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Research on lung nodule 
recognition algorithm based 
on deep feature fusion 
and MKL‑SVM‑IPSO
Yang Li1, Hewei Zheng1,2, Xiaoyu Huang1*, Jiayue Chang1, Debiao Hou1 & Huimin Lu1

Lung CAD system can provide auxiliary third‑party opinions for doctors, improve the accuracy of lung 
nodule recognition. The selection and fusion of nodule features and the advancement of recognition 
algorithms are crucial improving lung CAD systems. Based on the HDL model, this paper mainly 
focuses on the three key algorithms of feature extraction, feature fusion and nodule recognition of 
lung CAD system. First, CBAM is embedded into VGG16 and VGG19, and feature extraction models 
AE‑VGG16 and AE‑VGG19 are constructed, so that the network can pay more attention to the key 
feature information in nodule description. Then, feature dimensionality reduction based on PCA and 
feature fusion based on CCA are sequentially performed on the extracted depth features to obtain low‑
dimensional fusion features. Finally, the fusion features are input into the proposed MKL‑SVM‑IPSO 
model based on the improved Particle Swarm Optimization algorithm to speed up the training speed, 
get the global optimal parameter group. The public dataset LUNA16 was selected for the experiment. 
The results show that the accuracy of lung nodule recognition of the proposed lung CAD system can 
reach 99.56%, and the sensitivity and F1‑score can reach 99.3% and 0.9965, respectively, which can 
reduce the possibility of false detection and missed detection of nodules.

According to the GLOBOCAN2020 data released by International Agency for Research on Cancer (IARC), lung 
cancer remained the leading cause of cancer death. In 2020, about 1,796,144 people died of lung cancer, account-
ing for 18% of all cancer  deaths1. Early screening of lung cancer is an effective method to reduce mortality, which 
can improve the 5-year survival rate of patients from 18.6% to 56%2. Lung nodules are an early manifestation of 
lung cancer. Due to the high resolution of high-density tissue, computed tomography (CT) imaging has become 
an essential means of detecting and identifying lung  nodules3–5.

However, with the increase in the number of lung cancer patients and people’s emphasis on health in recent 
years, and a large number of CT images have been produced clinically, which has brought enormous pressure to 
doctors. In addition, there are differences in the diagnosis and treatment level of doctors with different seniority, 
so for the same CT image, different doctors are likely to give different diagnostic results. Lung computer aided 
diagnosis (CAD) system can assist doctors in obtaining objective diagnostic results and effectively reduce missed 
detection and false detection of  nodules6. The classic lung CAD system usually includes the following steps: image 
preprocessing, lung parenchyma segmentation, lung nodule candidate region of interest (ROI) extraction, ROI 
feature extraction and lung nodule recognition. Among them, feature extraction and lung nodule recognition 
are the core modules of lung CAD system, which will directly affect the performance of the  system7.

Related work
Feature extraction is an essential link in the lung CAD system. Traditional lung CAD systems mainly rely on the 
experience of doctors, extract handcrafted features of low-level vision, such as texture information and morphologi-
cal brightness of lung nodule images, and then input a machine learning-based classifier for  recognition8,9. Tradi-
tional lung CAD systems need to design handcrafted features in advance, and the extracted handcrafted features 
cannot express the high-level semantic information of nodules, resulting in poor generalization ability of the model.

In recent years, deep learning has become the mainstream method for medical image feature  extraction10. 
Deep learning can capture every detail in the image. It can extract different levels of features from different depth 
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layers, which is more suitable for the analysis and processing of medical images. Among them, the Convolutional 
Neural Network(CNN) has the widest application range due to its excellent  performance11–13. Deep learning is a 
representation learning algorithm based on large dataset, but labelled medical imaging datasets are often  scarce14.

Transfer learning is a method of transferring knowledge from the source domain to the target domain. It 
does not require that the training data be independent and identically distributed with the test data, which pro-
vides a possibility to solve the problem mentioned above of insufficient labelled training data in medical image 
 processing15. Currently, fine-tuning and feature extraction is the most commonly used transfer learning strategies 
in medical image  analysis16. The fine-tuning uses the parameters of the source domain model as the initialization 
parameters, migrates to the target domain model, and then uses the medical imaging dataset to fine-tune the 
initialization  parameters17,18. The other is to remove some layers from the model pre-trained in the source domain 
as the feature extractor of the target domain. Then add another classifier to rebuild a new network  model19,20.

Using deep learning methods to extract features usually takes the entire image as input. However, medical 
image analysis pays more attention to the focus area information, and the global processing of the image will lead 
to information redundancy. As an efficient resource allocation scheme, attention mechanism has been applied 
to the feature extraction  model21. Embedding the attention mechanism into the neural network can guide the 
network to focus on the important information of the lesion area in a high-weight manner, and ignore irrelevant 
information in a low-weight manner, thereby improving the feature extraction ability of the  network22–24.Sun 
et al.22 proposed the attention-embedded complementary-stream convolutional neural network (AECS-CNN) 
to reduce false positives of lung nodules. AECS-CNN employed two convolutional block attention module 
(CBAM) to weight multi-scale features, and then assign higher weights to key features to improve the recognition 
sensitivity of lung nodules to 92%. Wang et al.24 proposed a novel network for Alzheimer’s disease recognition. 
The network was modified on the basic framework of VGG16, embedded CBAM after each convolution block, 
and the final accuracy reached 97.76±1.13%.

The features extracted by a single model can reflect image information to a certain extent, but some informa-
tion is missing, which has  limitations25. Feature fusion can derive a more low-dimensional and effective feature 
vector set in multiple feature sets and benefit to the final  decision26.The classic feature fusion strategies are serial 
fusion and parallel  fusion27–29.However, these two fusion strategies simply splicing feature vectors, and the dimen-
sion of the fused feature set is high, which is prone to problems such as dimensional disaster. Another feature 
fusion strategy is to first map different types of feature vectors to a new dimensional space, and then fuse them 
into new features. This fusion method fully exploits the relationship between features and combines them in a 
new projection space, which not only reduces the feature dimension, but also removes redundant features. The 
representative algorithms are canonical correlation analysis (CCA) based on projective transformation, feature 
fusion based on sparse  representation30,31. Among them, CCA can generally grasp the correlation between the 
two sets of feature sets, and is often used for feature fusion between the two sets of feature  sets32,33.Kiran et al.34 
used CCA to fuse the global average pooling (GAP) layer of Resnet-50 and the deep features of fully connected 
layer(FCL) to achieve Human Action Recognition (HAR). Peng et al.35 used CCA to fuse the deep features of 
different networks to obtain more discriminative fusion features, thereby improving the recognition accuracy 
of grape species.

Nowadays, there are mainly three models in image recognition tasks. The first is the classic lung CAD sys-
tem, which feeds handcrafted features into traditional machine-based classifiers; the second is called solo deep 
learning (SDL) model, which runs through the entire process in an “end-to-end” manner. The third is the hybrid 
deep learning (HDL) model, which integrates various traditional machine-based deep learning-based feature 
extraction learning classifiers for cascading presentation, thereby flexibly improving the model’s classification 
 performance36.

