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Abstract

proliferation in RA.

Background: Hypoxia plays an important role in the proliferation of rheumatoid arthritis fibroblast-like synoviocytes
(RA-FLS), leading to pathology of RA. This study was conducted to evaluate hypoxia-induced microRNAs
(hypoxamiR) in RA-FLS and its role in the function of RA-FLS.

Methods: RA-FLS were cultured under normoxia (21% O,) or hypoxia (3% O,) condition, followed by a microRNA
(miRNA) array analysis. The upregulation of miR-191 by hypoxia was confirmed in RA-FLS and FLS from
osteoarthritis (OA) patients by quantitative real-time polymerase chain reaction (RT-PCR). Transfection of miR-191
mimic and inhibitor was used to investigate the function of miR-191 in RA-FLS. The functional targets of miR-191
were predicted by bioinfomatics and then validated by reporter gene assay.

Results: A subset of miRNAs was identified to be induced by hypoxia including miR-191. The upregulation of

miR-191 was found to be specific in hypoxic RA-FLS, compared to hypoxic OA-FLS. We observed that miR-191 in RA-
FLS increased cellular proliferation via promoting G,/S transition of the cell cycle and suppressed cell apoptosis
induced by cell starvation. Bioinformatical analysis and experimental assays identified CCAAT/enhancer binding protein
B (C/EBPP) as a target gene of miR-191 in RA-FLS. Enforced expression of C/EBP( rescued the cellular phenotypes
induced by miR-191. In addition, an inverse correlation between the C/EBP3 level and hypoxia stimulation was found
in RA-FLS, and overexpression of C/EBPB could partly rescue the hypoxia-induced cell proliferation.

Conclusion: We demonstrated the miR-191-C/EBP( signaling pathway mediating the hypoxia-induced cell
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Background

Rheumatoid arthritis (RA) is a systemic autoimmune
disease, which is characterized by chronic joint inflam-
mation and synovial hyperplasia. It is estimated that
there are approximately 1% of population being affected
by this disease worldwide [1]. Rheumatoid arthritis
fibroblast-like synoviocytes (FLS), as the main stromal
cell population in the joint synovium, proliferate and
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invade to destroy the adjacent cartilage [2, 3]. The mech-
anisms regulating the aberrant growth of RA-FLS re-
main unclear, although quite a few studies have been
reported from literature indicating the hypoxia environ-
ment in the joint may be the main reason causing in-
flammation and hyperplasia in RA [4-6].

In comparison with RA, osteoarthritis (OA) is a de-
generative condition that is the result of increased wear
and tear on joints [7, 8]. Since the inflammatory symp-
toms, joint damage and fibroblast-like synoviocytes pro-
liferation are all more severe in RA than that in OA, OA
has been frequently used as control to study the patho-
biology of RA.
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Reduced oxygen and induced inflammation in the
synovium of arthritis have been well demonstrated as
the key role in the progression of RA [9]. In the inflamed
joint, the level of hypoxia is inversely correlated with the
levels of vascularity, oxidative damage, and synovial in-
flammation [10, 11]. Hypoxia induces angiogenesis and
promotes cell growth by regulating the expression of the
key genes, such as hypoxia-inducible factors (HIFs) and
vascular endothelial growth factor (VEGF) [12]. Our pre-
vious study also demonstrated that hypoxia promoted
cellular proliferation of RA-FLS and angiogenesis in RA
though upregulating glucose-6-phosphate isomerase
(G6PI) [13].

In addition, microRNAs (miRNAs) have also been found
to express abnormally under hypoxia condition, which is
closely related with cell types [14—16]. miRNAs are a class
of small non-coding RNA molecules regulating the stabil-
ity or translational efficiency of targeted messenger RNAs,
participating in a wide range of biological processes such
as cellular proliferation, differentiation, and apoptosis [17].
miR-155 and miR-146a are the most well-studied miRNAs
in RA, significantly upregulated in RA-FLS, and take roles
in RA progression and development [18, 19]. However,
the miRNA expression profile and the potential function
of hypoxia-regulated miRNAs in RA-FLS have not been
systematically studied yet.

In this study, we performed a miRNA screen analysis
in the hypoxia-exposed RA-FLS and identified miR-191
induced by hypoxia condition. Overexpression of
miR-191 promoted cellular proliferation and protected
RA-FLS from apoptosis. CCAAT/enhancer binding pro-
tein p (C/EBPP) was demonstrated to be a target gene of
miR-191, mediating the regulatory function of miR-191
in RA-FLS.

