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Summary

Adsorption-driven osmotic heat engines offer an alternative way for harvesting
low-gradewaste heat below 80�C. In this study, we performed a high-throughput
computational screening based on grand canonical Monte Carlo simulations to
identify the high-performance metal-organic frameworks (MOFs) from 1322
computationally ready experimental MOF structures for adsorption-driven os-
motic heat engines with LiCl-methanol as the working fluid. Structure-property
relationship analysis reveals that MOFs exhibiting high energy efficiency possess
large working capacity, pore size and surface area, and moderate adsorption
enthalpy comparable to the evaporation enthalpy. Furthermore, machine
learning is employed to accelerate the computational screening for satisfied
MOFs via the structure properties. The optimal structure properties of the
MOFs are further identified via the ensemble-based regression model by
optimizing the energy efficiency via the genetic algorithm, which shed light
on rationally designing and fabricating MOFs for desired heat-to-electricity
conversion.

Introduction

Most of global industrial and civil energy supply originates from the fossil resources. The nature and envi-

ronment have suffered much from the over exploitation and massive combustion of fossil fuels (Chu and

Majumdar, 2012). Over 70% of the primary energy is discharged to the atmosphere in the form of waste

heat (Forman et al., 2016), of which over 60% belongs to low-grade waste heat with the temperature below

100�C (Forman et al., 2016). To efficiently harvest such low-grade waste heat, efforts have been devoted to

developing suitable heat-to-power conversion technologies such as semiconductor-based thermoelectric

devices and alternative thermodynamic cycles (Bell, 2008; Tritt and Subramanian, 2006; Chen et al., 2003;

Long et al., 2020; Lee et al., 2014).

Recently, osmotic heat engines (OHEs) consisting of a solution regenerationmodule and power generation

module have attracted increasing attentions due to their higher theoretic efficiency than conventional

heat-to-electricity technologies for harvesting low-grade waste heat (Zhao et al., 2020a; Hu et al., 2019).

In the solution regeneration module, salt solution is driven by the low-grade heat source and separated

into concentrated and diluted streams via distillation technologies such as membrane distillation (MD)

and multieffect distillation (MED) (Long et al., 2018; Li et al., 2020b). The Gibbs free energy of mixing of

the regenerated solutions at different concentrations is then converted to electric power via reverse elec-

trodialysis (RED) or pressure-retarded osmosis (PRO) power generation system (Ortega-Delgado et al.,

2019; Post et al., 2007). The RED process is driven by the transmembrane salinity gradient, in which cations

and anions diffuse through cation exchange membranes and anion exchange membranes, thus to build up

the ionic current and extract electricity by an external load (Chanda and Tsai, 2019; Tian et al., 2020; Long

et al., 2019). In the PRO process, the low concentration solvent permeates into the pressurized high

concentration side under osmotic pressure difference, then is depressurized via a hydro-turbine for power

generation (Benjamin et al., 2020).

Tamburini et al. (Tamburini et al., 2017) investigated an OHE which couples MED with RED to convert

low-grade heat into electric power, and a power density of about 18W/m2 was obtained at 5 M NaCl so-

lution when working between 90�C and 25�C. Lee et al. (Lee et al., 2015) employed a multi-stage vacuum
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MD integrated with PRO to harvest waste heat, achieving a maximum power density of 9.7W/m2.

Long et al. (Long et al., 2017) presented an alternative hybrid membrane-driven OHE composed of

MD and RED; an electrical efficiency of 1.15% was achieved with the heat source temperature of 60�C
and 5 mol/kg NaCl solution as working fluid. Adsorption-driven desalination (AD) as thermally driven

technology is promising for solution regeneration due to the relative low energy consumption and

low operating temperature (Chua et al., 1999; Dakkama et al., 2017; Olkis et al., 2019; Thu et al.,

2017). Olkis et al. (Olkis et al., 2018) proposed an AD-RED to extract electricity from waste heat with

an exergy efficiency of 30%, indicating the potential application of the AD-RED hybrid system. Zhao

et al. (Zhao et al., 2020a, 2020b) presented an adsorption-driven cogeneration system for simultaneously

providing cooling power and generating electricity by utilizing low-grade heat with a maximum exergy

efficiency of 33.9%.