In image recognition or classification, the CAD system based on HDL is mainly divided into two stages: 
feature extraction and image recognition or classification.

In the first stage of HDL, deep features are usually extracted using transfer learning techniques combined 
with classic CNN models. In order to reduce the false positive rate of lung nodules, Shi et al.37 used the fine-
tuned VGG16 model to extract deep features, and input the support vector machine (SVM) to identify whether 
the candidate ROI was a nodule. Finally, 87.8% accuracy and 87.2% sensitivity were obtained on LIDC-IDRI. 
Mastouri et al.38 used the pre-trained bilinear CNN model as the feature extractor, and combined with SVM, 
AdaBoost, k-Nearest Neighbor (KNN), random forest and FCL to distinguish nodules or non-nodules. The 
results on LUNA16 showed that the bilinear CNN model composed of VGG16 and VGG19 as a feature extractor 
combined with SVM has the best effect on lung nodule recognition, and the accuracy can reach 91.99%. Khan 
et al.39 used the pre-trained VGG-19 supported segmentation (VGG-SegNet) extract the lung nodule section, 
concatenated deep and handcrafted features and fed into a classifer to classify lung nodules. Compared with 
softmax, Decision Tree RF and KNN, SVM-RBF achieved the highest accuracy up to 97.83%.

In the second stage of the HDL model, the classifier based on traditional machine learning can obtain better 
recognition or classification performance than the  FCL40. However, the conventional machine learning algorithm 
has disadvantages such as a large amount of calculation and a long time to find the optimal parameter group in 
the training process. Swarm intelligence optimization algorithm provides convenience for fast optimization of 
parameters. The classic swarm intelligence optimization algorithms mainly include ant lion  algorithm41, genetic 
algorithm (GA)42, particle swarm algorithm (PSO)43and so on. Poap et al.44used neural networks combined with 
ant lion algorithm for lung disease detection. Although the ant-lion algorithm has the advantages of simplicity 
and high convergence accuracy, it also has a serious problem of relying on elite ant-lions, which increases the 
possibility of falling into a local optimum, which makes the algorithm prone to premature  convergence45. As a 
typical representative of swarm intelligence optimization algorithm, PSO is widely used in parameter optimiza-
tion due to its simple concept and easy implementation with few parameter  settings46. Balaha et al.47 proposed a 
hybrid deep learning and genetic algorithm approach for early ultrasound diagnosis of breast cancer. Different 
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from the GA, PSO does not need to go through steps such as crossover, mutation, evolution, etc., avoiding com-
plex evolutionary operations. It adopts mobile search in the entire global environment, and can adjust its search 
strategy at any time according to the current situation. Because all particles are constantly moving and chang-
ing during the search, it is an efficient parallel search  strategy48.However, the standard PSO algorithm has the 
problems of being sensitive to parameters, prone to fall into local optimal solutions due to premature particles, 
and slow  convergence49.Wang et al.50 proposed a support Vector machine algorithm of particle swarm Optimi-
zation based on an adaptive mutation to realize cell swarm identification. The correctness can reach 99.79%. 
Li et al.51 combined the Radial Basis Function (RBF) and the polynomial kernel function into a multi-kernel 
function in the form of linear convex combination to form MKL-SVM to realize lung nodule recognition. To 
overcome the problem of too long parameters optimization time, the PSO was combined with the Multi Kernel 
Learning Support Vector Machine (MKL-SVM) algorithm. Furthermore, to obtain the global optimal solution, 
constant inertia weight, linear inertia weight and nonlinear inertia weight were respectively used to improve 
PSO. In the end, found a more effective nonlinear inertia weight, and the recognition accuracy on the test set can 
reach 91%. The difference between this paper and the  literature51 is that the proposed improved Particle Swarm 
Optimization(IPSO) algorithm uses different inertia weights, which are adaptive inertia weights. By adopting 
corresponding weight adjustment strategies for particles in different subgroups, the particles can be optimized 
adaptively. , and the dynamic learning factor is further introduced to adjust the self-learning ability and collec-
tive learning ability of particles.

Based on the HDL model, this paper focuses on three critical algorithms of the lung CAD system: feature 
extraction, feature fusion and nodule recognition. Aiming to improve the accuracy and sensitivity of lung nodule 
recognition. The main contributions are as follows: 

(1) Propose a deep feature extraction model with embedded attention mechanism Attention-embedded VGG16 
(AE-VGG16) and Attention-embedded VGG19 (AE-VGG19). The model first embeds the CBAM into the 
classic CNN models VGG16 and VGG19, respectively. This way the network can pay more attention to the 
key points in the nodule description. Then uses the parameters of the pre-trained model on ImageNet as 
initialization parameters, and retrain the weights with the preprocessed candidate nodule images to reduce 
the training cost and supplement the information loss in the target domain.

(2) Feature fusion using CCA. The feature vector set with solid correlation between feature groups is selected 
as the fused feature. The fusion feature has powerful feature expression ability and low-dimensional char-
acteristics, which not only reduces the amount of calculation, but also helps to improve the subsequent 
recognition effect.

(3) A Multiple Kernel Learning Support Vector Machine based on the improved Particle Swarm Optimization 
algorithm (MKL-SVM-IPSO) was proposed for lung nodule recognition. Using the same MKL-SVM  as51, 
and introducing the adaptive inertia weight particle swarm optimization algorithm PSO, according to the 
fitness value adaptive fast parameters Optimization to speed up the training of the model. The dynamic 
learning factor is further adapted to adjust the self-learning ability and collective learning ability of particles. 
It solves the problem that the model training speed is slow, and easy to fall into the local optimum.

The novelty of our method is that this method improves the feature extraction ability of the network by combining 
the attention mechanism with CNN, and then uses the feature dimension reduction technology to reduce the 
deep features of tens of thousands of dimensions to less than 100 dimensions. Under the premise of the amount 
of information, the calculation amount of the model is reduced. Feature fusion through CCA can mine the cor-
relation between features, and obtain fusion features with strong correlation and more conducive to nodule iden-
tification. Finally, the intelligent optimization algorithm is combined with MKL-SVM, which solves the problem 
of slow model training and easy to fall into local optimum, and further improves the performance of the system.

Materials and methods
Experimental dataset. All experiments were performed in accordance with relevant named guidelines 
and regulations, with informed consents obtained from all subjects. The LUNA16 dataset (https:// luna16. grand- 
chall enge. org/ Data/ established by the NIH and NCI of the United States) is used to train and test the proposed 
 model52. This dataset is freely available to browse, download, and use for commercial, scientific and educational 
purposes as outlined in the Creative Commons Attribution 4.0 International License. The DeepLesion dataset 
that support the findings of this study are openly available at (https://nihcc.app.box.com/v/DeepLesion pub-
lished by the NIH Clinical Center)53.

The experiments are performed on the public dataset  LUNA1652. LUNA16 collected 888 low-dose lung 
CT images from the LIDC-IDRI, filtered out scans with slice thicknesses greater than 2.5 mm, including 1186 
nodules marked by radiologists.

