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Abstract: Mesenchymal stem cell (MSC) therapy has been investigated intensively for many years.
However, there is a potential risk related to MSC applications in various cell niches. Methods:
The safety of intravitreal MSC application and the efficacy of MSC-derived conditioned medium
(MDCM) were evaluated in the normal eye and the diseased eye, respectively. For safety evaluation,
the fundus morphology, visual function, retinal function, and histological changes of the retina were
examined. For efficacy evaluation, the MDCM was intravitreally administrated in a rodent model
of anterior ischemic optic neuropathy (rAION). The visual function, retinal ganglion cell (RGC)
density, and neuroinflammation were evaluated at day 28 post-optic nerve (ON) infarct. Results: The
fundus imaging showed that MSC transplantation induced retinal distortion and venous congestion.
The visual function, retinal function, and RGC density were significantly decreased in MSC-treated
eyes. MSC transplantation induced astrogliosis, microgliosis, and macrophage infiltration in the
retina due to an increase in the HLA-DR-positive MSC proportion in vitreous. Treatment with the
MDCM preserved the visual function and RGC density in rAION via inhibition of macrophage
infiltration and RGC apoptosis. Conclusions: The vitreous induced the HLA-DR expression in
the MSCs to cause retinal inflammation and retina injury. However, the MDCM provided the
neuroprotective effects in rAION.

Keywords: mesenchymal stem cell; MSC-derived conditioned medium; HLA-DR expression; rodent
model of anterior ischemic optic neuropathy

1. Introduction

In middle-aged people, the most common type of acute optic neuropathy is non-
arteritic anterior ischemic optic neuropathy (NAION), with an incidence of 3.72 per 100,000
in Taiwan and at least 6000 new cases a year [1]. Transient nonperfusion or hypoperfusion
of the optic nerve (ON) disc head (ONH) is the most common pathogenesis of NAION [2].
In addition, NAION is clinically recognized by visual loss and painless with optic disc
swelling resulting in optic disc atrophy. Ischemic damage to ON causes a series of inflam-
matory responses and edema, ultimately leading to retinal ganglion cell (RGC) death and
vision loss [2]. Effective treatments for NAION are yet to be established.
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After the experimental induction of an ON infarct, blood–ON barrier disruption oc-
curs within few hours, to be accompanied by the extrinsic macrophage infiltration and the
resident microglia activation at the ischemic core of ON [3]. This inflammatory response
also occurs in NAION. The activated macrophages/microglia provide the phagocytic abil-
ity to remove myelin debris. In addition, these activated macrophages/microglia release
many different pro-inflammatory cytokines to induce severe inflammation, inhibit cell
proliferation, and cause tissue damage [2,4]. These activated macrophages/microglia have
been classified into M1-polarized type [5]. Macrophages/microglia can be switched from
M1 to M2 phenotypes and can be classified by some specific markers [5]. M2 macrophages
provide anti-inflammation, cell proliferation, and tissue repair capabilities [5]. Moreover,
the activation of M2 microglia/macrophages has been reported to provide neuroprotective
effects on some animal disease models [5–7]. Therefore, the inhibition of neuroinflamma-
tion may be vital for optic nerve protection in a rodent model of anterior ischemic optic
neuropathy (rAION).

Mesenchymal stem cells (MSCs) are of medical interest because of their potential
applications in tissue regeneration and immune modulation [8]. Recent studies reported
that more than 2000 patients received autologous or allogeneic MSC treatments for different
diseases [9]. In ocular diseases, MSC-based therapies provided a potential impact in
alternative therapeutics, particularly for chronic diseases, such as retinal degeneration,
optic nerve degeneration, glaucoma, and uveitis [10]. Besides, other therapeutic effects
of MSCs have demonstrated their potential in the management of ocular surface disease
and oculoplastics [10,11]. Some clinical trials using MSCs are in phase I/II have claimed
the safety of intravitreal MSC administration in retinal and optic nerve diseases [10,11].
Preclinical studies have demonstrated that the neuroprotective effects of intravitreal MSC
administration are due to anti-neuroinflammation and neurotrophic ability in some ocular
disease models [12–14]. However, there is still a long way to go to demonstrating their
efficacy and therapeutic effects in patients. In particular, lack of integration of MSCs
and induction of reactive gliosis after intravitreal injection were also reported in some
studies [11,15–17].

Although MSC therapy was considered relatively safe and efficient in many reports,
the potential hazards of MSC-based therapies are being considered in current studies [9].
Some negative outcomes are not probably reported, but they may occur in certain con-
ditions. The infusion of MSCs was demonstrated to possibly and dangerously inhibit
antimicrobial immune response [18]. Although the anti-inflammation action of MSC treat-
ment is addressed, the chance of infections may be increased by inhibition of immune
response, particularly in patients receiving immunosuppressive therapy after allogeneic
hematopoietic stem cell transplantation [19]. Notably, MSC transplanted into heart tissue
may differentiate into other non-cardiac cells [20]. The unique niche of the heart contains
several factors mediating stem cell fate and differentiation, which may result in a negative
influence in clinical trials [20]. In addition, the size of MSCs in the monolayer culture might
cause serious vascular obstructions after intravascular delivery and might not cross the
blood–brain barrier [21]. Hypoxic and inflammatory reactions may lead to the differenti-
ation of MSCs into osteoblasts and osteoblast-like cells [22]. If this process occurs in any
soft tissue, it may directly contribute to heterotopic ossification formation. Thus, these
potential risks have to be evaluated much more before clinical application. Some recent
studies started to focus on MSC paracrine properties, including the release of various secre-
tory factors and extracellular vesicles containing numerous regulatory compounds rather
than MSC direct differentiation and cell replacement [23,24]. The induction of multiple
repair processes in injured sites in vivo by secretory factors as well as the regulation of
inflammatory response are considered to be the major effects of MSCs, which converts to a
beneficial outcome of MSC-based therapies. Thus, treatment with MSC-derived soluble
molecules not only provides beneficial effects but also prevents the potential risks.