The performance of adsorption-driven solution regeneration process is mainly determined by the adsorp-

tion characteristics of the adsorbents, thus selecting high-performing adsorbents is critical to improve the

energy efficiency of adsorption-driven OHEs. There are various adsorbents that can be employed for

adsorption, such as silica gel, activated carbons, zeolites, and metal-organic frameworks (MOFs) (Wu

et al., 2016; Erd}os et al., 2018; Li et al., 2020a). Among these adsorbents, MOFs attracted considerable at-

tentions because of their outstanding adsorption performance due to the high volumetric surface area,

structural diversity, and structural tunability (Li et al., 2016, 2019b; Altintas et al., 2018; Kirchon et al.,

2018). Screening potential MOFs from a vast number of MOF databases for adsorption-driven heat pumps

and chillers has been extensively investigated in recent decades (Liu et al., 2020; Shi et al., 2020). A high-

throughput computational screening of MOFs for alcohol-based adsorption-driven heat pumps based on

grand canonical Monte Carlo has been conducted in our previous study (Li et al., 2019a), from which the

correlation between MOF structure property and their coefficient of performance (COP), as well as the

top performers with the highest COP, were identified. A computational screening of 2930 MOFs for

adsorption-driven heat pumps and chillers has also reported, and six structures with the highest working

capacities were obtained (Erd}os et al., 2018). Shi et al. (Shi et al., 2020) conducted a high-throughput

computational screening of 6013 computation-ready experimental MOFs to select the suitable meth-

anol-MOF working pair for adsorption-driven heat pumps, and 30 MOFs were selected as promising

candidates.

To achieve appealing energy conversion efficiency of adsorption-driven OHEs, high-throughput computa-

tional screening of high-performing MOF adsorbents is highly demanded. Therefore, in this work, high-

throughput computational screening of MOF adsorbents for the adsorption-driven heat engines with

LiCl-methanol solutions as the working fluids has been carried out. Methanol was used as solvents owing

to its high evaporation pressure that is favorable for the effective mass transfer within adsorbents. The

methanol adsorption performance of 1322 computationally ready experimental (CoRE) MOFs was evalu-

ated by the grand canonical Monte Carlo (GCMC) simulation, from which the energy conversion efficiency

to electricity of eachMOF was derived for the first time. Moreover, the relationship betweenMOF structure

property and energy efficiency of adsorption-driven heat engines is systematically analyzed to facilitate the

rational design of high-performance MOFs in future. In order to further accelerate the computational

screening of MOF adsorbents, machine learning by various classification and regression models optimized

by the Bayesian optimization has been conducted, demonstrating a more efficient approach to identify top

performers from a given database without exhaustive computation. The correlation between MOF struc-

ture property and energy efficiency is validated, and the optimal structure properties are identified via

the ensemble-based regression model by optimizing the energy efficiency based on the genetic algorithm

(GA). The structure-property relationship extracted in this work may provide insightful guidance for quick

exploration of high-performanceMOFs and facilitates rational design of efficient MOFs for upgraded heat-

to-electricity conversion of adsorption-driven OHEs.

Results and discussion

Adsorption-driven osmotic heat engines

As shown in Figure 1, the adsorption-driven OHE consists of an adsorption-driven solution regeneration

process and a power generation process. In the solution regeneration process, the salt-methanol solution

is separated into concentrated and diluted solutions via the adsorption-driven separation cycle driven by

the external low-grade heat. In the power generation process, a PRO is employed to covert the Gibbs free

energy of mixing of the regenerated solutions at different concentrations via a hydro-turbine.
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The isosteric diagram of the adsorption-driven separation cycle is shown in Figure 2. The adsorption-driven

separation cycle originates from the alternatively operated adsorption process and desorption processes.

The working salt-methanol solution is evaporated in the evaporator at the environment temperature. The

methanol vapor is then adsorbed by the adsorbent meanwhile releasing the sorption heat. The adsorbent

is cooled by the external cooling circuit. The adsorbent is then heated for desorption with pressure

increased to the condensing pressure. In the desorption process, driven by the external heat source, meth-

anol is desorbed from the adsorbent and then enters into the condenser for condensing. Thereafter, the

adsorbent is further cooled for adsorption. The condensing temperature is also maintained at the environ-

ment via external cooling circuit. Although the evaporating and condensing temperatures are identical, the

pressure of evaporating and condensing processes is different. The dissolved salt in the salt-methanol so-

lution lowers its saturation pressure, which could be calculated via the solution activity:

psat;ss = aspsat;ps; where as = expð� vCMFÞ (Equation 1)

where v is the number of dissociated ions and C is the molarity, M is the mole mass, and F is the osmotic

coefficient. The subscripts ss and ps denote salt solution and pure solution, respectively.