Before feature extraction, a image preprocessing operation is required. In the existing research of image 
enhancement algorithms, the histogram equalization algorithm is widely used because of its advantages of sim-
ple and fast  calculation54. The basic principle is to extend the dynamic range of an unevenly distributed image 
histogram to both sides, making it even, thereby improving the overall contrast of the image. However, in order 
to enhance the entire image, if there is a large area of low gray level in the image, the result of the enhancement 
will be too bright and the contrast is not obvious enough. The grayscale distribution in CT images of the lungs is 
usually relatively concentrated, making the lung nodule site look unclear and increasing the difficulty of extract-
ing ROI. So our image preprocessing steps are as follows. The preprocessing process for positive sample images is 
as follows: First, frame the lesion area containing lung nodules according to the annotation information given by 
the doctor, place the nodule part in the center of the image, and crop out an image with a size of 64*64. Then 650 

https://luna16.grand-challenge.org/Data/
https://luna16.grand-challenge.org/Data/
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images of solitary nodules were screened, the original image of the lesion area is shown in Fig. 1a, b. Finally, the 
cropped image is binarized. In order to eliminate the background interference, the largest 8 connected regions 
are reconstructed. The maximum entropy method is used to select the threshold, and finally the ROI image of 
the lung nodule is obtained, the corresponding preprocessed positive sample images are shown in Fig. 1c,d.

The preprocessing process for negative sample images is as follows: first, the lesion area is filtered out, and 
in the area without any lesions, the suspected lesion area containing tissue or blood vessels similar in shape to 
nodules is selected, and an image with a size of 64*64 is randomly intercepted. After the same process as making 
positive samples, 490 non-nodule images were finally selected as negative samples .The original image of the 
lesion area is shown in Fig. 2a,b. The corresponding preprocessed negative sample images are shown in Fig. 2c, d.

After image preprocessing consistent with the  literature55, 1140 ROI images of candidate nodules with a size 
of 64*64 were selected as the experimental dataset. Specifically, 650 images of solitary lung nodules and 490 
non-nodule images were included. After randomly shuffling the dataset, 912 and 228 images were selected as 
training sets and test sest according to the ratio of 8:2.

Proposed lung CAD system. The proposed lung CAD system specifically includes the following five main 
steps: preprocessing of lung CT images, feature extraction based on attention mechanism and transfer learn-
ing technology, feature dimensionality reduction based on Principal component analysis (PCA), feature fusion 
based on CCA and lung nodule identification based on MKL-SVM-IPSO algorithm. A detailed description of 
the key algorithms of the improved lung CAD system is provided below. The block diagram of the proposed lung 
CAD system is shown in Fig. 3.

Feature extraction based on AE‑VGGNet. VGGNet is selected as the basic model of the feature extrac-
tion model, the motivation is that this model is particularly suitable for transfer learning and has good feature 
extraction  ability56. In addition, VGGNet has also been shown to have excellent generalization ability and can 

Figure 1.  Preprocessing process of positive samples.

Figure 2.  Preprocessing process of negative samples.

Figure 3.  The block diagram of the proposed lung CAD system.
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adapt to other domain images except ImageNet dataset with good  performance57. In recent years, many scholars 
have fused the features of VGG16 and VGG19 to improve the performance of the  model58–60. In terms of network 
architecture, VGG19 has three more convolutional layers than VGG16, so the feature semantic information 
extracted by VGG19 is richer, and the detailed information contained in VGG16 is more comprehensive. In 
order to combine the advantages of the two, CCA is used for feature fusion, and only the feature vectors with 
strong correlation between the two sets of feature vectors are selected to obtain more low-dimensional and effec-
tive fusion features that are beneficial to the final decision.

So the deep feature extraction network is selected to be improved based on VGG16 and VGG19. Further, 
because of the ability of the attention mechanism to assign model weights, CBAM is embedded in VGG16 and 
VGG19, and the back-end fully connected layer is removed to construct AE-VGG16 and AE-VGG19 feature 
extraction models, aiming to take into account both channel and spatial information Directs the weight distribu-
tion of the model. The proposed deep feature extraction model architecture is shown in Fig. 4.

CBAM consists of a serial structure of channel attention module and spatial attention module, the architecture 
is shown in Fig. 4a. The network first learns what are the key features through the channel attention module, and 
then uses the spatial attention module to learn where the key features are, thereby strengthening the acquisi-
tion of image discriminative features. In the CBAM process, the input features of CBAM are denoted by F, and 
the output features of the channel attention mechanism and the final features output from the spatial attention 
mechanism are denoted as FC and FR , respectively:

where MC represents the refined features are acquired by multiplying the input feature with the channel attention 
map, MS represents a sequential spatial attention map. Where ⊗ denotes element-wise multiplication. After the 
input features F passing through the channel attention module, the feature map FC containing more key channel 
information can be obtained. Then pass the FC through the spatial attention module to obtain a feature image 
FR containing more key information of spatial position, and use it as the final output feature map of CBAM. The 
channel attention module uses both average pooling and max pooling to aggregate feature map information, 
which helps to collect more discriminative features and infer a more effective attention channel. The spatial 
attention module exploits the spatial relationship between features and focuses on the location information of 
discriminative features, which is complementary to channel attention.

The proposed feature extraction models AE-VGG16 and AE-VGG19 are improved based on classic VGG16 
and VGG19, respectively. The construction process is as follows: 

(1)FC = MC(F)⊗ F

(2)FR = MS(F)⊗ FC

Figure 4.  Architecture of attention-embedded VGGNet(AE-VGGNet).
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(1) Take the model parameters of VGG16 and VGG19 pre-trained on ImageNet as initialization parameters
(2) Modify the network architecture of VGG16 and VGG19: embed CBAM after conv1, conv3, conv5, and 

conv8 in VGG16, and embed CBAM after conv1, conv3, and conv5 in VGG19. To be suitable for the lung 
nodule recognition binary classification task, the output node of the last FCL of VGG16 and VGG19 is 
modified to 2

(3) Load the preprocessed candidate nodule ROI image, fine-tune the initialization parameters by backpropa-
gation

(4) Remove the FCL of the fine-tuned VGG16 and VGG19 models to construct feature extraction networks 
AE-VGG16 and AE-VGG19. The model architecture is shown in Fig. 4b and c.

The proposed feature extraction model uses a parameter-based transfer learning method to reduce the train-
ing cost, and then retrains the weights with the preprocessed candidate nodule ROI images supplement the 
information loss in the target domain. The low-level features of CNN have high resolution and sufficient details, 
but weak semantic information. Adding CBAM after the low-level convolutional layer guides the network to 
pay more attention to the detailed features of the nodule area from the channel and space, and improves the 
feature extraction ability of the network. The convolutional layer and the pooling layer are the core of feature 
extraction of CNN. The feature map output by the last layer of pooling layer contains the most abundant seman-
tic information of lung nodules, which can describe the features more comprehensively. FCL plays the role of 
a “classifier” in the CNN network, but FCL has too many parameters and occupies a large proportion of the 
network, which quickly leads to the overfitting the model. In order to prevent the model from overfitting and 
reduce the number of parameters of the model, FCL was removed, and lung nodule recognition was realized by 
combining with SVM.