Mechanical stress during the transplantation procedure or lack of an optimized dosage
and protocol for transplantation may result in cell death at transplanted sites and potential
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risks. Recent clinical trials reported that suprachoroidal or sub-tenon MSC implantation are
relative safe routes for retinal degeneration treatment [25–27]. In another clinical trial, the
outcomes of subretinal MSC implantation were reported in 11 patients where there were
no systemic complications, but 6 patients experienced ocular complications [28]. Up to
now, epiretinal MSC transplantation has not been applied in clinic. Notably, the safety of
intravitreal MSCs implantation is still controversial. A prospective, phase I clinical trial
reported that intravitreal injection of autologous bone marrow MSCs into a patient’s eye
does not meet safety standards. Major side effects of this therapy can include fibrosis
and tractional retinal detachment (TRD) [29]. However, Aekkachai Tuekprakhon et al.
reported that intravitreal injection of bone marrow-MSCs appears to be safe and potentially
effective. All adverse events during the 12-month period required observation without any
intervention. For the long-term follow-up, only one participant needed surgical treatment
for a serious adverse event and the vision was restored [30]. Taken together, the proper
MSC implantation routes in eye are considered be the sub-tenonian and suprachoroidal
routes. The safety of subretinal, epiretinal, and intravitreal implantations of MSCs may
need further evaluation before medical treatment to patients.

In this study, the safety of intravitreal human Wharton’s jelly mesenchymal stem
cell (hWJMSC) application was investigated in normal Wistar rat by determining the
fundus morphology, visual function, retinal function, and histological changes in the retina.
In addition, the immunological response of hWJMSC transplantation was evaluated by
staining HLA-DR, ED1, Iba1, and GFAP in the retina section. We found that allogeneic
MSC transplantation in the vitreous chamber was able to trigger severe inflammation and
retinal damage, which leaded visual function loss and retinal function loss. The efficacy of
MDCM was evaluated in the rAION model. The intravitreal injection of MDCM provided
promisingly neuroprotective effects via anti-inflammatory and anti-apoptotic actions.

2. Results
2.1. Intravitreal Delivery of hWJMSC Resulted in Retinal Venous Congestion and Breakdown of
Retinal Architecture

Four weeks after intravitreal injection, we found that DiI-labeled hWJMSC aggregated
at the central retina and caused severe venous congestion and retina distortion (Figure 1A).
Besides, treatment with hWJMSCs dramatically disrupted the retina-layered structure
in the transplanted eye (Figure 1B). The human mitochondria-labeled hWJMSCs were
observed in the vitreous cavity with no sign of cell integration into the retina (Figure 1C).

2.2. Intravitreal Delivery of hWJMSCs Impaired the Visual Function and Retinal Function

The visual function was evaluated by using flash visual-evoked potentials (FVEPs)
at the 4th week after intravitreal administration. The amplitude of the P1–N2 wavelet
can indicate the RGC function in vivo. In this study, we determined the amplitude of the
P1–N2 wavelet in the PBS-treated Wistar rat, which was 28.14 ± 13.68 µV. The amplitude
of the P1–N2 waves in the hWJMSC-treated group was 13.67 ± 10.56 µV (Figure 2A). The
amplitude of the P1–N2 in the PBS-treated group was higher than that in the hWJMSC-
treated group (p = 0.0127).

The retinal function in the PBS-tread rat and in the hWJMSC-treated rat was evaluated
by electroretinogram (ERG) at the 4th week after intravitreal administration. The scotopic
ERG recordings demonstrated that a-wave and b-wave amplitudes were significantly
decreased in the hWJMSC-treated group compared to those in the PBS-treated group
(Figure 2B; a-wave, p = 0.0002; b-wave, p = 0.0062). In the photopic ERG analysis, a-wave
and b-wave amplitudes were also significantly decreased in the hWJMSC-treated group
compared to those in the PBS-treated group (Figure 2C; a-wave, p = 0.0002; b-wave,
p = 0.0003).
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Figure 1. The intravitreal delivery of human Wharton’s jelly mesenchymal stem cells (hWJMSCs) in rat retina four weeks
after transplantation. (A) Ocular color fundus images in the PBS-treated group and the hWJMSC-treated group. The black
arrowhead indicates retinal venous congestion. Red fluorescence shows the DiI-labeled hWJMSCs in the vitreous cavity.
Digital magnification (800%) (B) Hematoxylin and eosin staining of retinal sections. The hWJMSC transplantation resulted
in retinal structural deformity. GCL: ganglion cell layer; INL: inner nuclear layer; ONL: outer nuclear layer. Scale bar
200 µm. (C) Immunohistochemistry of human mitochondria staining and DiI-labeled cells in the PBS-treated group and
the hWJMSC-treated group. Scale bar 100 µm. DAPI, 4, 6-diamidino-2-phenylindole; h-mito, human-mitochondria; DiI:
1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylindocarbocyanine Perchlorate.
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tive peak. (B) Recordings of scotopic and (C) photopic ERG analysis revealed the amplitudes of a- and b-wave in the 
PBS-treated group and the hWJMSC-treated group. Both visual electrophysiology data showed that the amplitudes of a- 
and b-waves were significantly reduced by hWJMSC treatment compared to the PBS treatment. Data are expressed as 
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Thus, we further evaluated whether transplanted hWJMSCs affect RGC viability. We 
quantified Brn3a-positive cells at the 4th week after intravitreal administration (Figure 
3A). The densities of RGCs in the PBS-treated group and the hWJMSC-treated group 
were 38.86 ± 10.64 and 21.88 ± 6.57 cells/mm, respectively (Figure 3B). The RGC density 
was 1.81-fold lower in the hWJMSC-treated group than that in the PBS-treated group (p = 
0.0007). 