Total heat in the methanol regeneration process (isosteric heating and isobaric desorption) is calculated

according to the following equation (Supplemental Information):

Qreg zmsbc
sb
p DT � 1

M
rliqCDadsHDDWmsb (Equation 2)

whereDW is the working capacity of the AD system, and W is the adsorption uptake that is determined by

process temperature and pressure. csbp is the specific heat capacity of the adsorbent.msb is the mass of the

adsorbent. rliqis the density of the liquid methanol. DT = T3 � T1is the temperature difference in the heat-

ing process. CDadsHD is the average adsorption enthalpy, which is calculated as follows:

CDadsHD =
DadsHmax +DadsHmin

2
(Equation 3)

where DadsHmaxandDadsHminare the adsorption enthalpy at the maximum andminimum adsorption uptakes

in the adsorption process.

Figure 1. Schematic diagram of the adsorption-based osmotic heat engine
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Concentrated and diluted salt-methanol solutions generated in the adsorption-driven separation cycle

enter into the PRO module for power generation. In the PRO process, driven by the osmotic pressure dif-

ference between the draw and permeate solutions, the solvent permeates through a semipermeable

membrane from the low concentration side to the pressurized high concentration side. The transmem-

brane solvent is then depressurized through a turbine for power generation. The work of the downstream

PRO system achieves its maximum value of WPRO = nRFT1C1DWmsbwhen the produced pure methanol in

the adsorption-driven solution regeneration system equals to the transmembranemethanol in the PRO sys-

tem. In this case, the applied pressure equals to the osmotic pressure at the working concentration C1

(initial salt concentration in the evaporator). Relevant analysis can be found in the Supplemental

Information.

The energy efficiency of the adsorption-driven OHE is calculated as follows:

h =
W

Qreg
=

nRFT1C1DW

csorbentp DT � 1
Mw

rliqCDadsHDDW
(Equation 4)

Generally, the working solutions in the adsorption-driven OHEs can be prepared by dissolving organic or

inorganic salts into the solvents such as water, methanol, and ethanol. Compared to water solutions, meth-

anol solutions are employed here due to its high vapor pressure that is favorable for the mass transfer (de

Lange et al., 2015a). Due to relatively large solubility and osmotic coefficient, here LiCl-methanol solution is

employed as the working fluid of the OHEs. According to Equation (4), the energy efficiency of OHEs using

different MOF adsorbents can be evaluated under the given working fluid and operation conditions. Here,

the evaporation and condensation temperatures are both 20�C. The molality of the LiCl-methanol working

concentration is 6mol/kg. The saturation pressure of methanol at 20�C is 13,030 Pa. The saturation pressure

of 6 mol/kg LiCl-methanol solution at 20�C is 4480 Pa. Our GCMC simulations were performed at Tads =

293.15 K, Peva = 4480 Pa, and Tdes = 353.15 K, Pcon = 13030Pa to determine the corresponding working ca-

pacity and adsorption enthalpy, thus to calculate the energy efficiency.

Relationships between structure property, adsorption performance, and the energy

efficiency

The solution separation degree of the LiCl-methanol solution in the adsorption-driven regeneration pro-

cess plays a dominant role on the overall heat-to-electricity conversion efficiency. High working capacity

(DW) suggests that the working salt solution can be better separated, indicating more work can be ex-

tracted in the following the power generation process. The working capacity is significantly correlated

with the structure property and adsorption characteristics of the MOFs including largest cavity diameter

Figure 2. Isosteric diagram of the adsorption-driven separation cycle

The temperatures during the evaporating and condensing processes are equal (Teva = Tcon). The evaporating pressure

(Peva) is lower than the condensing pressure (Pcon) due to dissolved salts.
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(LCD), available pore volume (Va), accessible surface area (ASA), and heat of adsorption (CDadsHD). Such cor-

relations were obtained by analyzing the results from the first-round screening of 1322 CoRE MOFs based

on GCMC simulations. The relation between the LCD and the working capacity is depicted in Figure 3. The

capillary condensation may occur when the pore diameter is larger than the critical diameter Dc =

4sTc=ðTc �TÞ at the condensing temperature T (Coasne et al., 2013; Canivet et al., 2014), where s is the

approximate size of a methanol molecule (i.e. 0.36 nm). Tc is the critical temperature, which 512.6 K for

methanol in this work. In present working conditions, Dc = 33.6 Å at 293.15 K. All the maximum pore sizes

of the investigated MOFs are smaller than the critical diameter for methanol condensation, indicating the

reversible adsorption behavior and unlikely capillary condensation under given working conditions. Most

MOFs exhibited the pore sizes between 4 Å �10 Å with the lower working capacity than 0.2 g/g. DW in-

creases with increasing LCD until 12 Å where the maximum value of approximately 1.4 g/g is achieved.