The deep features extracted by AE-VGG16 and AE-VGG19 are high-dimensional features with a dimension 
up to 25088. It contains many redundant and irrelevant features, which can easily lead to dimension disaster. 
Feature dimension reduction is an effective  method61.  PCA62 is a method of mapping high-dimensional features 
to low-dimensional features based on the minimum mean square error. The new feature set is an orthogonal 
feature set, which can preserve the information of the original data to the greatest extent. Each new feature is 
a linear combination of the original features, which can reflect the comprehensive information of the original 
features. PCA is used to reduce the dimension of the extracted deep features to reduce the calculation capacity 
and improve the performance of the classifier.

Feature fusion based on CCA . The purpose of feature fusion is to combine two sets of features extracted 
from an image into a set of fused features more substantial information. CCA method is used to fuse the two 
sets of feature vectors after dimension reduction, and the characteristic information of candidate nodules is 
described by typical variables. Unlike the classical feature fusion method, CCA needs to first project the two sets 
of feature vectors into two sets of typical variables through linear changes. Then use the correlation between the 
two sets of typical variables to represent the overall correlation between the two sets of feature vectors.

Assume that there are two sets of feature matrices M ∈ Rp×n , N ∈ Rq×n . Where n is the number of samples, p 
and q are the dimensions of the feature vectors in M and N, respectively. The learning goal of CCA is to find the 
pairwise sum of projection directions Wm ∈ Rp and Wn ∈ Rq , Make the canonical variable have the maximum 
correlation between M∗ = WT

mM and N∗ = WT
n N , the objective function is the maximum correlation coefficient 

ρ(M∗,N∗) , which is defined by the correlation coefficient:

Among them, Smm = MMT and Snn = NNT are the auto-covariance matrices of M and N, and Smn = MNT 
is the cross-covariance matrix of M and N. The objective function is transformed into:

In this way, the first pair of canonical variables with the largest correlation between the two groups of vari-
ables can be obtained, and the correlation coefficient between them is called the correlation coefficient of the 
first pair of canonical variables. Then continue to construct the second pair of canonical variables according to 
this method; By analogy, all k pairs of canonical variables can be obtained to form two sets of canonical vari-
ables X∗ and the value range of ρ is [0,1]. The closer ρ is to 1, the greater the correlation between the two sets of 
features. The top-ranked canonical variables have higher correlation and better feature representation for the 
original image.

The typical variables extracted by CCA can be fused according to the classic feature fusion method, which 
are the serial fusion method represented by Zcon and the parallel fusion method represented by Zsum , as shown 
in Eqs. (5) and (6):

(3)ρ(M∗
,N∗) =

WT
mSmnWn

√

WT
mSmmWm

√

WT
n SnnWn

(4)
max wT

mSmnwn

st. wT
mSmnwm = 1,wT

n Snnwn = 1

(5)Zcon =

[

WT
mM

WT
n N

]

=

[

M∗

N∗

]
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For the same image, although there are differences in the features extracted by different architectures, the 
feature vectors with more significant correlation between different feature groups describe more discriminative 
vital features. According to the correlation coefficient ρ , the first m pairs of typical variables are selected. Then 
the l1(≤ l) pairs of typical variables are fused by serial or parallel fusion, and the optimized fusion features are 
used as the input of the next stage classifier.

Lung nodule recognition based on MKL‑SVM‑IPSO algorithm. With its theoretical foundation and 
generalization ability, SVM has become a powerful tool for solving binary classification  problems63–65. The MKL-
SVM formed by combining kernel functions with different properties will have the properties of different kernel 
functions, which can improve the classification accuracy and  robustness66. In order to obtain better learning 
ability and generalization ability, the RBF kernel function and the polynomial kernel function are combined 
into a multi-kernel function in the form of linear convex combination, and the MKL-SVM is the same as the 
 literature22. The polynomial kernel function, radial basis kernel function and multi-kernel function are denoted 
Kpoly , Krbf  and Kmix , respectively:

Among them, the parameter d represents the order of the polynomial kernel function, which is a positive integer. 
The parameter g represents the kernel width of the RBF kernel.γ represents the proportion of the two kernel 
functions in the multi-kernel function.When the grid search algorithm is used, although the optimal global 
solution can be found, the MKL-SVM model contains many parameters and requires multiple layers of nested 
loops, which results in a large amount of computation and a long training time. The PSO imitates the foraging 
of birds, and it is more purposeful to find the optimal target through the information sharing of the birds, and 
can find the optimal solution in a shorter  time67. An improved Particle Swarm Optimization(IPSO) is proposed 
for parameter optimization of the MKL-SVM model to speed up the training speed and shorten the training 
time of the model.

The PSO algorithm treats the potential solutions of the model as particles in the search space. Assuming that 
in a D-dimensional target search space, there is a particle swarm composed of n particles X = (X1,X2, · · · ,Xn) , 
the position and velocity of the i-th particle are Xi = (xi1, xi2, · · · , xiD)

T  and Vi = (Vi1,Vi2, · · · ,ViD)
T 

respectively, and the optimal solution found in the i-th particle is the individual extremum expressed as 
Pi = (Pi1, Pi2, · · · , PiD)

T , all particles The overall optimal solution found is the global extremum denoted as 
Pg = (Pg1, Pg2, · · · , PgD)

T . The particle updates the velocity and position of each generation through the indi-
vidual extremum and the group extremum, which are expressed as follows:

In the above formula, c1 and c2 are the learning factor, which is a non-negative constant; r1 and r2 are random 
numbers distributed in the [0,1] interval; d = 1, 2, · · · ,D , where D represents the number of parameters to be 
searched k is the current number of iterations, Xk

id and Vk
id respectively represent the position and velocity of par-

ticle i on the d − th parameter in the k − th iteration; Pkid and Pkgd respectively represent the individual extremum 
and the global extremum on the parameter. In order to prevent the blind search of particles, their position and 
velocity are usually limited within the interval [-Xmax,Xmax ] and [-Vmax,Vmax ] interval according to experience.

