ters 14 and 9 would share regulatory controls in response to meta-

bolic alterations. Next, we determined which reaction clusters were

enriched in influential TFs that we had identified. Using variable

importance scores of TFs (Dataset EV6), we determined whether

highly co-bound TFs of reaction clusters (Dataset EV8) had variable

importance scores higher than the overall scores (KS one-sided test,

P < 0.25; Fig 2D). We found that reaction clusters including 9, 14,

40, and 58 had significantly enriched TFs with highly variable

importance scores, thus providing strong evidence of liver-specific

regulation from physical and co-expression links. Through meta-

bolic subsystem annotation from HMR2, we observed that reaction

cluster 9 was enriched in mitochondrial transport, pyruvate metabo-

lism, and lipid metabolism, cluster 14 was enriched in fatty acid

synthesis, cluster 40 was enriched in cholesterol metabolism, and

cluster 58 was enriched in amino acid metabolism (hypergeometric

test P < 0.01; Dataset EV9); these results indicated reactions

involved in pathways that are regulated in only the liver and are

primarily associated with lipid metabolism.

Next, we determined which liver reaction clusters were dereg-

ulated in HCC (Dataset EV7), on the basis of co-expression of

those clusters in HCC tumor tissue from The Cancer Genome

Atlas (TCGA; Fig 2E). We first retrieved RNA-seq data for 371

HCC tumors from TCGA and calculated Pearson’s correlation

coefficients between the gene pairs. As we identified liver-specific

co-expression clusters (Fig 2B), we identified 10 reaction clusters

that were deregulated in HCC tumors on the basis of Fisher

Z-transformed differences in co-expression between GTEx liver

data and TCGA HCC data (yellow and purple points in Fig 2E).

Among those deregulated clusters, five reaction clusters were

identified as liver-specific clusters as opposed to adipose and/or

muscle tissue clusters (purple points in Fig 2E): reaction clusters

9, 14, 56, 62, and 65. Of note, reaction clusters 9 and 14 were

identified on the basis of their regulation with strong evidence

regarding co-expression (Fig 2B) and physical (Fig 2D) clues. In

HCC, deregulation of these liver-specific reaction clusters primar-

ily associated with fatty acid synthesis may be linked to HCC

pathogenesis (Fig 2F).

Identification of liver-specific FASN inhibitors for the treatment
of NAFLD and HCC

The expression of fatty acid synthase (FASN), which catalyzes the

last step in de novo lipogenesis (DNL), is significantly upregulated

in NAFLD (Dorn et al, 2010) and HCC (Björnson et al, 2015). We

have recently shown that short-term intervention with an isocal-

oric carbohydrate-restricted diet causes a large decrease in liver

fat accompanied by striking rapid metabolic improvements

(Mardinoglu et al, in preparation). We measured clinical character-

istics, body composition, liver fat, hepatic DNL, and hepatic

▸Figure 2. Highly co-expressed metabolic pathways in liver tissue with their co-regulating TFs.

A Among human metabolic reactions with known enzymes (HMR2), we calculated the co-expression of respective enzymes in liver tissue and established a co-
expression matrix of those metabolic reactions for liver tissue. Performing hierarchical clustering on the matrix, we found 100 reaction clusters of highly co-
expressed enzymes in liver tissue. We compared the mean co-expression profiles of given reaction clusters in liver tissue with the co-expression profiles of clusters
in other tissues, such as skeletal muscle and adipose subcutaneous tissues. On the basis of their differential co-expression levels, we identified liver-specific reaction
clusters (B) and their co-regulating TFs (C and D).

B Among the 100 reaction clusters for liver tissue, we selected ten reaction clusters with the most differential co-expression between liver tissue and skeletal muscle
tissue (left) or between liver tissue and adipose subcutaneous tissue (right), regarding them as liver-specific reaction clusters, colored red and blue, respectively
(purple for those in both cases).

C We examined co-regulating TFs of liver-specific reaction clusters found in (B). Using the hypergeometric test, we identified co-regulating TFs significantly enriched
in given reaction clusters (P < 0.05). Here, we found that reaction cluster 14 was enriched in binding of metabolic nuclear receptors, such as PXR, FXR, and RXR,
whereas reaction cluster 9 was enriched in binding of SREBF2, a regulator of lipid homeostasis.

D We found additional evidence of strong regulation in some liver-specific reaction clusters, on the basis of variable TF importance scores. We compared the variable
importance scores (Dataset EV6) of enriched TFs in given reaction clusters with the overall score by using Kolmogorov–Smirnov tests and selected significant
clusters (P < 0.25) as highly regulated reaction clusters, including reaction clusters 9, 14, 40, and 58.