Methods

Specimen collection and HE staining

Synovial tissues from RA (n =5) and OA (n =5) patients
were fixed in 10% neutral buffered formalin and embed-
ded in paraffin and then cut into 5-um-thick sections,
and stained with hematoxylin and eosin (HE), following
the manufacturer’s introduction. All patients fulfilled the
diagnosis of the American College of Rheumatology
(ACR) for RA and OA. Informed consent was obtained
from each of the enrolled patients, and the study proto-
col was approved by the Ethics Committee of Shanghai
East Hospital (2016-df-011). Prior to tissue collection,
signed informed consent was obtained from each pa-
tient. This study was conducted in accordance with the
guidelines of the Declaration of Helsinki.

Isolation and culture of fibroblast-like synoviocytes
Synovial tissues from RA or OA patients were immedi-
ately placed in RPMI 1640 medium (Life Technologies,

Page 2 of 10

Carlsbad, CA, USA) and processed within 4 h. The tis-
sues were minced and evenly spread on the bottom of
cell culture flasks in RPMI 1640 medium at 37 °C for 6
h. Next, the tissues were incubated with RPMI 1640
medium supplemented with 10% fetal bovine serum
(FBS) and penicillin (100 U/ml) and streptomycin
(100 pg/ml) at 37°C in a humidified 5% CO, atmos-
phere. Non-adherent tissue pieces were carefully re-
moved by replacing the medium every 3 to 5 days and
passaged when the primary synoviocytes reached 70—
80% confluence. FLS grown over four to eight passages
and were used for further analysis. FLS were cultured
under normoxia condition and/or 3% O, hypoxia condi-
tion in BioSpherix oxygen control system.

RNA quantification and real-time PCR analysis

Total RNA of FLS was extracted using TRIzol™ (Invitro-
gen, Carlsbad, CA, USA), after culture under the condi-
tions of normoxia or 3% O, hypoxia for 24 h. An M&G
miRNA Reverse Transcription Kit (miRGenes, Shanghai,
China) was used to prepare the first strand cDNA of
miRNAs following the manufacturer’s instruction. One
hundred nanograms of purified total RNA from each
sample was used for miRNA measurement. After reverse
transcription, the cDNA was diluted 1:1,000 for quanti-
tative real-time polymerase chain reaction (RT-PCR).
The miRNA profiling analysis was performed with the
quantitative RT-PCR-based miRNA panel which contains
365 miRNAs and 2 reference small RNAs (5s ribosomal
RNA and u6) on an ABI PRISM 7900 (Applied Biosys-
tems, Foster City, CA, USA). Forward primer sequences
for RT-PCR of miRNAs were miR-191: 5° gaatcccaaaag-
cagctg 3'; miR-297: 5 atgtgtgcatgtgcatg 3'; miR-499b-3p:
5" aacaucacugcaagucu 3’; miR-770: 5’ uccaguaccacgugu-
cag 3'; miR-936: 5’ acaguagagggaggaaucg 3'. For C/EBPP
mRNA detection, total RNA was reverse transcribed to
complementary DNA (TaKaRa, Dalian, China) according
to the manufacturer’s instructions. Gene expression was
analyzed by relative quantification using Premix Ex Taq
SYBR Green PCR (TaKaRa) on an ABI 7500 Real Time
PCR System (Applied Biosystems). The sequences of
primers were used as follows: C/EBPp, forward: 5'-TTCA
AGCAGCTGCCCGAGCC-3/, reverse: 5'-GCCAAGTGC
CCCAGTGCCAA-3’; and GAPDH, forward 5- TGAC
TTCAACAGCGACACCCA-3/, reverse 5-CACC
CTGTTGCTGTAGCCAAA-3". GAPDH served as the in-
ternal control. All RT-PCR reactions were analyzed using
Relative Expression Software Tool (REST®) 2009 based on
2744C method.

Transfection of siRNA and plasmid

Mimic-miR-191 and its control (control-mimic), and
antisense oligo nucleotide targeting miR-191 (inhibitor-
miR-191) and its control (inhibitor-control) were



Yu et al. Arthritis Research & Therapy (2019) 21:78

synthesized by ribobio Co. (Guangzhou, China). The tar-
get sequences for C/EBPP siRNA (si-C/EBPp)-1
(5'-CCG TGG TGT TAT TTA AAG A-3’), si-C/EBPf-2
(5'-CCC TGA GTA ATC GCT TAA A-3’), and
si-negative control (si-NC) (5'-TTC TCC GAA CGT
GTC ACG T-3') were synthesized by Genepharm
(Shanghai, China). The plasmids of pEnter and
pEnter-C/EBPB were synthesized by Weizhen (Shan-
dong, china). The transfection of siRNAs and plasmids
was performed using Lipofectamine® 2000 (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s proto-
col. Final concentration of 30 nM of small RNA oligos
was used for all in vitro assays.