Figure 2. Evaluation of visual function and retinal function through flash visual-evoked potential (FVEP) and electroretino-
gram (ERG) recordings. (A) Bar chart showing the P1-N2 amplitudes in the PBS-treated group and in the hWJMSC group.
A significant decrease of P1-N2 amplitude was found in the hWJMSC-treated group as compared to that in the PBS-treated
group (p < 0.05, n = 12). Data are expressed as mean ± SD. P1, P1 the first positive peak; N2, the second negative peak.
(B) Recordings of scotopic and (C) photopic ERG analysis revealed the amplitudes of a- and b-wave in the PBS-treated group
and the hWJMSC-treated group. Both visual electrophysiology data showed that the amplitudes of a- and b-waves were
significantly reduced by hWJMSC treatment compared to the PBS treatment. Data are expressed as mean ± SD. * p < 0.05;
** p < 0.01; *** p < 0.001.
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2.3. Intravitreal Delivery of hWJMSCs Reduced the Number of RGC

After FVEP analysis, we found the transplanted hWJMSCs impaired visual function.
Thus, we further evaluated whether transplanted hWJMSCs affect RGC viability. We quan-
tified Brn3a-positive cells at the 4th week after intravitreal administration (Figure 3A).
The densities of RGCs in the PBS-treated group and the hWJMSC-treated group were
38.86 ± 10.64 and 21.88 ± 6.57 cells/mm, respectively (Figure 3B). The RGC density
was 1.81-fold lower in the hWJMSC-treated group than that in the PBS-treated group
(p = 0.0007).

Figure 3. Analysis of the density of Brn3a-positive cell in the PBS-treated group and the hWJMSC-treated group. (A)
Representative images of Brn3a-positive cells in the GCL. (B) Quantification of Brn3a-positive cell density in the PBS-treated
group and the hWJMSC group. *** p < 0.0001. Scale bar: 100 µm. GCL: ganglion cell layer, IPL: inner plexiform layer, INL:
inner nuclear layer; ONL: outer nuclear layer; DAPI, 4, 6-diamidino-2-phenylindole; Brn3a, brain-specific homeobox/POU
domain protein 3A; DiI: 1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylindocarbocyanine Perchlorate.

2.4. Intravitreal Delivery of hWJMSCs Induced Severe Retinal Inflammation

In the retina, retinal glial cells play an essential role in retinal immune response and
maintain the homeostasis of the retina. We examined the changes of microglia and astrocyte
cells in the retina by immunostaining of Iba1 and GFAP in the PBS-treated group and the
hWJMSC-treated group. In the PBS-treated group, microglia are mostly located in the
ganglion cell layer (GCL) and inner plexiform layer, and astrocytes presented in the GCL.
In the hWJMSC-treated group, microglia are distributed throughout whole retina layers
and migrated into hWJMSCs aggregates (Figure 4). In the hWJMSC-treated group, glia cells
are distributed vertically throughout the entire retina (Figure 4). Infiltrating macrophages
were associated with the activation of Müller glia cells during retinal inflammation. Hence,
CD68, a phagocytotic macrophage marker, was used to investigate the macrophage infiltra-
tion. In the hWJMSC-treated group, the macrophage not only infiltrated into the vitreous
cavity but also infiltrated into subretinal space compared to that in the PBS-treated group
(Figure 4).
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Figure 4. Immunoreactivity of Iba1, ED1, and GFAP in the retina after hWJMSCs transplantation. Representative image
of microglia (Iba1+), macrophage (CD68+), and astrocyte (GFAP+) in each group. The confocal image showed the
retinal inflammation 28 days after hWJMSCs transplantation. ED1-positive cells infiltrated into the subretinal space
(arrowheads). Scale bar: 100 µm. DAPI: 4, 6-diamidino-2-phenylindole; Iba1: ionized calcium binding adaptor molecule
1; ED1: Macrosialin; GFAP: Glial fibrillary acidic protein; DiI: 1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylindocarbocyanine
Perchlorate. GCL: ganglion cell layer; INL: inner nuclear layer; ONL: outer nuclear layer.

2.5. The Proportion of HLA-DR Positive hWJMSC Was Increased in Vitreous

In order to investigate the critical factor of retinal inflammation in the hWJMSC-
transplanted eye, the HLA-DR-positive hWJMSC proportion was calculated by using
Mander’s overlap coefficient and immunohistochemical staining of HLA-DR in the vitreous
cavity. According to the calculation of Mander’s overlap coefficient, 50% of the DiI-labeled
hWJMSCs colocalized with the HLA-DR positive cells. It indicated that the proportion of
HLA-DR positive hWJMSC in the vitreous was elevated from 9.5% to 50% (Figure 5).

2.6. Treatment with hWJMSC-CM Preserved Visual Function

To evaluate the RGCs’ electrophysiologic function, FVEP was performed in the sham
group, serum-free medium (SFM)-treated group, and CM-treated group. The P1–N2 ampli-
tudes in the sham, SFM-treated, and CM-treated groups were 28.14 ± 13.68, 12.18 ± 5.36,
and 24.04 ± 8.82 µV, respectively (Figure 6). The P1–N2 amplitude in the CM-treated group
was 1.97-fold higher than that in the SFM-treated group (p = 0.0297).
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Figure 5. The HLA-DR positive hWJMSC in the vitreous cavity four weeks after transplantation. Representative image of
HLA-DR staining in the vitreous cavity. The HLA-DR-positive cells and the nuclei were labeled in green and blue colors,
respectively. DiI was used to label the transplanted hWJMSC in red color. Scale bar: 20 µm. DAPI, 4, 6-diamidino-2-
phenylindole; DiI: 1,1’-Dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate; HLA-DR: MHC class II antigen.