E, F We identified HCC-deregulated reaction clusters by comparing co-expression levels between liver tissue and HCC tumor tissue similarly to (B). Yellow-colored are
HCC-deregulated liver reaction clusters; green-colored are liver-specific clusters found in (B); and purple-colored are reaction clusters shown in both cases. Here, we
found that reaction clusters 9 and 14 were regulated in a liver-specific manner at the levels of co-expression (B) and co-regulation (D) but were deregulated in HCC
tumor tissues (E). Reaction clusters 9 and 14 included reactions associated with fatty acid synthesis, including glucose uptake, pyruvate synthesis, and citrate
transport (F).
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b-oxidation and found that the diet caused rapid and significant

sustained decreases in liver fat, DNL, plasma triglycerides, and very

low-density lipoprotein triglycerides and a parallel increase in

b-hydroxybutyrate, an indicator of increased hepatic b-oxidation.
Hence, DNL may be targeted for the development of effective treat-

ment strategies for NAFLD and other chronic liver diseases, for

example, HCC.

However, small-molecule FASN inhibitors (e.g., C75, cerulenin)

suffer from pharmacological limitations that prevent their

development as systemic drugs (Pandey et al, 2012). These side

effects can also be explained by the high expression of FASN in

almost all major human tissues (Uhlen et al, 2015, 2016). Thus, we

hypothesized that the identification of liver-specific FASN inhibitors

might allow for the development of effective treatment strategies for

NAFLD and HCC. We identified highly co-expressed genes with

FASN on the basis of CNs generated using GTEx and TCGA data,

which have been used as representative datasets for NAFLD

(Dataset EV10) and HCC (Dataset EV11), respectively. Our CN
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analysis allowed the identification of genes functionally related to

FASN in liver and other major human tissues.

Using DAVID, we found that the top 100 genes co-expressed with

FASN in liver CN (Dataset EV10) were significantly enriched in GO

BP terms, including carboxylic acid, oxoacid, hexose, monosaccha-

ride, acyl-CoA and fatty acid metabolic processes, protein transport,

secretion, regulation of secretion, and negative regulation of cell

communication (Huang et al, 2009). We also compared the top 100

co-expressed genes with FASN in liver CN (Dataset EV10) with the

genes in 45 other tissue CNs (Dataset EV10) and identified pyruvate

kinase liver and red blood cell (PKLR), an enzyme phosphorylating

pyruvate from glycolysis to the TCA (citric acid) cycle and also in

fatty acid synthesis; PKLR is also shown in Fig 2F, as a liver-specific

gene co-expressed with FASN.

In HCC CN, we found that the top 100 genes co-expressed

with FASN (Dataset EV11) were significantly enriched in GO BP

terms, including animal organ development, carboxylic acid,

oxoacid, cholesterol, secondary alcohol, sterol and fatty acid

metabolic processes, along with steroid, sterol, and alcohol

biosynthetic processes. We also found ELOVL6, ACACA, and

SCD, involved in fatty acid biosynthesis, as the top genes co-

expressed with FASN in HCC CN (Dataset EV11). In addition, we

calculated Pearson’s correlations from log-transformed gene

expressions in HCC in order to check for robustly co-expressed

genes (Dataset EV12). We found that 40 of the genes in top-100

co-expressed genes were significantly co-expressed with FASN

before (Dataset EV11) and after log transformation (Dataset

EV12). We compared those robustly co-expressed genes with

FASN in HCC CN (Dataset EV12) with the top 100 co-expressed

genes in CNs of 46 human tissues (Dataset EV10) and found

PKLR, patatin-like phospholipase domain containing 3 (PNPLA3),

and proprotein convertase subtilisin/kexin type 9 (PCSK9),
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Figure 3. FASN CN in HCC tumor tissue.

A We present the 40 genes with the highest co-expression with FASN in HCC tumor tissue based on both log-transformed and raw expression values (Datasets EV11
and EV12). The lengths of edges were inversely proportional to the co-expression of corresponding gene pairs; thus, genes close to FASN were more co-expressed than
others. Node sizes were inversely proportional to adjusted p-values of differential expressions between patients between high (upper quartile) and low (lower
quartile) FASN expressions (Dataset EV13). We colored co-expressed genes on the basis of their liver specificity; red-colored genes were liver tissue-enriched (based on
HPA ver. 16 annotation) and co-expressed with FASN in fewer than three human tissues (Dataset EV10); FASN alone was colored blue.

B We show expressions of PKLR, PNPLA3, and PCSK9 in HCC patients with high and low FASN expressions. We found that liver-specific genes were significantly
(adjusted P < 1.0 × 10�10) upregulated in patients high FASN expression compared to those with low FASN expression (Dataset EV13).
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referred to as liver-specific genes, as the only genes co-expressed

with FASN in less than three human tissues (Fig 3A).