When LCD is greater than 14 Å, the working capacity decreases. MOFs with a relatively high working ca-

pacity (DW > 0.8 g/g) exhibited pore sizes between 8 Å �16 Å, Va > 1000 cm3/g, ASA>3300 m2/g, and

CDadsHDof about �1.25MJ/kg that is close to the evaporation enthalpy of methanol (CDadsHD=1.18MJ/kg).

CDadsHD generally decreases with the increasing pore size, similar to the previous finding for MOF-meth-

anol, MOF-ethanol, and MOF-water working pairs for adsorption heat transformers (de Lange et al.,

2015a, 2015b).

The correlations between the MOF structure property and the energy efficiency of adsorption-driven OHE

are depicted in Figure 4. Most MOFs with the pore sizes between 4 Å-10 Å exhibited the energy efficiency

less than 5%. The energy efficiency generally increases with LCD until 16 Å. Such a trend can be ascribed to

the increased methanol working capacity (DW) of MOFs with the LCD as presented in Figure 3C, which

directly contributes to the improved energy efficiency according to Equation 4. MOFs with large pore sizes

or pore volumes are a prerequisite for the desired stepwise adsorption isotherm that is favorable for solu-

tion separation and the energy efficiency (de Lange et al., 2015b). The stepwise adsorption in large pore-

sizedMOFs under the given operating conditions along with the high working capacity and suitable heat of

adsorption is beneficial for high energy efficiency.

Figure 3. Predicted DW values of 1322 CoRE MOFs as a function of LCD

The data were colored by (A) MOF numbers, (B) Va, (C) ASA, and (D) � CDadsHD. The number of the MOFs in each square of

(A) was calculated with an interval of LCD = 2 Å and DW = 0.2 g/g.

ll
OPEN ACCESS

iScience 24, 101914, January 22, 2021 5

iScience
Article



According to Equation (4), at given working solution and concentration, the energy efficiency is mainly

determined by the working capacityDW and enthalpy of adsorption � CDadsHD. Therefore, we further inves-

tigated the relationship between energy efficiency, DW, and CDadsHD as shown in Figure 5, from which the

energy efficiency exhibited a positive dependence onDW. HigherDW is favorable for the energy efficiency.

WhenDW is greater than 0.2 g/g, the energy efficiency exceeds 5%, after which no obvious enhancement in

energy efficiency with DW can be observed. Higher DW is beneficial for the work extracted since larger DW

means the well separated salt solution which augments the extracted work in the power generation pro-

cess. Furthermore, when CDadsHD is located between �0.8 and �1.4 MJ/kg, the energy efficiency is higher

than 5%, implicating the moderate CDadsHD is preferential for energy efficiency. To further illustrate the im-

pacts of structure property and adsorption performance of MOFs on the energy efficiency, principle

component analysis (PCA) was conducted using four descriptors (LCD, ASA, DW, and � CDadsHD) as shown
in Figure 6. The obvious correlation between four descriptors and energy efficiency suggested that the

large LCD and ASA, high DW, and moderateCDadsHD are favorable for energy efficiency. The increased en-

ergy efficiency with the LCD, ASA, and DW can be obviously observed in Figure 6A, which is consistent with

previous phenomena that both large LCD and ASA are favorable for DW that in turn enhances the energy

efficiency of adsorption-driven OHEs. In constrast, the energy efficiency is not increased with � CDadsHD.
Similar to the observation in Figure 5, either too high or too low �CDadsHD is not favorable for the energy

efficiency owing to the low DW of MOFs with too high or too low�CDadsHD as shown in Figure 3D. On

the contrary, the MOFs with moderate �CDadsHD are preferential for high DW, thus resulting in high energy

efficiency of adsorption-driven OHEs as shown in Figure 6.