Figure 6. FVEP profiles at day 28 post-rAION (rodent model of anterior ischemic optic neuropathy) induction. (A) Represen-
tative FVEP wavelet in each group. (B) Treatment with CM induced the P1-N2 amplitude by 1.97-fold compared to treatment
with SFM (* p < 0.05, n = 12 per group). Data are expressed as mean ± SD. SFM: serum-free medium; CM: conditioned
medium. P1, P1 the first positive peak; N2, the second negative peak; ns, not significant
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2.7. Intravitreal Delivery of hWJMSC-CM Preserved RGC Density and Inhibited RGC Apoptosis

The Brn3a-positive cells were counted in the GCL to calculate the RGC density. The
RGC densities in the sham, the SFM-treated, and CM-treated groups were 57.0 ± 9.1,
32.4 ± 8.0, and 48.4 ± 10.9 cells/mm, respectively (Figure 7).

Figure 7. The RGC density and the number of apoptotic RGCs in the 4th week after rAION induction (A) Representative
images of RGCs (Brn3a-positive cell) in red and TUNEL-positive cells in green. (B) Quantification of the RGC density
and the number of TUNEL-positive cells. Treatment with CM significantly preserved the RGC density after ON infarct.
The apoptotic RGCs were significantly reduced after CM treatment. * p < 0.05; *** p < 0.001. Scale bar: 40 µm. DAPI, 4,
6-diamidino-2-phenylindole; Brn3a, brain-specific homeobox/POU domain protein 3A; TINEL: Terminal deoxynucleotidyl
transferase dUTP nick end labeling; GCL: ganglion cell layer, IPL: inner plexiform layer, INL: inner nuclear layer; ONL:
outer nuclear layer.

The numbers of TUNEL-positive RGCs in the sham, SFM-treated, and CM-treated
groups were 0.3 ± 1.04, 14.83 ± 7.67, and 0.33 ± 1.00 cells/mm, respectively. The apoptotic
RGCs in the CM-treated group were significantly reduced by 44.9-fold compared to those
in the PBS-treated group (Figure 7, p = 0.0001).

2.8. Intravitreal Delivery of hWJMSC-CM Inhibited the Neuroinflammation in the Optic Nerve

For evaluation of the neuroinflammation in the optic nerve, microglia activation and
macrophage infiltration (ED1-positive cell) were investigated by staining with Iba1 and
ED1 four weeks after ON infarct (Figure 8A). Treatment with CM reduced the stoma size
of microglia (Iba1-positive cell) by 3.2-fold compared to treatment with SFM in rAION.
In the sham group, there were 12.7 ± 6.9 Iba1-positive cells and 2.1 ± 1.3 ED1-positive
cells per high-power field (HPF) in the ON section. In the SFM-treated group, 43.5 ± 13.4
Iba1-positive cells and 27.6 ± 8.3 ED1-positive cells per HPF was found in the injured area
of the ON. In the CM-treated group, the number of Iba1-positive cell and ED1-positive
cell per HPF was 22.1 ± 10.5 and 8.2 ± 4.3 in the ON section, respectively. The density of
Iba1-positive cell was 1.97-fold lower in the CM-treated group than that in the PBS-treated
group (Figure 8B; p = 0.029). The number of ED1-positive cells per HPF was 3.4-fold lower
in the CM-treated group than that in the PBS-treated group (Figure 8B; p = 0.029).
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Figure 8. Microglia activation and macrophage infiltration in the optic nerve after ON infarct. (A) representative image of
Iba1 and ED1 staining in longitudinal sections of the ONs. The Iba1-positive cells, the ED1-positive cells, and the nuclei are
marked in green, red, and blue colors, respectively; Treatment with CM effectively reduced the size of the microglia cell
(Iba1-positive cell) in contrast to treatment with SFM four weeks after ON infarct. (B) Quantification of Iba1+ and ED1+ cells
per high-power field (HPF). Data are expressed as mean ± SD (n = 6 per group). The decreasing number of Iba1+ cells was
significantly different in the CM-treated group as compared to in the SFM-treated group (n = 6 per group). The number of
macrophages (ED1-positive cells) in the CM-treated group was lower than that in the SFM-treated group (n = 6 per group).
Scale bar: 100 µm. * p < 0.05. ** p < 0.01. Iba1: ionized calcium binding adaptor molecule 1; ED1: Macrosialin.

3. Discussion

The present study demonstrated that intravitreal delivery of hWJMSCs is not safe
to develop an alternative therapy for retina and optic nerve diseases because allogeneic
MSC transplantation leads to visual function loss, retinal function loss, RGCs loss, retinal
inflammation, retinal restructuration, and venous congestion. The main reason for these
detrimental effects is that the transplanted hWJMSCs were induced to express HLA-DR in
the vitreous cavity and trigger severe retinal inflammation. However, the treatment with
hWJMSC-derived CM provided promising neuroprotection results in the experimental
optic nerve ischemic model. Intravitreal injection of hWJMSC-derived CM preserved the
visual function and RGC density. Besides, RGC apoptosis and optic nerve inflammation
were significantly inhibited by applying CM treatment. Thus, we considered that allo-
geneic MSC-derived CM is a potential candidate to develop neuroprotective therapy for
NAION patients.