Cell proliferation assay

RA-FLS that had been transiently transfected with small
RNA oligos (30 nM) or plasmids (2 pg/ml) for 24 h were
seeded on 4 x 10 ® cells/well in 96-well plates and incu-
bated under conditions of normoxia or 3% O, of hypoxia.
At the end of each time period (as indicated in the figures
or figure legends) from transfected cells being seeded, cell
proliferation was determined by using the Cell Counting
Kit-8 (CCK8) (Donjindo, Japan) according to the manu-
facturer’s instructions. Briefly, 20 ul CCK8 was added to
each well containing 200 pul medium and then incubated
at 37 °C for 2—4 h. The absorbance was read at 450 nm on
a spectrophotometric plate reader (Bio-Rad, Hercules,
CA, USA). Each assay was performed in quintuplicate,
and all tests were repeated three times.

Cell cycle and cell apoptosis analysis

RA-FLS were transfected with the indicated oligos or
plasmids in six-well plates. For cell cycle analysis, the
cells were collected after 48 h of transfection. The cells
were washed with PBS and then fixed with 70% ice-cold
ethanol overnight at —20°C, washed with PBS, resus-
pended with 400l PBS, and then incubated with
100 pg/ml RNaseA (Kaiji, China) for 30 min at 37 °C and
with 50 ug/ml propidium iodide (PI) (Kaiji, China) for
another 30 min at 4 °C. After incubation, the cells were
subjected to DNA content analysis using BD FACS Cali-
bur cytometry and the results were analyzed with the
ModFitLT software. For apoptosis analysis, the complete
medium was changed to RPMI 1640 medium supple-
mented with 1% FBS to induce cell apoptosis, after
transfection for 24 h. Cell apoptosis was evaluated by
Annexin V-FITC and PI (BD Biosciences, 556547) stain-
ing according to the manufacturer’s protocol, followed
by flow cytometry analysis. Briefly, cells were collected
and washed with ice-cold PBS and resuspended in 100 pl
binding buffer. Then, 5 pl of Annexin V-FITC and 5l
of PI were added to the cells, incubated for 15 min at
room temperature in the dark, and an additional 400 pl
of binding buffer was added to the reaction prior to
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analysis. The results were analyzed with the Summit
v4.3 software.

Western blot analysis

Cells were lysed in lysis buffer and centrifuged at 12,000
rpm for 10 min. The protein samples in the supernatant
were immediately collected, and the concentration was
measured using the Bradford method (Bio-Rad,
Hercules, CA, USA). Equal amounts of protein were
separated by 10% SDS-PAGE and then transferred onto
PVDF (polyvinylidene fluoride) membranes (Amersham
Pharmacia Biotech, Uppsala, Sweden). After blocking
with 5% nonfat dry milk in PBS containing 0.1%
Tween-20 for 2 h at room temperature, the membranes
were incubated at 4 °C overnight with primary antibodies
(1:1000) against cyclinD1 (#2978, cell signaling), CEBP/
B(#3087, cell signaling), and P-actin (sc-47778, Santa
Cruz) and subsequently incubated with secondary horse-
radish peroxidase antibody. The immunoreactive proteins
were visualized using an enhanced chemiluminescent re-
agent (Millipore Corporation, USA).

Transwell migration assay

RA-FLS that had been transiently transfected with
inhibitor-control or inhibitor-miR-191 were plated in
transwell invasion chambers (Corning) on membranes
precoated with Matrigel (Corning) containing RPMI
1640 medium supplemented with 1% FBS, and RPMI
1640 medium supplemented with 5% FBS in the lower
wells. After a 24-h incubation, Matrigel were removed
with a cotton swab, and the cells were fixed and stained
with 0.1% crystal violet solution and assessed by two ob-
servers in a blinded manner.