Next, we compared the global gene expression profiling of the

HCC tumors in the upper quartile with highest expression of FASN

(n = 93) with the lower quartile with the lowest expression of FASN

(n = 93) using DESeq package (Anders & Huber, 2010) to analyze

the expression profile of liver-specific genes and their key role in

cancer progression. We found that the expression of PKLR, PNPLA3,

and PCSK9 was significantly increased in patients with high FASN

expression compared to those with low FASN expression (Fig 3B

and Dataset EV13).

We also determined the expression patterns of PKLR, PCSK9 and

PNPLA3 in the Human Protein Atlas, in which the expression of all

human protein coding genes have been measured in 32 major human

tissues, and these genes were identified as liver-specific genes based

on protein and mRNA expression (Kampf et al, 2014; Uhlen et al,

2015). Hence, these liver-specific genes, including PKLR, PNPLA3,

and PCSK9, may potentially be targeted for the treatment of HCC, and

PKLR may potentially be targeted for the treatment of NAFLD. Due to

the direct involvement of PKLR, PNPLA3, and PCSK9 in lipid

metabolism, we focused on the relationship between FASN and these

three liver-specific genes in the rest of our studies.

Validation of physical interactions by using human cancer
cell lines

We hypothesized that inhibition of liver-specific targets that are co-

expressed with FASN would inhibit FASN expression and decrease

fat synthesis. This inhibition would also inhibit tumor growth in the

case of HCC, because fatty acids play key roles in HCC progression

and development. To validate our hypothesis and to demonstrate

the physical interactions between FASN and liver-specific genes, we

first screened the cell lines with the highest PKLR mRNA expression

levels by using the data generated in the Human Protein Atlas

(Uhlen et al, 2015). We identified the K562 leukemia cell line as

having the highest PKLR expression using our recently published

data in Cell Atlas (Thul et al, 2017) and treated the cell line with

C75, a FASN inhibitor, at different concentrations for 24 h. The

purpose of this experiment was to test whether FASN inhibition

may affect the co-expressed genes with FASN (i.e., PKLR).

We found that FASN and PKLR expression levels were signifi-

cantly decreased (Fig 4A). Moreover, we determined that decreased

FASN and PKLR expression resulted in a significant decrease in cell

growth (Fig 4B). Next, we treated the HepG2 human cancer cell line

with C75 and found that FASN expression and the expression levels

of liver-specific genes, including PKLR, PNPLA3, and PCSK9, were

significantly decreased after 24 h (Fig 4C). Similarly, we found that

the growth of HepG2 cells was significantly decreased after treat-

ment of the cells with different concentrations of C75 (Fig 4D).

However, during the treatment of the cells with C75, other meta-

bolic pathways may also have been regulated, and gene expression

may have been affected by nonspecific binding of C75. In this context,

we used siRNA to decrease PKLR expression in the K562 cell line and

observed that FASN expression (Fig 4E) and cell growth (Fig 4F)

were significantly decreased, similarly to our observations after treat-

ing the cells with C75. Moreover, we inhibited PKLR expression in the

HepG2 cell line and found that FASN expression (Fig 4G) and cell

growth (Fig 4H) were significantly decreased, as expected.

Validation of physical interactions in mice and human

To show the functional relationship between FASN and the liver-

specific targets identified here in vivo, we fed mice (C57Bl/6N) a

zero-fat high-sucrose diet (HSD) for 2 weeks that induced the devel-

opment of fatty livers in mice (Fig 5A). We collected liver tissue

samples from the mice fed a HSD and compared the expression pro-

files of the genes in the liver of these mice with those in the liver of

mice fed a chow diet (CD). We observed that liver TG content in the

mice was significantly increased in the HSD fed group compared

with the control (Fig 5A). Next, we determined the expression pro-

files of FASN and our liver-specific gene targets and found that their

expression levels were significantly increased in mice fed the HSD

compared with mice fed the CD in parallel with the increase in liver

fat (Fig 5B).

It has been reported that circulating PCSK9 levels increase with the

severity of hepatic fat accumulation in patients at risk of NASH and

PCSK9 mRNA levels in liver have been linked with steatosis severity

(Ruscica et al, 2016). In this context, we fed the wild-type (WT) and

PCSK9 knockout (KO) mice a CD for 10 weeks. We collected liver

tissue samples from the WT and PCSK9 KO mice and compared the

expression levels of FASN and the other identified gene targets. We

determined the expression levels of these genes in PCSK9 KO mice

and found that they were significantly downregulated (Fig 5C).

Hence, our analysis suggested to targeting of PCSK9 for the develop-

ment of efficient treatment strategies for HCC patients.