Although lots of promising and beneficial findings were reported to support MSC
therapies [10–14], some adverse effects were demonstrated in recent studies, including
detrimental outcomes in stem cell therapy against eye diseases [15–17]. A previous report
found that retinal vascular deterioration and severe vision impairment were induced after
intravitreal injection of autologous BMSCs in patients with advanced retinitis pigmen-
tosa [29]. Interestingly, one animal study proved that intravitreal injection of 2 × 104 rat
bone marrow-derived MSCs and or human adipose-derived stem cells leads to loss of
pericytes and increased formation of acellular capillaries [30]. These findings indicated that
allogeneic or autologous MSC transplantation in the vitreous cavity might cause damage
to retinal vessels. In our findings of fundus photography, venous congestion was clearly
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observed in the hWJMSC-treated eyes. Venous congestion can lead to distention, edema,
stasis, ischemia, and cellular death in the retina. This severe damage on the retinal vessel
may result from the higher cell number of transplanted MSCs (1 × 105 hWJMSCs) in the
vitreous cavity. In contrast to those protective outcomes in early reports, we considered
that intravitreal administration of MSCs is not safe for retinal vessels in both normal and
diseased retinas. However, previous findings demonstrated that MSCs provided vasopro-
tective and proangiogenic effects in experimental animal models of diabetic retinopathy
and other retinal diseases [31,32]. Taken together, we suggest that MSCs might have
bidirectional effects, protective and destructive, on the retinal vessels in certain conditions.

Noteworthy, the retinal architecture was dramatically disrupted after hWJMSC trans-
plantation in this study. However, we did not observe any transplanted WJMSCs mi-
grate into the retina to change the retinal architecture. Similar findings were reported by
Thomas et al., who demonstrated that the existence of the inner limiting membrane com-
pletely blocked the passage of transplanted MSCs into the retinas [16]. This indicated that
the architectural changes in the retina may be induced indirectly by the hWJMSC-triggered
severe immune response rather than direct damage from the transplanted hWJMSCs. We fur-
ther evaluated the retinal inflammatory response in the hWJMSC-transplanted eyes. We
found that there was severe microgliosis, astrogliosis, and macrophage infiltration in the
retina. Many reactive microglial cells, astrocytes, macrophages existed in the retina tissue,
which may lead to strong inflammatory impact and inflammation-induced damage in the
retina. Jose E Millán-Rivero et al. also reported that intravitreal transplant of hWJMSCs
into rat retinas induces a microglial reaction and retinal restructuration [11]. However,
they claimed that intravitreal delivery of hWJMSC provided the neuroprotective effects
in the axotomized rat retina due to their release of anti-inflammatory and neurotrophic
factors [11]. Hongpeng Huang et al. reported that intravitreal administration of MSCs
induced activation of retinal glial cells, and inflammatory response in normal and diseased
retinas [31]. This indicated that the use of MSC therapy in the treatment of retina and optic
nerve disorders is accompanied by the risk of severe ocular inflammation. We considered
the controversial findings in the anti-inflammatory capability of hWJMSCs due to the higher
cell number of transplanted hWJMSC in our study. More transplanted MSCs in the vitreous
may trigger more severe inflammation in the retina. Besides, treatment with hWJMSC in
the different animal models may generate diverse outcomes. Thus, the application of MSC
therapy intravitreally must be approached with lots of caution in patients.

MSCs generally lack HLA-DR expression, while this is needed for antigen presentation
to CD4 T-cells [33]. Our flow cytometric analysis revealed that 9.7% of the hWJMSCs
expressed HLA-DR antigen (Supplementary Figure S1). A previous report that activation
of MSCs by IFN-γ increased the expression of HLA-DR without decreasing the expression
of markers that characterize MSCs [34]. Therefore, intravitreal MSC administration in
the diseased eye may induce more HLA-DR-positive MSCs than the normal eye and may
increase the risk of enhancing inflammatory response. In addition, Marta Grau-Vorster
reported that the expression of HLA-DR is dynamic in MSC cultures [35]. Therefore, they
suggested that the use of HLA-DR to be a negative marker of MSC does not provide any
additional value to quality control panels [35]. We also found that 50% of the transplanted
hWJMSC expressed the HLA-DR antigen. It suggested that the vitreous cavity is not a
suitable environment for the MSC niche. Taken together, we considered that the HLA-DR
expression in MSCs is an environment-dependent process and is difficult to control this
transformation in vivo. However, HLA-DR expression in the allogeneic MSCs may induce
allogeneic rejection in the host. Especially, interspecies MSCs transplantation might cause
much severe inflammatory response because the diseased ocular environment in these
animal models might not be identical to the human environment. We considered that the
autologous MSCs implantation in the vitreous cavity may prevent this severe inflammatory
response. Thus, intravitreal injection of autologous MSCs in a safe and healthy manner
needs further investigation.
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The major beneficial outcomes of MSCs are considered to stimulate signaling pathways
involved in proliferation and anti-inflammation by secretory factors, including the release of
secretory factors and extracellular vesicles [23]. In this study, we found that the intravitreal
injection of hWJMSC-derived CM effectively inhibited macrophage infiltration into the
optic nerve and microglia activation at the optic nerve in the experimental model of optic
nerve ischemia. In addition, we found treatment with the hWJMSC-derived CM preserved
visual function and prevent RGC apoptosis after optic nerve infarct. Taken together, we
considered that the hWJMSC-derived CM provided the neuroprotective effects after optic
nerve infarct via anti-inflammatory action and anti-apoptotic action. Besides, we did
not observe any change in retinal architecture after the intravitreal hWJMSC-derived CM
administration. Thus, we believe that the use of hWJMSC-derived CM for retina and optic
nerve disorders may provide promising and positive outcomes.