Luciferase reporter assay

293T cells were seeded on 24-well plates at a density of
1 x 10° cells. Then, cells were transfected with 1.0 ug WT
or pMIR-REPORT plasmid (Obio, Shanghai, china) and
100 ng Renilla plasmid, together with mimic-miR-191/
mimic-ctrl (30 nM). After a 24-h transfection, reporter
assays were performed using the Dual Luciferase kit
(Promega, Madison, W1, USA) by AutoLumat.

Statistical analysis

SPSS 20.0 program package (SPSS Inc., Chicago, IL,
USA) was used for all statistical analyses. Data are pre-
sented as mean + SEMs. The standard two-tailed Stu-
dent’s ¢ test was used for analysis, in which p < 0.05 was
considered statistically significant.

Results

miRNA expression screening in hypoxic RA-FLS

The synovial tissue samples from patients with RA (1 =5)
and OA (n=5) were collected, paraffin-embedded, and
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sectioned, followed by HE staining analysis. As shown in
Fig. 1a, RA patients showed inflammation in the lining of
the joint and synovial hyperplasia, compared to OA pa-
tients. In order to determine the potential role of
hypoxia-induced microRNAs (hypoxamiR) in RA-FLS,
primary RA-FLS from three patients were isolated and
cultured under normal or 3% O, of hypoxia for 24 h.
Quantitative RT-PCR-based miRNA profiling analysis
were performed and compared between normal and hyp-
oxia conditions. Figure 1b showed that, out of a total of
365 miRNAs, 5 showed significant upregulation more
than 1.5 fold change in all 3 RA-FLS cell lines by hypoxic
culture including miR-191, miR-297, miR-499b-3p,
miR-770, and miR-936, while only 2 of the 365 miRNAs
showed downregulation in 2 of the 3 samples including
miR-29b and miR-320d. Furthermore, the expression of
the five upregulated miRNAs was compared in three
RA-FLS and three OA-FLS cell lines cultured under nor-
mal or hypoxia condition. The expression of miR-191 and
miR-770 was found to be specifically upregulated in
RA-FLS, whereas other three miRNAs (miR-297,
miR-499b-3p, and miR-936) showed upregulation by hyp-
oxia treatment in both RA-FLS and OA-FLS (Fig. 1c).

miR-191 promoted the cellular proliferation of RA-FLS

MiR-191 was suggested to be an oncomiR by literature
to be aberrantly expressed in various human cancers in-
cluding breast cancer [20], hepaotocellular carcinoma
[21], and colon cancer [22]. In order to elucidate the
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function of hypoxia-induced miR-191 in cellular prolifer-
ation in RA-FLS, mimic or inhibitor oligo of miR-191
was applied. As shown in Fig. 2a, transfection of
mimic-miR-191 into RA-FLS increased the level of
miR-191 around 100 times, whereas inhibitor-miR-191
decreased the miR-191 levels in RA-FLS efficiently. A
CCK8 assay demonstrated the increased proliferation
after mimic-miR-191 transfection. On the contrary,
miR-191 inhibition decreased cell viability significantly
(Fig. 2b). Western blot analysis demonstrated that the
protein level of cyclinD1 increased after transfection
with mimic-miR-191 (Fig. 2c) and significantly de-
creased in miR-191-downregulated RA-FLS (Fig. 2d).
Cell cycle analysis indicated the promotion of G;/S
transition in RA-FLS by miR-191 overexpression
(Fig. 2e) and an attenuation of the G;/S transition by
miR-191 inhibition (Fig. 2f).