Endocannabinoids acting on the hepatic cannabinoid-1 receptor

(CB1R) promote DNL by increasing the expression of genes involved

in lipid metabolism including FASN, SREBF1, and acetyl-CoA

carboxylase-1 (ACACA) (Osei-Hyiaman et al, 2005). CB1R has been

implicated in the pathology of different liver diseases with various

etiologies including NAFLD (Osei-Hyiaman et al, 2008), AFLD

(Jeong et al, 2008), viral hepatitis (Hezode et al, 2005), liver fibrosis

(Teixeira-Clerc et al, 2006), cirrhosis (Giannone et al, 2012), and

liver cancer (Mukhopadhyay et al, 2015). Activation of the endo-

cannabinoid/CB1R system inhibits fatty acid b-oxidation in the liver

(Osei-Hyiaman et al, 2008), interrupts hepatic carbohydrate and

cholesterol metabolism (Jourdan et al, 2012), and contributes to

diet-induced obesity and NAFLD. It has been observed that activa-

tion of hepatic CB1R promoted the initiation and progression of

chemically induced HCC in mice (Mukhopadhyay et al, 2015).

Considering the associations between CB1R, liver fibrosis, and HCC

even in the absence of obesity, we analyzed the expression of Fasn

as well as liver-specific gene targets in animal models of liver

cancer. We measured the expression of the Fasn and the liver-

specific gene targets including Pklr, Pcsk9, and Pnpla3 and found

that their expression was significantly (P < 0.05) increased in HCC

tumor compared to adjacent noncancerous samples obtained from

CB1R
+/+ mice (Fig 5D), with much smaller increases noted in corre-

sponding samples CB1R
�/� mice. When we measured the expression

of these genes in HCC tumor and noncancerous samples obtained

from CB1R
�/� mice, we found that the increase in the expression of

Fasn as well as liver-specific gene targets is attenuated in conjunction

with the decrease in tumor growth CB1R
�/� mice (Fig 5E).

We finally validated our predictions by treating primary human

hepatocytes with C75 and found that the expression levels of FASN

PKLR, PCSK9 and PNPLA3 were significantly decreased (Fig 5F).

Liver diseases connected to FASN can thus be treated (by silencing
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A B

C D

E F

G H

Figure 4. Gene expression and proliferation of K562 and HepG2 cells after interference by C75 and PKLR-specific siRNA.

A FASN and PKLR expression levels in K562 cells after interference by different doses (0, 40, and 60 lM) of C75.
B Cell growth in K562 cells after interference by different doses (0, 20, 40, 60, and 80 lM) of C75.
C FASN, PKLR, PNPLA3, and PCSK9 expression levels in HepG2 cells after interference by different doses (0, 40, and 60 lM) of C75.
D Cell growth in HepG2 cells after interference by different doses (0, 20, 40, 60, and 80 lM) of C75.
E FASN and PKLR expression levels in K562 cells after interference by PKLR-specific siRNA (siRNA 53, siRNA 54).
F Cell growth in K562 cells after interference by PKLR-specific siRNA (siRNA 53, siRNA 54).
G FASN, PKLR, PNPLA3, and PCSK9 expression levels in HepG2 cells after interference by PKLR-specific siRNA (siRNA 53, siRNA 54).
H Cell growth in HepG2 cells after interference by PKLR-specific siRNA (siRNA 53, siRNA 54).

Data information: RNA was isolated for RT–PCR after interference for 24 h; GAPDH was set as the internal reference. Cell counting was performed after interference for
72 h. Data are presented as the means � standard errors of five independent experiments. Comparisons were performed by one-way ANOVA. Samples without any
interference were assigned as controls. * represents a significant difference compared with the value in the control group (P < 0.05).
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PKLR, PCSK9 or PNPLA3) without experiencing the side effects

associated with direct FASN inhibition.

Discussion

Rapid advances in omics technologies along with the adoption of

large shared public databases have allowed for the generation and

aggregation of massive sample datasets that can be used to construct

comprehensive biological networks. These networks may provide a

scaffold for the integration of omics data, thereby revealing the

underlying molecular mechanisms involved in disease appearance

and providing a better understanding of the variations in healthy and

diseased tissue that may be used in the development of effective

treatment strategies. In this study, we generated tissue-specific CNs

for 46 major human tissues and human liver cancer and explored the

tissue-specific functions by using the topologies provided by these

networks. An important aspect of a gene CN is modularity: Genes

that are highly interconnected within the network are usually

involved in the same biological modules or pathways. We compared
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Figure 5. The relationship between the genes in mice and human samples.