4. Materials and Methods
4.1. Animals

In this study, we used adult male Wistar rats weighing 150–180 g to evaluate the
safety and the efficacy of MSC-based therapies. The rats were purchased from the breeding
colony of BioLASCO Co., Taipei, Taiwan. Animal care and experimental procedures were
performed in accordance with the Statement for the Use of Animals in Ophthalmic and
Vision Research. All animal experiments were approved by the Institutional Animal Care
and Use Committee (IACUC) of Buddhist Tzu Chi General Hospital. The IACUC approval
number and date were 106-21-2 and May 28, 2019, respectively.

4.2. Study Design

In the present study, we investigated the safety of intravitreal hWJMSC administration
in the normal Wistar rat. The left eye of the rat received one intravitreal injection of
hWJMSC suspension (5 µL, 2 × 104 cells/µL, n = 12) or PBS (5 µL, n = 12). Four weeks
after intravitreal injection, the hWJMSC-transplanted rat and the PBS-treated rat were
analyzed by using fundus photography, FVEP, ERG, and IHC analysis to evaluate the
fundus morphology, the visual function, the retinal function, and the histological changes
in the retina.

To evaluate the efficacy of the hWJMSC-derived CM in rAION, 36 rats received rAION
treatment and received an intravitreal administration of either hWJMSC-derived CM (5 µL;
n = 12) or serum-free medium (5 µL; n = 12). Another 12 rats in the sham group received
laser treatment without the use of photosensitizing agents. On the fourth week post-
infarct, visual function was assessed by performing an FVEP analysis; the RGC density
was measured by conducting the Brn3a-positive cell in the RGC layer. In situ TdT-dUTP
nick end-labeling (TUNEL) Assays in the RGC layer and immunohistochemistry of ED1
(a biomarker of macrophage), Iba1 (a marker of microglia), GFAP (a marker of astrocyte)
expression in the ON were also conducted (Figure 9). All the animals survived until the
end of the treatment without any complication. The rats were euthanized using CO2
insufflation at the 4th week post-infarct.
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Figure 9. Study design to evaluate the safety and the efficacy of intravitreal MSC-based therapies. The safety of intravitreal
injection of hWJMSC was investigated in the normal Wistar rat by using fundus photography, FVEP, ERG, and IHC analysis.
The therapeutic effects of intravitreal injection of the hWJMSC-derived CM were evaluated in the rAION model by using
FVEP, Brn3a staining, TUNEL assay, ED1 staining, Iba1 staining, and GFAP staining.

4.3. hWJMSCs Culture and Collection of Conditioned Medium

HWJMSCs were isolated from a healthy human umbilical cord; the cells were kindly
provided by Dr. Dah-Ching Ding in Hualien Tzu-chi medical center. The hWJMSCs used in
this study were approved by the Research Ethics Committee of Buddhist Tzu Chi General
Hospital, and written informed consent was obtained from all participants (Institutional
Review Board 100–166). All experiments related to the hWJMSCs were followed by the
institutional guidelines and approved by the Research Ethics Committee, Hualien Tzu
Chi Hospital. The cells were cultured and expanded in low glucose Dulbecco’s modified
Eagle’s medium supplement with 10% fetal bovine serum and 1% penicillin. Three days
before transplantation, hWJMSCs were transferred and maintained in MSC serum-free
medium (NutriStem® XF Medium, Sartorius, Germany) for two passages. The culture
was maintained at 37 ◦C and in 5% CO2. The cultured hWJMSCs were characterized by
flow cytometry analysis (Supplementary Figure S1). The conditioned medium (CM) was
collected after 2 days of culture. The CM was further concentrated 30 times using a 3 kDa
molecular weight cut-off centrifugal filter (Amicon-Ultra 15, Merck Millipore, Tullagreen,
Cork, Ireland), then stored at −80 ◦C. Before the transplantation, hWJMSCs were incubated
and labeled with fluorescent cellular membrane dye DiI (Molecular Probes, Carlsbad, CA,
USA), then were resuspended in phosphate buffer saline (PBS) at the concentration of
2 × 104 cells/µL.
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4.4. Fundus Photography

The transplanted MSCs and the fundus morphology were monitored in the PBS-
treated rats and hWJMSC-treated rats by using Micon IV fundus camera (Phoenix Research
Labs, Pleasanton, CA, USA). Both bright-field and fluorescent filter were used to observe
the DiI-labeled hWJMSCs on the retina at day 28 post-intravitreal administration.

4.5. Flash Visual-Evoked Potentials (FVEPs)

FVEPs were recorded in both eyes to examine the pattern of FVEPs. This procedure
was approved by the Institutional Animal Care and Use Committee (IACUC) and was
described in detail in our previous studies [36,37]. In brief, after administering the general
anesthesia, the skin covering the skull was incised, and the brain surface was exposed using
a dental drill. Two screw implants connected to active (positive) electrodes were fixed at
the primary visual cortex region of both hemispheres. One screw implant, connected to a
reference (negative) electrode, was fixed at the frontal cortex region. The ground electrode
was placed in the rat’s tail. A visual electrodiagnostic system (UTAS-E3000; LKC Technolo-
gies, Gaithersburg, MD, USA) was used to measure the photopic FVEPs. The settings used
were as follows: background illumination off, a flash intensity of 30 cd.s/m2, single flash
with a flash rate of 1.02 Hz, and a test average of 64 sweeps. To evaluate the visual function,
the latency of P1 wave, referred to as the first positive-going wavelet, and the amplitude of
the P1–N2 wave in each group was compared.