miR-191 inhibited starvation-induced apoptosis in RA-FLS
To determine the role of miR-191 in cell apoptosis, the
Annexin V/PI analysis was applied to detect the
apoptotic cells after transfection of mimic-miR-191
(Fig. 3a), followed by a quantitative analysis (Fig. 3b).
Similar assays were performed after transfection of
inhibitor-miR-191 (Fig. 3¢, d). Quantitative analysis indi-
cated significant decrease in the proportion of apoptotic
cells from 6.37% to 3.45% by overexpression of miR-191
(Fig. 3b) and increase of apoptotic cells from 8.42% to
14.2% by knockdown of miR-191 (Fig. 3d).
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Fig. 1 Upregulation of miR-191 in hypoxic RA-FLS. a HE staining of synovial tissue samples from RA and OA patients. b miRNA profiling analysis
for RA-FLS, cultured under normal or hypoxia conditions for 24 h, identified a subset of dysregulated miRNAs. Data was represented as fold
change of miRNAs expression in hypoxic RA-FLS, compared to normoxic RA-FLS. ¢ Further validation of the miR-191, miR-297, miR-499b-3p, miR-
770, and miR-936 expression in three RA-FLS cells and three OA-FLS cultured under hypoxia condition for 24 h, compared to normoxia condition
by quantitative RT-PCR. Data represent results from three independent experiments, shown as means + SEMs (n =3, *p < 0.05 by t test)
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Fig. 2 miR-191 promoted the cellular proliferation of RA-FLS. a Confirmation of the level of miR-191 in RA-FLS after transfected with mimic-miR-
191 or inhibitor-miR-191 for 24 h by quantitative RT-PCR. b RA-FLS transfected with mimic-miR-191 and inhibitor miR-191 were plated at 4 x 10°
cells/well in 96-well plates; the cell viability of RA-FLS was determined by CCK8 at 0, 24, 48, and 72 h. c Increased expression of cyclinD1 in RA-FLS
transfected with mimic-miR-191 for 48 h. Quantitative analysis on three repeats were presented. d Decreased expression of cyclinD1 at the
protein level in RA-FLS transfected with inhibitor-miR-191 for 48 h. Quantitative analysis on three repeats was presented. e The cell cycle analysis
by flow cytometry indicating the increased G;/S transition of RA-FLS by mimic-miR-191 transfection for 48 h. f The cell cycle analysis by flow
cytometry indicating the decreased G,/S transition of RA-FLS by inhibitor-miR-191 after transfection for 48 h. All experiments were repeated three
times. Data were presented as mean + SEM (n =3, **p < 0.001, *p < 0.05 by t test)

Transwell assays were further applied to determine the
cell migration/invasion regulation by miR-191 using
RA-FLS cells with or without knockdown of miR-191.
As shown in Fig. 3e, knockdown of miR-191 significantly
suppressed the cell invasion ability of RA-FLS.

C/EBP is a target gene of miR-191 in RA-FLS

In order to determine the mechanism through which
miR-191 regulate the proliferation of RA-FLS, we
used three publicly available databases (TargetScan,
picTar, and miRanda) to search for predicted direct
target genes of miR-191. We found a binding site of
miR-191 in the 3'-UTR of C/EBPp mRNA. C/EBPJ is
a member of the C/EBP family of transcription factors
and has been reported to regulate cell proliferation,
differentiation, and cell apoptosis in a variety of cells
[23-25]. Quantitative RT-PCR and western blot dem-
onstrated that overexpression of miR-191 could

remarkably reduce the expression of C/EBPp at both
mRNA level (Fig. 4a) and protein level (Fig. 4b) in
RA-FLS. The pMIR-REPORT luciferase vector was
established using the wild type 3'-UTR of C/EBPp
and a point mutation sequence to the miR-191 bind-
ing site (Fig. 4c). As shown in Fig. 4d, miR-191 could
directly suppress WT 3'-UTR of C/EBPJ, but not
mutant vector.

C/EBP( mediated the miR-191 regulation of cell
proliferation in RA-FLS

In order to determine the function of C/EBPp as the tar-
get gene of miR-191 in RA-FLS, siRNAs targeting C/
EBPP (si-C/EBPB-1 and si-C/EBPp-2) were applied to
knockdown the expression of C/EBPB. C/EBPB was
knocked down by over 60% by si-C/EBPB-2 as shown in
Fig. 5a. Knocking down of C/EBPp significantly pro-
moted the cell viability (Fig. 5b) and increased the cell
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Fig. 3 miR-191 inhibited apoptosis in RA-FLS. a RA-FLS were starved with 1% fetal serum for 24 h with or without overexpression of miR-191,
followed by FACS analysis. b Bar graph showing the decreased apoptotic cell percentage after transfection with mimc-miR-191. ¢ RA-FLS were
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cycle G;/S transition in RA-FLS (Fig. 5c). pEnter-C/
EBPB, a vector overexpressing C/EBPp (Fig. 5d), was ap-
plied to perform rescue assay. As shown in Fig. 5e,
mimic-miR-191 increased the cell proliferation of
RA-FLS, which was reversed by reintroduction back of
C/EBP, indicating the regulation of cell proliferation by
miR-191 in RA-FLS is dependent on the target gene C/
EBPB.

C/EBPB involvement in the regulation of hypoxia-induced
cell proliferation in RA-FLS

In order to further determine the role of C/EBPf in
RA-FLS, cells were cultured under hypoxia and normal
condition, followed by gene expression assays. As shown
in Fig. 6a and b, C/EBP was remarkably suppressed in
expression by hypoxia at both mRNA and protein levels.
Overexpression of C/EBPB could partly rescue the
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hypoxia-induced cell proliferation (Fig. 6¢). The findings
above suggested that miR-191-C/EBPp signaling is re-
quired to mediate the hypoxia-induced cell proliferation
in RA-FLS.