In the PSO algorithm, inertial weights ω reflect the ability of particles to inherit previous velocities. A larger 
inertia weight value is more favourable for global search, and a smaller weight value is more favourable for local 
 search68. The adaptive inertia weight supervises the current position and velocity of the particles in the search 
space, calculates the fitness value of the particle, and dynamically adjusts the inertia weight through the feedback 
fitness value, avoiding the premature maturity of the particle and helping to obtain the optimal global solution. 
Therefore, an adaptive inertia weight strategy of hierarchical adjustment is formulated, and the population is 
divided into two types of subgroups according to the fitness value of the particles. The corresponding weight 
adjustment strategy is adopted for the particles in different subgroups. The proposed adaptive inertia weight 
strategy is as follows:

In formula (12), ω represents the inertia weight; represents the initial inertia weight, ωs represents the maxi-
mum number of iterations, fi is the current fitness value of the i-th particle, and favg and fmax are the average and 
maximum current fitness value of all particles, respectively. The specific steps of the proposed adaptive inertia 
weight strategy are as follows: calculate the average value favg of the fitness of all the particles at present, take the 

(6)Zsum = WT
mM +WT

n N = M∗ + N∗

(7)Kpoly(x, y) = (xty + 1)d

(8)krfb(x, y) = exp(−�x − y�2/2g2)

(9)Kmix(x, x
′) = γKpoly(x, x

′)+ (1− γ )Krbf (x, x
′), 0 < γ < 1

(10)Vk+1
id = ωVk

id + c1r1(P
k
id − Xk

id)+ c2r2(P
k
gd − Xk

id)

(11)Xk+1
id = XK

id + Vk+1
id

(12)ω =

{

ωs −
(fi−fmax)×(ωs−ωe)

favg−fmax
, fi ≤ favg

ωe , fi&gt; favg
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particles whose fitness value is greater than favg to be divided into the same subgroup, and set the inertia weight 
value at the current moment as the initial inertia weight. The remaining particles meet the condition that the 
fitness value is less than or equal to ωs . The remaining particles are divided into another subgroup. The adaptive 
inertia value of the current particle is calculated according to the formula under the corresponding condition 
of formula (12).

Further, the learning factor c1 and c2 determines the influence of the particle’s own experience and the group’s 
experience on the particle’s trajectory, and setting a larger or smaller value is not conducive to particle  search69. 
c1 is the self-learning factor, which means the influence weight of the optimal position experienced by the par-
ticle on the particle action. c2 is the social learning factor, which represents the influence weight of the optimal 
position of the particle group on the particle action. The improved c1 and c2 respectively are shown in formula 
(13) and (14):

It can be seen from the above formula that in the optimization process, the particles in the initial stage have 
strong self-learning ability and weak collective learning ability. As the number of iterations increases, the dynamic 
learning factor c1 changes from large to small, and c2 from small to large, the joint learning ability of particles is 
strong. Still, the self-learning ability is weak, which helps to obtain the optimal global solution and avoid falling 
into the local optimal solution.

The proposed MKL-SVM-IPSO algorithm was used for lung nodule recognition. Firstly, in order to obtain 
better learning ability and generalization ability, MKL-SVM is constructed with polynomial kernel and RBF 
kernel. Then, to speed up the parameter optimization process, the PSO algorithm with adaptive inertia weight 
is introduced into the MKL-SVM, which can adaptively optimize the parameters according to the fitness value 
and speed up the model’s training. At the same time, dynamic learning factors are introduced to adjust the self-
learning ability and collective learning ability of particles. The proposed algorithm solves the problem of slow 
model training and makes it easy to fall into local optimum. The flowchart of the MKL-SVM-IPSO algorithm 
is shown in Fig. 5.

The above steps are as follows: 

(1) Initialize the position and velocity of particles;
(2) Calculate the fitness value of each particle, and store the current status and fitness value of each particle;
(3) Find out the individual extremum and the global extremum with the best fitness value in the present par-

ticle;
(4) Update the speed and position of the particle;
(5) Calculate the fitness value of the particle according to the updated speed and position, and then dynami-

cally update inertia weight through the feedback fitness value;

(13)c1 = cmax −
(t − 1)

T
× cmax

(14)c2 = cmin +
(t − 1)

T
× cmin

Figure 5.  The flowchart of the MKL-SVM-IPSO algorithm.
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(6) Adjust the self-learning ability and collective learning ability of particles through the inertial learning fac-
tor;

(7) Check whether the individual extremum and the group extremum meet the termination conditions. If 
satisfied, stop the calculation and get the optimal parameter group; if not, continue to repeat step (5).

Experimental results and analysis
Experimental parameter settings. During the training phase of the AE-VGG16 and AE-VGG19 feature 
extraction models, the pre-trained weights are fine-tuned using a stochastic gradient descent (SGD) method. 
Based on experience and taking into account the hardware conditions of the laboratory, the momentum factor c 
is set to 0.9, the initial learning rate is set to 0.001, the batch size is set to 32, and the number of iterations is 50. To 
match the standardized input size of the pre-trained model, it is necessary to reconstruct the preprocessed lung 
nodule ROI image size to 224224, and then input the feature extraction models AE-VGG16 and AE-VGG19 to 
extract 77512=25088 dimensional features, and finally reduce the dimensionality of the two sets of feature sets 
through PCA.

In the feature fusion stage using CCA, the corresponding feature vectors are selected respectively according to 
the value range of the correlation coefficient. Then, the fusion feature set is composed of serial or parallel fusion 
strategy, and input into the MKL-SVM-IPSO recognition algorithm. Finally, compare the recognition results 
and select the optimal fusion feature as the input of the recognition algorithm in the next stage. The value range 
of the correlation coefficient ρ is [0.6, 1].

In the parameter optimization stage of the MKL-SVM-IPSO identification algorithm. The particle swarm 
position and velocity are initialized. The training uses 5-fold cross-validation. The particle swarm size is set to 
n = 20 , and the size of each particle is D = 3 , corresponding to the regularization coefficient C to be searched, 
the RBF kernel width g, and the weight γ of the multi-kernel function. Among them, the selection range of the 
regularization coefficient C is between 2−9 and 29 , the selection range of the kernel width g of the RBF kernel 
function is between 2−7 and 27 , and γ represents the proportion of the two kernel functions in the multi-kernel 
function. The range is selected between 0 and 1.

The parameters of the PSO, inertia weight ωs = 0.9 , ωe = 0.4 , learning factors c1 = 2 , c2 = 2 , c1max = 2.5 , 
c2max = 2.5 , c1min = 0.5 , c2min = 0.5 are selected according to experience, so that the inertia weight decreases 
linearly from the initial 0.9 to 0.4. When the order d of the polynomial kernel function is small, the generaliza-
tion ability is strong. In order to reflect the nonlinear characteristics, d is selected as 3. The weight value in the 
multi-kernel function is a very important parameter, which directly affects the components occupied by each 
basic kernel function in the multi-kernel function. The weight coefficient m is selected as [0, 1], and the maximum 
number of iterations of the experiment is set to 200.
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Evaluating indicator. The evaluation indicators of the experiment mainly used accuracy (ACC), sensitiv-
ity (SEN), F1-score and Receiver operating characteristic (ROC) curve. The expressions are shown in Eqs. (15), 
(16) and (18):

Among them, TP is the identified true positive nodule; TN is true negative; FP is false-positive, and FN is 
false-negative.

ACC represents the correct rate of overall recognition. SEN stands for the proportion of correctly identified 
nodules to all nodules, also known as recall, which reflects the ability to identify positive samples. PRE represents 
the proportion of the number of correctly identified nodules to the number of nodules identified as the result, 
reflecting the ability to distinguish negative samples. F1-score and ROC curve were further used as comprehen-
sive evaluation indicators. F1-score is the weighted harmonic mean of PRE and SEN, the higher the value, the 
more robust the recognition model. The horizontal axis of the ROC curve is specificity, and the vertical axis is 
sensitivity, which is used to evaluate the predictive ability of the model.