4.6. Electroretinogram (ERG)

To evaluate the retinal functions, ERGs were performed four weeks after transplanta-
tion. Animals were placed in the dark for at least 12 h. A gold wire loop was placed on the
cornea as the positive electrode, the negative electrode was placed under the animal scalp,
and the ground electrode was inserted to the tail (Colordome Ganzfield, Diagnosys LLC,
Lowell, MA, USA). The parameter of ERGs was provided by the manufacturer. In this
study, both scotopic and photopic ERGs were recorded. To avoid noise signal interference,
the contralateral eye was covered by a black cap. The a- and b-waves were measured to
check the functions of retinal photoreceptor and bipolar cells, respectively.

4.7. Eyeball Preparation and Sections

Rats were euthanized by a gradual increase of CO2 concentration (5 L/min) inside
the sealed cage. The enucleated eyeballs along with ON were removed from the sur-
rounding connective tissues, muscles, and cornea by microscissors to improve the fixation
process [36,37]. Six eyeballs per group were then transferred to 4% paraformaldehyde for
1 h at room temperature. Then, the eyeballs were cryoprotected in 30% sucrose and stored
at 4 ◦C overnight until they settled at the bottom of the 15 mL tube. Both 4% paraformalde-
hyde and 30% sucrose volume were ten times greater than the volume of the eyeball. The
eyeballs were then transferred into plastic molds and embedded in OCT compound. The
molds were then allowed to completely freeze using liquid nitrogen. These frozen bricks
were then transferred to cryostats at −20 ◦C, and 10 µm thick sections were performed.
The sections were preserved at −20 or −80 ◦C for further analysis.

4.8. Immunohistochemistry of BRA3A-, ED-1-, Iba1-, GFAP- and HLA-DR-Positive Cell

The procedure of immunohistochemistry was described in detail in our previous
reports [36,37]. In brief, six eyeballs in each group were detached and transferred to 4%
paraformaldehyde to fix the protein components for 6 h. The fixed eyeballs were transferred
into 30% sucrose and stored at 4 ◦C until they settled to the bottom of the tube as a result of
dehydration. The OCT (Tissue-Tek, Sakura, Torrance, CA, USA) embedded eyeballs were
sectioned longitudinally to 20 µm thick by using a cryostat (Leica Microsystems, Wetzlar,
Germany). Three sections per eyeball were immersed in PBS to remove the OCT compound
for one specific staining. The PBST with 5% BSA was used to block the cryosection at room
temperature for 1 h. The primary antibodies, anti-Brn3a, anti-ED-1, anti-Iba1, anti-GFAP,
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and anti-HLA-DR (1:100; Abcam, San Francisco, USA) were applied in 4 ◦C overnight.
Secondary antibodies were then incubated at room temperature for 1 h. DAPI staining
(1:200; Sigma-Aldrich, St. Louis, MO, USA) was used to detect the number of nuclei in all
sections. Imaging was acquired at whole retina or ON head by using a confocal microscope.
We manually counted the Brn3a-positive cells in the RGC layer by randomly selecting 6
high-power fields (HPFs, 200×) and calculating the average to represent the number of
TUNEL-positive cell in one section (n = 6 per group). The number of Iba1-positive cell was
counted manually at ON head. For comparison, Iba1-positive cells were counted in six
HPFs (magnification: 200×) at ON lesion sites.

4.9. In Situ TUNEL Assay

The protocol was provided by the manufacturer (Promega Corp, Madison, WI USA).
Three sections per eyeball were immersed in PBS to remove the OCT compound. To increase
permeability, the tissues were incubated with proteinase K at room temperature for 10 min.
Samples were transferred to equilibration buffer and then incubated with recombinant
terminal deoxynucleotidyl transferase (rTdT) reaction buffer at 37 ◦C for 1 h. To stop the
rTdT reaction, the samples were incubated in SSC solution for 15 min at room temperature.
Samples were then immersed with PBS and washed 3 times. Slides were then mounted
with DAPI mounting medium and sealed the cover slide with DPX mounting medium.
Imaging was acquired from central retina to mid-peripheral retina by using a confocal
microscope. We manually counted the TUNEL-positive cells in the RGC layer by randomly
selecting 6 high-power fields (200×) and calculating the average to represent the number
of TUNEL-positive cell in one section.

4.10. rAION Induction

The detailed procedure of rAION induction was described in our previous report [36,37].
In brief, Rose bengal (RB) (Sigma-Aldrich, St. Louis, MO, USA) was administered intra-
venously through the tail vein (2.5 mM RB in PBS and 1 mL per animal weight) after
general anesthesia. The rats in the sham group received an argon green laser treatment
(MC-500 multicolor laser, Nidek Co., Ltd., Tokyo, Japan) without RB injection at the ONH
region. After pupil dilation, the optic disc was directly treated with an argon green laser
(wavelengths of 532 nm; pore size of 500 µm; power of 80 mW) with 12 pulses and 1 s
duration each by a fundus contact lens. The setting of laser treatment was the same as
those in our previous paper [36,37].

4.11. Statistical Analysis

All the measurements were evaluated in a blinded fashion. Statistical analysis was
analyzed by using a commercial software package (GraphPad Prism) (IBM SPSS Statistics
19, International Business Machines Corp., Armonk, NY, USA). The Mann–Whitney U test
was used to evaluate differences between groups. Results with p values less than 0.05 were
considered statistically significant.

5. Conclusions

In conclusion, we demonstrated that intravitreal delivery of hWJMSCs in the normal
eye resulted in severe retinal inflammation to destroy the retinal architecture, visual func-
tion, and retinal function. This intravitreal MSC administration may not be appropriate
therapy for retina and optic nerve diseases because the pro-inflammatory cytokines may
induce HLA-DR-positive MSCs to trigger rejection in the host. However, the hWJMSC-
derived CM provided neuroprotective effects in the experimental model of optic nerve
ischemia via anti-inflammation and anti-apoptosis of RGCs. Thus, the MSC-derived secre-
tory factors may be a good candidate for further investigation and development of new
approaches for MSC-based therapies in the future.