A TG content in the liver tissue of mice fed a zero-fat high-sucrose diet (HSD) and chow diet (CD) for 2 weeks (n = 10).
B–F The hepatic mRNA expressions of the Fasn, Pklr, Pcsk9, Pnpla3, and Hmgcr is measured in (B) mice fed a HSD and CD for 2 weeks, (C) Pcsk9 knockout and its

littermates (WT) fed a CD for 10 weeks, (D) wild-type HCC tumor and noncancerous samples, (E) CB1R knockout HCC tumor and noncancerous samples, and (F)
primary human hepatocytes treated with C75 for 4, 6, 8, and 24 h.

Data information: Data are presented as the means � standard errors of independent experiments. Student’s t-test; *P < 0.05, **P <0.01, ***P < 0.001 represents a
significant difference compared with the value in the control group.
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the tissue-specific CNs with the recently generated INs and found

that physical interactions revealed meaningful functional relation-

ships between genes. Next, using CNs, we investigated the emergent

properties and behaviors of the affected genes in response to NAFLD

and HCC at the system level rather than focusing on their individual

functions and clinical utilities. The use of CNs also allowed us to

obtain detailed information about the systems-level properties of

such complex liver diseases.

Correlation analysis is used to identify co-expressions between

different genes based on mRNA expression data. Although

co-expression does not necessarily indicate a relationship among

transcript levels, functional relationships between encoded protein-

coding genes have been shown in our study. Co-expression analysis

is applied to identify important alterations related to lipid metabo-

lism, and promotion of cell survival and cell growth. In order to

avoid possible false positives from co-expressed genes, we applied

strict cutoff of Pearson’s correlation coefficients, but it would be

necessary to develop advanced method to identify co-expressed

genes for smaller number of false positives. Here, we calculated

correlations of gene expressions using normal tissue samples

obtained from general population (i.e., GTEx) without selection

bias, thus expected to identify general functional relationships, not

only associated with a specific clinical indication. However, it is

noteworthy that RNA-seq data generated for large and extensively

phenotyped cohorts would improve our understanding of functional

relationships between genes in a specific clinical indication.

Considering the increased prevalence of NAFLD in the worldwide

as a hidden epidemic (Younossi et al, 2016), it is not implausible to

predict that NAFLD may become responsible for the future clinical

and economical burden of HCC (Younossi et al, 2015). It is also

reported that HCC patients with NAFLD have poor outcome for

disease progression (Younossi et al, 2015). Therefore, it is important

to identify common biological pathways and gene targets as driving

forces in the pathologies for developing effective therapeutic modali-

ties. In this context, system biology may contribute to identification

of novel targets that can be used in the development of efficient

treatment strategies. Our recent analysis described in Mardinoglu

et al (in preparation) and previous analysis (Mardinoglu et al,

2014a) indicated that DNL is a key pathway involved in the progres-

sion of the NAFLD. Previous analysis has also revealed DNL as one

of the most tightly regulated pathways in HCC compared with

noncancerous liver tissue (Björnson et al, 2015). FASN (rate-

limiting enzyme in DNL) is believed to play key roles in NAFLD

progression and development and HCC; therefore, inhibiting FASN

may downregulate the DNL, decrease the accumulated fat within

the cells, and decrease tumor growth. To improve the success rate

of NAFLD and HCC treatment and to improve the survival prognosis

of HCC patients, identification of nontoxic FASN inhibitors is

required. To identify possible inhibitors, correlation analysis was

applied to mRNA expression data derived from liver tissue with

varying degree of fat and tumor samples. Co-expression analysis in

these samples revealed that FASN is co-expressed with a number of

genes that play roles in crucial biological processes involved in fat

accumulation and cancer cell metabolism.

We analyzed the majority of publicly available liver tissue gene

expression data, performed correlation analysis, and ultimately

generated co-expression networks for FASN. We identified a number

of liver-specific gene targets that can be inhibited with chemical

compounds or monoclonal antibodies including PKLR, PCSK9, and

PNPLA3, for effective treatment of chronic liver diseases. We finally

validated our predictions by demonstrating the functional relation-

ships among the expression of these genes and FASN, liver fat, and

cell growth, by using human cancer cell lines, mouse liver samples

(four different mouse studies), and human hepatocytes.