Experimental result analysis. In order to evaluate the effectiveness of the key algorithms of the proposed 
lung CAD system, the experiment is divided into four parts.

The first part is the ablation experiment of the feature extraction network, which aims to verify the effective-
ness of the proposed AE-VGG16 and AE-VGG19 feature extraction networks. The second part is the feature 
fusion experiment. According to the correlation coefficient, the features of different dimensions are selected. 
Combined with the serial or parallel feature fusion strategy, the fusion feature with the best recognition result 
is chosen as the input of the following stage recognition algorithm. The third part is the recognition algorithm 
experiment, including the comparison experiment before and after the improvement of the algorithm, and the 
comparison experiment with other different classifier algorithms to verify the validity of the MKL-SVM-IPSO 
recognition algorithm. The fourth section is a comparative experiment with the baseline algorithms of other lung 
CAD systems to demonstrate the competitiveness of the proposed lung CAD system. To ensure the robustness of 
the experimental results, each group of experiments was repeated 5 times, and the average of the experimental 
results was taken as the final experimental result.

Feature extraction network ablation experiments. First, in order to verify that VGGNets are more suitable for 
the research task, the more popular CNN architectures: ResNet18, ResNet34, ResNet50, DenseNet121 and 
MobilNet V2 are selected for comparative experiments. The results are shown in Table 1.

By analyzing the data in Table 1, we can find that VGG16 and VGG19 achieve better performance compared 
to ResNet18, ResNet34, ResNet50, DenseNet121 and MobilNet V2. Therefore, VGG16 and VGG19 are selected 
as the basic models of the feature extraction network.

As discussed above, through the AE-VGG16 and AE-VGG19 feature extraction models,25088 dimensional 
features were extracted ,respectively. On this basis, PCA was used for feature dimension reduction. Table 2 lists 
the cumulative variance contribution rates corresponding to different feature dimensions selected by the four 
feature extraction models. It is the proportion of the original data information carried by the selected principal 
components after dimension reduction.

(15)ACC =
TP + TN

TP + TN + FP + FN

(16)SEN =
TP

TP + FN

(17)PRE =
TP

TP + FP

(18)F1− score =
2 ∗ SEN ∗ PRE

SEN + PRE

Table 1.  Comparative experiment of different architectures. Significant values are in [bold]

Network Dimension ACC (%) SEN (%) SEN (%)

ResNet18 98 91.32 97.16 0.9326

ResNet34 98 92.98 95.28 0.938

ResNet50 98 85.75 94.81 0.8874

DenseNet121 98 91.93 95.64 0.9326

MobilNet V2 98 87.02 89.08 0.8946

VGG16 98 97.81 97.69 0.982

VGG19 98 96.4 94.85 0.9683
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It can be seen from Table 2 that the cumulative variance contribution rate of the first 98-dimensional features 
of the proposed AE-VGG16 and AE-VGG19 are both 99.925%, so retaining the first 98-dimensional features can 
represent almost all the information of the original data. The cumulative variance contribution rates of the first 
98-dimensional features of the VGG16 and VGG19 feature dimensions are 91.188% and 92.718%, respectively, 
and the cumulative variance contribution rates of the first 294-dimensional features in the feature dimension 
interval can reach 98.917% and 99.285%. The experimental results show that compared with VGG-16 and VGG-
19, the proposed AE-VGG16 and AE-VGG19 can still improve the feature expression ability of the network after 
PCA dimensionality reduction, and make the network pay more attention to the key information of nodules, and 
can retain the information of the original data to a greater extent with lower-dimensional features.

To verify the effectiveness of PCA dimensionality reduction, we compared the experimental results of reduc-
ing the depth features of AE-VGG16 and AE-VGG16 from the original 25088 dimensions to 98, 196 and 294 
dimensions, respectively. The results are shown in Table 3.

By analyzing the data in Table 3, we can find that reducing AE-VGG16 to 196 dimensions achieves better 
results than reducing to 98 and 294 dimensions. In order to reduce the amount of computation without sacri-
ficing too much accuracy, the 98-dimensional feature of AE-VGG16 is selected. Optimal results were obtained 
when AE-VGG19 was reduced to 98 dimensions, so the 98-dimensional features of AE-VGG19 were chosen.

Further, in order to verify whether the embedded attention mechanism can enhance the expressive ability 
of the feature extraction network, the original VGG network and the AE-VGG network were compared as the 
feature extractor respectively and the recognition results were carried out using the MKL-SVM-IPSO recognition 
algorithm. The results are listed in Table 4.

It can be seen from Table 4 that the ACC SEN F1-score indicators of the AE-VGG16 and AE-VGG19 networks 
with the introduction of the attention mechanism are better than the original networks VGG16 and VGG19. 
The ACC, SEN, and F1-score of AE-VGG16 reached 98.25%, 97.99%, and 0.9845, respectively, slightly improved 
compared with the original VGG16. The ACC, SEN, and F1-score of AE-VGG19 reached 99.39%, 99.84%, and 
0.9945, respectively. Compared with the original VGG19, the three indicators of AE-VGG19 were improved 
by 2.99%, 4.99%, and 0.0262, respectively. The above experimental results verify that embedding the attention 
mechanism into the feature extraction network can improve the feature expression ability.

Table 2.  The cumulative variance contribution rate corresponding to different feature dimensions selected by 
the feature extraction model. Significant values are in [bold]

Model

Dimension

49 (%) 98 (%) 147 (%) 196 (%) 245 (%) 294 (%)

VGG16 82.467 91.188 95.055 97.077 98.207 98.917

AE-VGG16 99.653 99.925 99.954 99.991 99.996 99.998

VGG19 84.328 92.718 96.131 97.853 98.771 99.285

AE-VGG19 99.653 99.925 99.977 99.991 99.996 99.998

Table 3.  Recognition results of reducing deep features to different dimensions using PCA. Significant values 
are in bold.

Network Dimension ACC (%) SEN (%) SEN (%)

AE-VGG16

98 98.25 97.99 0.9845

196 98.95 98.41 0.9904

294 97.11 98.5 0.9731

AE-VGG19

98 99.39 99.84 0.9945

196 98.51 98.95 0.9873

294 95 98.79 0.9584

Table 4.  The cumulative variance contribution rate corresponding to different feature dimensions selected by 
the feature extraction mode. Significant values are in bold.

Model CBAM Dimension ACC (%) SEN (%) F1-score

VGG16 98 97.81 97.69 0.9820

AE-VGG16
√

98 98.25 97.99 0.9845

VGG19 98 96.4 94.85 0.9683

AE-VGG19
√

98 99.39 99.84 0.9945
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Further, other attention modules SE-Net and SK-Net are embedded in the same position of VGG16, and 
the method proposed in this paper is used to build a feature extraction model. The feature vector after PCA 
dimension reduction is used as input. The recognition results on the test set with different attention modules 
embedded are listed in Table 5.