Int. J. Mol. Sci. 2021, 22, 2117 15 of 17

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/4/2117/s1.

Author Contributions: R.-K.T. and Y.-T.W. conceptualized and designed the research project. Y.-C.L.,
D.-C.D. and R.-K.T. contributed to all the necessary materials, financial support, and laboratory
facilities. Y.-C.H. and Y.-T.W. executed all the experiments in this study. P.-K.L., Y.-T.W. and Y.-C.H.
contributed to the discussion and interpretation of the raw data. Y.-T.W. and Y.-C.H. contributed
to data evaluation and drafting. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Buddhist Tzu Chi Medical Foundation under the research
grant number “TCRD107-69”.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Buddhist Tzu Chi
General Hospital (Protocol code: 100–166; date of approval: 25 November 2011).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors acknowledge the Institute of Eye Research, Hualien Tzu Chi Hospi-
tal for experiment assistance.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

FVEPs flash visual-evoked potentials
CM conditioned medium
ERG electroretinogram
FVEPs flash visual-evoked potentials
GCL ganglion cell layer
IPL inner plexiform layer
INL inner nuclear layer
DOAJ directory of open access journals
NAION non-arteritic anterior ischemic optic neuropathy
MSC mesenchymal stem cell
ON optic nerve
ONL outer nuclear layer
RGC retinal ganglion cell
RB Rose bengal

References
1. Lee, Y.C.; Wang, J.H.; Huang, T.L.; Tsai, R.K. Increased Risk of Stroke in Patients With Nonarteritic Anterior Ischemic Optic

Neuropathy: A Nationwide Retrospective Cohort Study. Am. J. Ophthalmol. 2016, 170, 183–189. [CrossRef]
2. Bernstein, S.L.; Johnson, M.A.; Miller, N.R. Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental

models. Prog. Retin. Eye Res. 2011, 30, 167–187. [CrossRef]
3. Wen, Y.T.; Huang, T.L.; Huang, S.P.; Chang, C.H.; Tsai, R.K. Early applications of granulocyte colony-stimulating factor (G-CSF)

can stabilize the blood-optic-nerve barrier and ameliorate inflammation in a rat model of anterior ischemic optic neuropathy
(rAION). Dis. Models Mech. 2016, 9, 1193–1202. [CrossRef] [PubMed]

4. Bernstein, S.L.; Guo, Y.; Kelman, S.E.; Flower, R.W.; Johnson, M.A. Functional and cellular responses in a novel rodent model of
anterior ischemic optic neuropathy. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4153–4162. [CrossRef]

5. Mills, C.D. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol. 2012, 32, 463–488. [CrossRef]
6. Bok, E.; Chung, Y.C.; Kim, K.S.; Baik, H.H.; Shin, W.H.; Jin, B.K. Modulation of M1/M2 polarization by capsaicin contributes to

the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp. Mol. Med. 2018, 50, 76.
[CrossRef] [PubMed]

7. Vergadi, E.; Ieronymaki, E.; Lyroni, K.; Vaporidi, K.; Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2
Polarization. J. Immunol. 2017, 198, 1006–1014. [CrossRef] [PubMed]

8. Weiss, A.R.R.; Dahlke, M.H. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic,
and Dead MSCs. Front. Immunol. 2019, 10, 1191. [CrossRef]

https://www.mdpi.com/1422-0067/22/4/2117/s1
https://www.mdpi.com/1422-0067/22/4/2117/s1
http://doi.org/10.1016/j.ajo.2016.08.006
http://doi.org/10.1016/j.preteyeres.2011.02.003
http://doi.org/10.1242/dmm.025999
http://www.ncbi.nlm.nih.gov/pubmed/27538969
http://doi.org/10.1167/iovs.03-0274
http://doi.org/10.1615/CritRevImmunol.v32.i6.10
http://doi.org/10.1038/s12276-018-0111-4
http://www.ncbi.nlm.nih.gov/pubmed/29968707
http://doi.org/10.4049/jimmunol.1601515
http://www.ncbi.nlm.nih.gov/pubmed/28115590
http://doi.org/10.3389/fimmu.2019.01191


Int. J. Mol. Sci. 2021, 22, 2117 16 of 17

9. Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and Controversies in Human
Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019, 2019, 9628536. [CrossRef]

10. Joe, A.W.; Gregory-Evans, K. Mesenchymal stem cells and potential applications in treating ocular disease. Curr. Eye Res. 2010,
35, 941–952. [CrossRef] [PubMed]

11. Adak, S.; Magdalene, D.; Deshmukh, S.; Das, D.; Jaganathan, B.G. A Review on Mesenchymal Stem Cells for Treatment of Retinal
Diseases. Stem Cell Rev. Rep. 2021, 6, 1–20.

12. Millán-Rivero, J.E.; Nadal-Nicolás, F.M.; García-Bernal, D.; Sobrado-Calvo, P.; Blanquer, M.; Moraleda, J.M.; Vidal-Sanz, M.;
Agudo-Barriuso, M. Human Wharton’s jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of
anti-inflammatory and neurotrophic factors. Sci. Rep. 2018, 8, 16299. [CrossRef] [PubMed]

13. Ji, S.; Lin, S.; Chen, J.; Huang, X.; Wei, C.C.; Li, Z.; Tang, S. Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal
Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Curr. Eye Res. 2018, 43, 810–820. [CrossRef] [PubMed]
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