Wang et al (2002) have provided evidence that variants in the

PKLR gene are associated with an increased risk of T2D, which has

a pathogenesis similar to that of NAFLD. Ruscica et al (2016) have

associated circulating PCSK9 levels with accumulated liver fat. In

201 consecutive patients biopsied for suspected NASH, liver damage

has been quantified by NAFLD activity score, circulating PCSK9 by

ELISA, and hepatic mRNA by qRT–PCR in 76 of the patients. Circu-

lating PCSK9 has been found to be significantly associated with

hepatic steatosis grade, necroinflammation, ballooning, and fibrosis

stage (Ruscica et al, 2016). Circulating PCSK9 has also been found

to be significantly associated with hepatic expression of SREBP-1c

and FASN, whereas PCSK9 mRNA levels have been found to be

significantly correlated with steatosis severity and hepatic APOB,

SREBP-1c, and FASN expression (Ruscica et al, 2016). Aragones

et al (2016) have evaluated the association between liver PNPLA3

expression, key genes in lipid metabolism, and the presence of

NAFLD in morbidly obese women and have reported that PNPLA3

expression was related to HS in these subjects. Their analysis indi-

cates that PNPLA3 may be related to lipid accumulation in the liver,

mainly in the development and progression of simple steatosis.

PNPLA3 was also emphasized as a genetic determinant of risk factor

for the severity of NAFLD (Salameh et al, 2016). Furthermore,

higher prevalence for HCC development and poorer prognosis was

reported to be associated with PNPLA3 polymorphism in viral and

nonviral chronic liver diseases (Khlaiphuengsin et al, 2015). A

potential unifying factor upstream of these genes is the cannabi-

noid-1 receptor, stimulation of which was found to upregulate

several of the above-listed target proteins, including Fasn, Pklr,

Pnpla3, and Pcsk9 in mouse models of obesity/metabolic syndrome

and HCC, as documented and detailed.

Moreover, we found a number of genes, for example, ACACA,

were significantly co-expressed with FASN. It has been suggested

that inhibition of ACACA may be useful in treating a variety of

metabolic disorders, including metabolic syndrome, type 2 diabetes

mellitus, and fatty liver disease (Harriman et al, 2016). However,

our analysis indicated that potential inhibition of ACACA may have

severe side effects in other human tissues as the inhibitors of FASN.

In conclusion, we demonstrated a strategy whereby tissue-

specific CNs can be used to identify deregulations of biological func-

tions in response to disease and reveal the effects on relevant

expression of genes in liver. Eventually, we identified liver-specific

drug targets that can be used in effective treatment of liver diseases

including NAFLD and HCC.

Materials and Methods

Tissue-specific CNs

RNA-seq data from human tissues were downloaded from the GTEx

database, and their reads per kilobase per million (RPKM) values

were transformed into transcripts per kilobase per million (TPM)
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values. From each RNA-seq dataset, we excluded one-third of the

genes with the lowest expression levels from calculating Pearson’s

correlation coefficients of gene expression and combined the highest

correlated gene pairs into a respective tissue CN.

On the basis of the network connectivity of each tissue CN, we

clustered co-expressed genes by using the modularity-based random

walk method from the cluster walktrap function of the igraph pack-

age in R (Pons & Latapy, 2005). Among those gene groups, we

selected the half of the highest connected groups as key co-expres-

sion clusters, on the basis of their clustering coefficients. We

produced a liver CN with those co-expression clusters as nodes and

their significant connections by edges (Fig 1B). For example, the

edges of two co-expression clusters, A and B, were identified if their

observed connections (OAB) were twice as high as the expected

connections (EAB). Expected connections were defined by the

normalized sum of multiplications of the degree of connectivity of

genes in two clusters (i.e., EAB = Σ ka × kb/2N; a 2 A, b 2, N = all

edges in the network). Next, we collected genes belonging to key

co-expression clusters in each tissue and tested whether they were

enriched in biological process GO terms in MSigDB (Subramanian

et al, 2005) by using hypergeometric tests.

Comparing physical networks with CNs

We used RNs and PPINs of liver, skeletal muscle, and adipose tissues

from our prior published data (Lee et al, 2016) as sources of physical

interaction network data. We identified co-regulated gene pairs from

the physical interactions by selecting genes sharing TF binding (from

RNs) or genes sharing protein interactions (from PPINs); on the basis

of the number of co-bound TFs or co-interacting proteins, called co-

regulators, we selected the highest co-regulated gene pairs (i.e., gene

pairs with the highest numbers of co-bound TFs or co-interacting

proteins; top 0.1%) and gene pairs with no co-regulation. Using

Pearson’s correlation coefficients of the gene expression level of each

tissue from GTEx, we calculated the mean Pearson’s correlation coef-

ficients of gene pairs of interest, such as physically linked gene pairs

or co-regulated gene pairs. The edges of physical networks or their

co-regulatory networks were randomly permutated among genes in

respective actual networks by 1,000×, and their mean correlation

coefficients were compared with those from original networks. We

also identified TFs or proteins highly co-expressed with respective

bound genes by comparing the co-expression levels of given gene

pairs to overall levels (Datasets EV4 and EV5). We selected TFs or

proteins if co-expression levels of given linked gene pairs were

higher than the overall levels by using Kolmogorov–Smirnov (KS)

tests (P < 0.05) and absolute values of mean Pearson’s correlation

coefficients (> 0.1). Finally, we examined mean co-expression levels

of co-regulated gene pairs according to their number of co-regulators.