Discussion

Hypoxia has been well confirmed to be a common fea-
ture in most of the solid tumors [26]. It plays important
roles in the development and progression of cancer [27].
Emerging evidence has demonstrated that it is inflam-
mation and hypoxic microenvironment in the synovium
that aggravates the cell proliferation and suppresses the
cell apoptosis of synoviocytes in RA patients [28, 29].

In the current study, a miRNA screen analysis in the
hypoxia-exposed RA-FLS was performed. We identified
miR-297, miR-499b-3p, miR-770, miR-936, and miR-191
as the differently expressed miRNAs in RA-FLS under hyp-
oxia condition. Interestingly, the upregulation of miR-191
was found to be specific in hypoxic RA-FLS, compared to
hypoxic OA-FLS. The regulatory function of miR-191 to
the cell proliferation and apoptosis of RA-FLS was further
determined. We found miR-191-C/EBPf mediated the up-
regulation of cell proliferation and inhibition of cell

apoptosis in RA-FLS. Enforced overexpression of miR-191
was demonstrated to promote the proliferation and cell
cycle and protect cells against apoptosis, suggesting
miR-191 might be a potential target in RA treatment. In
addition, upregulation of miR-191 was found in various
types of cancer, autoimmune disease, and inflammatory
disease [30-33]. In pancreatic cancer, miR-191 was found
to suppress USP10, attenuated p53 stability, and thereby
activate NF-kB signaling [34]. In consistence, proinflamma-
tory cytokines including TNF-q, interleukin(IL)-1p, and
IL-6, down-stream targets of NF-kB signaling, showed up-
regulation by miR-191 [34]. In view of the correlation be-
tween RA and inflammation, miR-191 is very likely to
involve in the regulation of proinflammatory reaction in
RA-FLS.

C/EBPP has been shown to regulate cell proliferation,
differentiation, and cell apoptosis in a variety of cell
types [35, 36]. We found that C/EBPf is a functional tar-
get of miR-191 in RA-FLS. MiR-191 targeted C/EBPp
regulating cell cycle inhibitors p16, p15, and p57 in colo-
rectal cancer and thus is involved in the cell cycle regu-
lation [22]. However, the miR-191-C/EBPp interaction
and the regulatory function in RA-FLS have not been
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reported yet. Herein we showed that C/EBPP was down-
regulated by miR-191 as a target gene in RA-FLS, and
knocking down of C/EBPB promoted RA-FLS prolifera-
tion significantly. Reintroduction C/EBPP back to
RA-FLS after hypoxia treatment could rescue the
hypoxia-miR-191-induced phenotypes, suggesting the
cell proliferation and apoptosis regulation by
hypoxia-miR-191 are mediated, at least partly, by C/
EBPP. However, rescue experiments did not entirely re-
cover normal phenotypes, and further studies are needed
to detect the role of other targets or factors in the
hypoxia-induced cell function. In addition to C/EBP,
ten-eleven translocation 1 (TET1) is also a predicted tar-
get of miR-191 in cholangiocarcinoma cells, which in-
hibits cell proliferation through p53 signaling pathway

[37]. Whether miR-191-TET1-p53 signaling pathway is
also involved in the hypoxia-regulated cell function in
RA-FLS is going to be experimentally determined by our
ongoing study.

Except for proliferation induction, hypoxia has been
demonstrated to promote VEGF secretion from RA-FLS
and regulate angiogenesis in RA [38]. miR-191 was also
found to be involved in HIF-2a-induced angiogenesis [39].
In breast cancer, loss of C/EBPf was reported to promote
breast cancer progression by shifting TGF( response [40],
which is an extremely strong stimulator of VEGF
production by synovial fibroblasts [41, 42]. Thus, these
studies may be suggestive of the possible role of
hypoxia-miR-191-C/EBPB in regulating angiogenesis in
RA, which needed to be further experimentally validated.
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Conclusions

Taken together, our findings demonstrate that
hypoxia-induced miR-191-C/EBPJ signaling is required
to mediate the cell proliferation and apoptosis of
RA-FLS. These findings provide new insights into the
role of hypoxamiR in RA and suggested miR-191 is a
promising therapeutic target for RA.
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