It can be seen from Table 5 that the networks embedded with the attention module are better than the original 
network VGG16. Among them, the performance of the model embedded in CBAM is the best, followed by SK-
Net and worse by SE-Net. In summary, the experiments in this paper will use the AE-VGG16 and AE-VGG19 
networks to extract 98-dimensional feature vectors, respectively.

To determine which features were learned by the proposed AE-VGG16 and AE-VGG19 networks and which 
regions in the input lung nodule ROI images were activated. We use gradient-weighted class activation map-
ping (Grad-CAM) to extract gradients from AE-VGG16 and AE-VGG19 respectively and highlight the most 
important  regions70. The Grad-CAM maps corresponding to the preprocessed sample image is shown in Fig. 6 .

Table 5.  Recognition results with different attention modules embedded. Significant values are in bold.

Network Module Dimension ACC (%) SEN (%) F1-score

VGG16 98 96.37 94.71 0.9686

VGG16 SE-Net 98 97.77 97.33 0.9788

VGG16 SK-Net 98 97.81 97.69 0.982

VGG16 CBAM 98 98.25 97.99 0.9845

Figure 6.  The Grad-CAM maps. (a)–(d) Preprocessed sample image. (e)–(h) Corresponding AE-VGG16 
image. (i)–(l) Corresponding AE-VGG19 image.
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In general, the red areas on the Grad-CAM maps represent the areas that have received the most attention 
in the network, while the blue areas are the areas that have received the least attention. By looking at Fig. 6, it 
was found that both AE-VGG16 and AE-VGG19 could almost focus on the nodular region. If the more related 
features between the two are fused, the performance of the model can be further improved.

Feature fusion experiment. In the experiment, CCA is selected as the feature fusion algorithm, and the cor-
responding feature vector is determined according to the value range of the correlation coefficient. And choose 
serial or parallel fusion strategies to compose fusion features, respectively. Table 6 shows the experimental results 
when different fusion methods and correlation coefficients ρ are determined. The serial and parallel fusion 
methods are denoted as “concat” and “sum”, respectively.

It can be seen from Table 6 that under the two fusion strategies, the fusion feature results when the correlation 
coefficient ρ > 0.8 is relatively better, so the subsequent experiments will use the fusion features corresponding 
to ρ > 0.8 . When using the serial fusion strategy, compared with AE-VGG16 without feature fusion, the ACC 
and SEN are improved by 1.31%, and the F1-score is improved by 0.012; compared with AE-VGG19 without 
feature fusion. Compared with that, the ACC has increased by 0.17%, and the F1-score has increased by 0.002. 
When using the parallel fusion strategy, compared with AE-VGG16 without feature fusion, the ACC, SEN and 
F1-score are improved by 0.96%, 1.14% and 0.0085, respectively. When the correlation coefficient ρ > 0.8 , 
compared with the parallel fusion strategy, the fusion features composed of the serial fusion strategy obtained 
better recognition results, the ACC and SEN were increased by 0.35% and 0.17%, respectively, and the F1-score 
was improved. 0.0035. Although there is no significant difference in performance between our proposed method 
and only AE-VGG19, the ACC increases by 0.17%, and the F1-score also increases by 0.2%, considering that our 
final proposed model is more robust.

Therefore, the first 59-dimensional features with a correlation coefficient ρ > 0.8 are selected. The fusion 
features obtained by the serial fusion strategy are used as the input of the next-stage recognition algorithm.

In addition, we performed an experiment of directly using CCA for fusion to verify the effectiveness of the 
proposed method. The features of AE-VGG16 and AE-VGG19 do not use PCA for dimensionality reduction, 
but directly use CCA for feature fusion, and the experimental results obtained are shown in Table 7.

By comparing the experimental results in Table 6 and Table 7, we found that compared with the method 
that directly uses CCA for feature fusion, the method of dimensionality reduction and fusion can achieve better 
results. Although direct use of CCA for feature fusion can fuse the more relevant features between AE-VGG16 
and AE-VGG19, it will lose part of the feature information, thereby reducing the recognition results. At the same 
time, the dimensionality reduction and fusion method proposed by us finally obtains a lower dimensionality of 
fusion features, which can reduce the computational load of the classifier in the next stage.

Recognition algorithm experiment. In order to verify the effectiveness of the proposed MKL-SVM-IPSO rec-
ognition algorithm, it is compared with the recognition results of the SVM using the PSO algorithm for a single 
RBF kernel and the MKL-SVM using the PSO algorithm to combine the RBF and the polynomial kernel func-
tion in a convex manner. For comparison, the results are shown in Table 8. The ROC curves of the proposed 

Table 6.  Experimental results of selecting different feature fusion methods. Significant values are in bold.

Model Fusion method ρ Dimension ACC (%) SEN (%) F1-score

AE-VGG16 98 98.25 97.99 0.9845

AE-VGG19 98 99.39 99.84 0.9945

AE-VGG16
+
AE-VGG19

con

ρ ≥0.9 84 99.12 99.04 0.9927

ρ ≥0.8 118 99.56 99.30 0.9965

ρ ≥0.7 138 98.77 98.91 0.9891

ρ ≥0.6 152 97.98 96.94 0.9812

AE-VGG16
+
AE-VGG19

sum

ρ ≥0.9 42 97.72 96.09 0.9800

ρ ≥0.8 59 99.21 99.13 0.9930

ρ ≥0.7 69 98.68 98.43 0.9882

ρ ≥0.6 76 98.25 97.83 0.9854

Table 7.  Experimental results of direct feature fusion. Significant values are in bold.

Model Fusion method ρ Dimension ACC (%) SEN (%) F1-score

AE-VGG16
+AE-VGG19 concat

ρ ≥0.9 156 95.79 97.78 0.9649

ρ ≥0.8 198 96.49 97.29 0.9649

AE-VGG16
+AE-VGG19 sum

ρ ≥0.9 79 97.02 98.99 0.9759

ρ ≥0.8 99 96.45 96.19 0.9704
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MKL-SVM-IPSO algorithm in the training phase compared with other algorithms are further demonstrated 
in Fig. 7. AUC (Area Under the ROC) in Table 8 is the area under the ROC curve, and the larger the value, the 
higher the recognition effect.

It can be seen from Table 8 that the proposed MKL-SVM-IPSO has the most substantial parameter optimi-
zation ability, and the RBF-SVM-PSO algorithm has the lowest recognition result. The AUC of the proposed 
MKL-SVM-IPSO recognition algorithm is the best at 0.9989; MKL-SVM-PSO is the second, and AUC is 0.9981. 
Figure 7 shows the fitness curve of the training phase of the proposed MKL-SVM-IPSO recognition algorithm 
by selecting the serial fusion strategy and the corresponding first 59-dimensional features when the correlation 
coefficient is ρ > 0.8 as the input.

As shown in Fig. 7, the proposed MKL-SVM-IPSO has excellent parameter optimization ability, and the opti-
mal fitness value can reach 0.9956. Although the optimal fitness value of the particle in the early search process 
has always been lower than 0.92, it can quickly jump out of the local optimal solution after only 20 iterations, 
and the optimal fitness value quickly rises above 0.98. And continue to search for better values, and finally obtain 
the optimal global solution. The ROC curves of the proposed MKL-SVM-IPSO algorithm in the training phase 
compared with other algorithms are further shown in Fig. 8.