Increasing the cutoff number of co-regulators, we selected co-regu-

lated gene pairs exceeding the cutoff and calculated mean Pearson’s

correlation coefficients of the corresponding gene pairs.

Finding the most influential TFs for co-expression on the basis of
variable importance score

For liver tissue, we constructed a feature matrix between the most

highly co-expressed gene pairs (top 1%) and their co-bound TFs. In

this matrix, we assigned a value of 1 for given co-expressed gene

pairs that were co-bound by TFs and zero otherwise. For each co-

expressed gene pair, we considered co-bound TFs as predictor vari-

ables and the co-expression value as the response variable and fitted

them to the Random Forest model. From the model, we calculated

variable importance scores of all TFs and used them as a metric to

show the most influential TFs for co-expression.

Identifying liver-specific reaction clusters on the basis of tissue
co-expression of enzymes

From the HMR2 database, we collected human metabolic reactions

with known enzymes. Between the two reactions, we calculated

Pearson’s correlation coefficients of enzyme gene expression in liver

tissue, and if there were multiple enzymes for a single reaction, we

took the maximum value among possible co-expressions. On the

basis of co-expression values among metabolic reactions, we

performed hierarchical clustering and classified reactions into 100

clusters for liver tissue. To compare the co-expression values of

metabolic reactions in different tissues and tumor tissue, we calcu-

lated the co-expression values in not only liver tissue but also

adipose subcutaneous, skeletal muscle, and HCC tumor tissues.

Subsequently, we identified the differences in mean co-expression

values of given reaction clusters between liver tissue and other

tissues after transforming co-expression values into Fisher Z-values.

On the basis of differential Fisher Z-values, we took the top 1% of

reaction clusters of the highest in each comparison (adipose or

muscle tissues) and identified them as liver-specific reaction clus-

ters. Likewise, we identified an HCC-deregulated reaction cluster on

the basis of differential Fisher Z-values (top 1%).

Finally, using liver RN, we examined TFs highly bound at genes

encoding enzymes in given liver reaction clusters and identified TFs

whose binding was significantly enriched in given clusters by hyper-

geometric tests. From those enriched TFs, we selected reaction clus-

ters in which the enriched TFs had higher variable importance

scores than overall scores according to KS tests (P < 0.25) and

denoted them as highly regulated reaction clusters in liver tissue.

FASN co-expressed genes in human tissues and HCC tumors

In each normal tissue (GTEx) or HCC tumor tissue (TCGA), we

calculated Pearson’s correlation coefficients of gene expression

between FASN and other protein-coding genes expressing more than

1 TPM and selected the top 100 most correlated genes (Datasets

EV10 and EV11). In addition, we calculated correlations of log-trans-

formed expression values in HCC tumors (Dataset EV12). To select

tissue-specific genes, we examined the top 100 most correlated

genes to FASN in HCC tumor tissue by the RNA tissue category in

the Human Protein Atlas (ver. 16); in particular, genes “tissue-

enhanced” or “tissue-enriched” in liver tissue were selected (Fig 3).

We also examined those genes with tissues that were most corre-

lated (Dataset EV10) and selected genes that were present in fewer

than three human tissues.

Differential expression analysis of HCC patients stratified based
on FASN expressions

Using raw count data from HCC patients, we stratified patients into

two groups: patients having FASN expression above the upper
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quartile and patients having FASN expression under the lower quar-

tile. Between the two groups, we examined differentially expressed

genes by negative binomial test using DESeq (Anders & Huber,

2010; Dataset EV13).

Cell line experiments

For subsequent experiments, we selected K562 and HepG2, human

immortalized myelogenous leukemia and hepatic cell lines, res-

pectively. Both cell lines were cultured in RPMI-1640 medium

(R2405; Sigma-Aldrich) supplemented with 10% fetal bovine serum

(FBS, F2442; Sigma-Aldrich) and incubated in 5% CO2 humidity at

37°C.

To confirm the speculated CN, we chose chemical inhibitors and

RNA interference (RNAi) assays to interfere with the immortalized

cell lines (including K562 and HepG2) and observed the subsequent

candidate gene expression and cell growth patterns. More specifi-

cally, the experimental protocol was as follows: (i) C75 (C5490;

Sigma-Aldrich), as a well-known fatty acid synthase [FAS] inhibitor,

was added to cells at 80% confluence with a final concentration of

20, 40, 60, or 80 lM (taking cells without C75 interference as the

control); and (ii) cells at 80% confluence were separately trans-

fected with three pairs of Silencer� pre-designed PKLR-targeted

siRNAs (clone ID: 53, 54; Life Technologies; Dataset EV14) at

15 nM by using Lipofectamine� RNAiMAX (13778075; Life Tech-

nologies). Cells incubated in medium with nontarget negative

control siRNA at 15 nM (4390843; Life Technologies) were assigned

as the control.