As shown in Fig. 8, the AUC value of the proposed algorithm can reach 0.9989. The above experimental 
results show that the proposed MKL-SVM-IPSO can improve the convergence accuracy of the particles, thereby 
improving the recognition performance of lung nodules.

To further verify the effectiveness of the proposed MKL-SVM-IPSO, it is compared with the classical classi-
fiers KNN, RF, FCL with softmax, and AdaBoost, respectively. The results are shown in Table 9.

It can be seen from Table 9 that the proposed MKL-SVM-IPSO has the best recognition performance. To 
sum up, the values of all evaluation indicators are above 90%, and the standard deviation of performance indi-
cators is below 0.6%, indicating that the extracted fusion features can fully describe the critical information of 
lung nodules. At the same time, by analyzing the recognition performance of different classifiers combined with 
fusion features, it is verified that the proposed MKL-SVM-IPSO recognition algorithm has better performance.

Comparison experiments with baseline algorithms of other lung CAD systems. In order to further evaluate 
the effectiveness of the proposed key algorithm in the lung CAD system, some experiments performed on the 
LUNA16 dataset were selected for comparison, and the results are listed in Table 10.

It can be seen from Table 10 that the  literature37 uses the fine-tuned VGG16 model to extract deep features, 
and combines with the input SVM to identify whether the candidate ROI is a nodule.  Reference38 used the bilin-
ear CNN model composed of VGG16 and VGG19 as the feature extractor, and input SVM to realize lung nodule 
recognition.  Reference55 concatenates handcrafted features with deep features extracted by VGG16 model, and 
uses a Simulated Annealing algorithm combined with PSO to identify lung nodules. Compared with the above 
methods, the proposed lung CAD system achieves better recognition results, has certain competitiveness, can 

Table 8.  Results of different recognition algorithms. Significant values are in bold.

Kernel Function PSO IPSO ACC (%) SEN (%) F1-score AUC 

RBF
√

94.82 95.37 0.9567 0.9802

RBF+ poly
√

98.68 99.04 0.9868 0.9981

RBF+ poly
√

99.56 99.30 0.9965 0.9989

Figure 7.  The fitness curve of the proposed algorithm.
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effectively avoid the occurrence of false detection and missed detection, and improve the recognition accuracy 
of lung nodules.

To verify the effectiveness and robustness of the proposed model, in addition to the LUNA16 experimental 
dataset, the public dataset  DeepLesion53was added as a test set to verify the generalization ability of the model. 
DeepLesion is the largest open dataset of multi-category, lesion-level annotated clinical medical CT images 
published by the NIH Clinical Center so far, including 32,120 CT slices from 4,427 anonymous patients, with 
1-3 lesions in each image. A total of 928,020 sheets with 32,735 lesions were included. The experimental test set 
selected 300 images, including 170 nodules and 130 non-nodule images. The experimental results show that the 
test results of the proposed method on DeepLesion are all better, the ACC, SEN and F1-score reached 92.33%, 
92.68% and 0.9406, and the evaluation indicators can all reach more than 92%. To better evaluate the performance 
of the proposed system, the confusion matrices on the LUNA16 and DeepLesion datasets are shown in Fig. 9a, b.

By analyzing Fig. 9a, b, we can see that the proposed method is effective and can achieve about 100% correctly 
classified true positives and 99.3% true negative samples on LUNA16 and about 100% correct classification on 
DeepLesion of true positives and 85.37% of true negative samples, achieving competitive results. The above 
experiments verify that the proposed lung CAD system is effective for multi-center data, and the model has 
certain effectiveness and generalization ability.

Figure 8.  ROC curves of different recognition algorithms.

Table 9.  Recognition performance of different classifiers. Significant values are in bold.

Classifiter ACC (%) SEN (%) F1-score (%)

Softmax 96.740.3 98.650.3 97.190.5

RF 96.330.4 96.900.5 96.50.6

KNN 93.73 90.84 91.82

Adaboost 97.84 98.06 97.94

MKL-SVM-IPSO 99.560.2 99.300.3 99.650.2

Table 10.  Recognition performance of different classifiers. Significant values are in bold.

References Year Datasets Methods ACC(%) SEN(%)

Shi et al.37 2019 LUNA16(1400 images) Fine-tuning VGG16 features + SVM 87.8 87.2

Mastouri et al.38 2020 LUNA16 (3186 images) Two-stream CNNs (VGG16 and VGG19) + SVM 91.99 91.85

Chang et al.55 2021 LUNA16(1140 images) handcrafted features + VGG16 + Cascade + Hybrid Swarm 
Intelligence Optimization for MKL-SVM 95.88 91.97

proposed 2022 LUNA16(1140 images) AE-VGG16+AE-VGG19 + CCA+ MKL-SVM-IPSO 99.56 99.30
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Discussion and conclusion
This paper proposes a lung CAD system based on the HDL model, which aims to correctly identify lung nodules 
and reduce the false detection and missed detection of nodules. The research mainly focuses on three aspects: 
feature extraction, feature fusion and recognition algorithm. First, in order to improve the feature extraction 
ability of the model, CBAM was embedded in VGG16 and VGG19, respectively, and AE-VGG16 and AE-
VGG19 were proposed to extract features, and the more expressive nodule features were obtained. Then, through 
PCA dimensionality reduction and CCA fusion, fusion features with strong feature expression ability and low-
dimensional characteristics are obtained. Finally, the MKL-SVM-IPSO algorithm is proposed for lung nodule 
identification. It uses adaptive inertia weights to speed up parameter optimization, further introduces dynamic 
learning factors, and adjusts the self-learning ability and collective learning ability of particles, so that the model 
can find the global optimum faster. optimal solution. Using the LUNA16 dataset, the ACC, SEN and F1-score 
reached 99.56%, 99.3% and 0.9965, respectively. The key algorithm of lung CAD system proposed in this paper 
has strong robustness. It can achieve good recognition accuracy and sensitivity, thus effectively avoiding false 
detection and missed detection of nodules.

Although the proposed lung CAD system has achieved better performance, there are still many problems to 
be studied. The next step will be to improve from the following three aspects: 

(1) The proposed lung CAD system covers feature extraction, feature dimensionality reduction, feature fusion 
and nodule recognition, with a wide range of steps. Model pruning techniques will be used to build light-
weight networks to extract features and reduce processes. Improved feature fusion algorithm to further 
improve the performance of lung CAD systems.

(2) Compared with natural scene images, medical images are difficult and expensive to collect, resulting in 
the scarcity of large-scale medical image datasets with labels. Data augmentation will be achieved through 
data augmentation technology to alleviate the challenge of data scarcity

(3) The main limitation of deep learning lies in the dimensionality disaster and unexplainability of deep fea-
tures. The above problems will be solved by fusing manual features and depth features, and designing a 
well-designed feature selection and feature fusion algorithm.

Data availability
The datasets used and analysed during the current study available from the corresponding author (X.H) on 
reasonable request.
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