Total RNA was isolated with TRIzol reagent (15596026, Thermo

Fisher Scientific) after treatment with C75 or siRNA for 24 h. The

expression profiles of key genes (FASN, PKLR in K562/HepG2, and

PNPLA3, PCSK9 only in HepG2 cells) in the co-expression network

were measured and analyzed via quantitative real-time PCR with

iTaq Universal SYBR Green One-Step Kit (1725151; Bio-Rad), using

anchored oligo (dT) primer based on CFX96TM detection system

(Bio-Rad). GAPDH was set as the internal control for normalization,

and the primer sequences are listed in Dataset EV15. Variation in

cell proliferation was detected with a Cell Counting Kit-8 (CCK-8,

CK04; Dojindo) after interference by C75/siRNA for 72 h. All experi-

ments were performed strictly according to the manufacturer’s

instructions and were repeated at least in triplicate for three samples

and yielded similar results.

Mouse experiments

Twenty male C57BL/6N mice were fed a standard mouse chow diet

(Purina 7012; Harlan Teklad) and housed under a 12-h light–dark

cycle. From 8 weeks of age, the mice were fed either a HSD diet

(TD.88137; Harlan Laboratories, WI, USA) or CD for 2 weeks. The

mice were housed at the University of Gothenburg animal facility

(Lab of Exp Biomed) and supervised by university veterinarians and

professional staff. The health status of our mice is constantly moni-

tored according to the rules established by the Federation of Euro-

pean Laboratory Animal Science Associations. The experiments

were approved by the Gothenburg Ethical Committee on Animal

Experiments.

In liver cancer mouse model, we injected 25 mg/kg of DEN

(Sigma) to CB1R
+/+ and CB1R

�/� littermates in C57BL/6J

background after 2 weeks of birth, verified the presence of the HCC

tumor, and measured its size with magnetic resonance imaging

(MRI) 8 months after the DEN administration (Mukhopadhyay et al,

2015). It has been observed that activation of hepatic CB1R promoted

the initiation and progression of chemically induced HCC in mice

(Mukhopadhyay et al, 2015). Total RNA was isolated from tumor

area and noncancerous area of liver tissue samples obtained from six

DEN-treated (HCC) CB1R
+/+ and six CB1R

�/� mice (Mukhopadhyay

et al, 2015). rRNA-depleted RNA, 100 ng for each sample, was

treated with RNase III to generate 100- to 200-nt fragments, which

were pooled and processed for RNA sequencing. All data were

normalized based on housekeeping genes used by CLC Genomics

Workbench program (version 5.1; CLC Bio, Boston, USA). These

absolute numbers were extracted from the reads, and the data were

adjusted to non-HCC biopsies for each gene.

Human hepatocytes

Human primary hepatocytes were purchased from Biopredic Inter-

national. Twenty-four hours after arrival (48 h after isolation),

human hepatocytes were treated with 40 lg/ml of C75 or dimethyl

sulfoxide (DMSO) for 4, 6, 8, or 24 h.

mRNA expression in mouse liver and human primary hepatocytes

Total RNA was isolated from human hepatocytes and snap-frozen

mouse liver with an RNeasy Mini Kit (Qiagen). cDNA was synthe-

sized with a high-capacity cDNA Reverse Transcription Kit (Applied

Biosystems) and random primers. The mRNA expression levels of

genes of interest were analyzed via TaqMan real-time PCR in a

ViiATM7 System (Applied Biosystems). The TaqMan Gene Expression

assays used were Mm01263610_m1 (for mouse Pcsk9),

Mm00662319_m1 (mouse Fasn), Mm00443090_m1 (mouse Pklr),

Mm00504420_m1 (mouse Pnpla3), Mm01282499_m1 (mouse

Hmgcr), Hs00545399_m1 (human PCSK9), Hs01005622_m1 (human

FASN), Hs00176075_m1 (human PKLR), Hs00228747_m1 (human

PNPLA3), and Hs00168352_m1 (human HMGCR) (all from

Applied Biosystems). Hprt (mouse Mm03024075_m1) and GADPH

(human Hs02758991_g1) (Applied Biosystems) were used as internal

controls.

Data availability

The networks used in this study are provided on an interactive web

page at: http://inetmodels.com. Co-expression networks have also

been uploaded to the NDEx (ndexbio.org), and network IDs are

provided in Dataset EV1.

Expanded View for this article is available online.
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