Henry’s constant (KH) that describes the affinity of adsorbents toward methanol at extremely low pressure

is also considered. As shown in Figure 7, the energy efficiency first increases with KH. At about KH = 10�5

mol/(kg$Pa), the maximum energy efficiency is achieved. Thereafter, the energy efficiency decreases with

KH. It is highly possible that MOFs with small KH values are favorable for stepwise adsorption, which will

benefit the working capacity of MOFs (Figure 7B) and thus improve the energy efficiency. Therefore, to

guarantee a high energy efficiency, small KH values and high working capacity are required. The selected

Figure 4. Predicted energy efficiency of 1322 CoRE MOFs as a function of LCD

The data were colored by (A) MOF numbers, (B) Va, (C) ASA, and (D) � CDadsHD. The number of the MOFs in each square

was calculated with an interval of LCD = 2 Å and DW = 0.2 g/g.
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top 10 MOFs exhibiting the highest energy efficiency were presented in Table S1, all of which possess

small KH, high LCD and ASA, and moderate � CDadsHDas demonstrated above. Experimental details

on the synthesis, characterization, and methanol adsorption isotherm of the top performing MOFs

were provided in Supplemental Information, indicating the consistency between GCMC simulation

and experimental measurement.

Machine learning

Computational screening of high-performing MOFs from a vast number of MOF structures for the adsorp-

tion-driven OHE by GCMC simulations could still be time consuming. Machine learning offers an efficient

approach to accelerate the screening processes via obtained data for training. The main structure proper-

ties of the MOFs determining the system performance are illustrated by LCD, ASA, Va, void fraction (VF),

density, and KH. Here, different machine learning models were employed to predict the energy efficiency

by using the data of the 1322 CoRE MOFs obtained from high-throughput computational screening based

onGCMC simulations. Eighty percent of the 1322 CoREMOF data are randomly chosen for training and the

remaining 20% are used for validation. The hyper-parameters of the machine learning models are adjusted

by the Bayesian optimization with the acquisition function of expected-improvement-per-second-plus.

Each machine learning model was trained 50 times to alleviate the random error, thus to accurately repre-

sent the quantitative correlation between descriptors and energy efficiency.

Figure 5. Predicted energy efficiency of 1322 CoRE MOFs as a function of dw colored by � CDadsHD

Figure 6. Principle component analysis (PCA) of the impacts of LCD, ASA, DW, and CDadsHD on the energy

efficiency of 1322 CoRE MOFs

(A and B) (A) Based on the first and the second principle components and (B) based on the first and the third principle

components.

ll
OPEN ACCESS

iScience 24, 101914, January 22, 2021 7

iScience
Article



As shown in Figure 8, classification machine learning models are employed to screen the desired MOFs via

ensembles (boosted trees, bagged trees), k-nearest neighbor (KNN), decision trees (DTs), and support vec-

tor machines (SVMs). The hyper-parameters of themodels are adjusted by the Bayesian optimization. Here,

an energy efficiency above 5% is classified as high energy efficiency. An energy efficiency between 3% and

5% is defined as medium energy efficiency. The energy efficiency less than 3% is classified as low energy

efficiency. The ensemble-based model shows the highest overall prediction accuracy of 88.3%, followed

by the KNN, DT, and SVM models. By using the ensemble-based model, 91.7% of MOFs with the antici-

pated high energy efficiency (>5%) and 91.7% of the MOFs with undesired low energy efficiency (<3%)

can be accurately predicted. The accuracy for predicting the MOFs with moderate energy efficiency is

78.9%. Although the overall prediction accuracy of the SVM model is the least for predicting the MOFs

with moderate energy efficiency, 95.8% of MOFs with the anticipated high energy efficiency and 97.0%

of the MOFs with undesired low energy efficiency can be predicted by the SVM model.

To step further, we conduct the regression machine learning to illustrate the quantitative relation of the

structure properties of the MOFs with the energy efficiency via DTs, ensembles (boosted trees, bagged

trees), Gaussian process, and SVM. R2 was adopted to describe the accuracy of each model. As shown

in Figure 9, despite the limited number of MOFs, the R2 of all the chosen regression models is above

0.75. The highest accuracy of R2 = 0.84 is obtained by the ensemble-based regression model, followed

by the Gaussian process model (R2 = 0.79) and DTmodel (R2 = 0.78) and SVMmodel (R2 = 0.76). Comparing

to the predicted results by GCMC, 98 out of 120 MOFs with anticipated high energy efficiency (larger than

5%) are successfully identified in the ensemble-driven regression model. The deviation of predicted energy

efficiency by the ensemble regression model from GCMC simulation is less than 1% for 98.6% of 1322

structures.

Compared to the computation time by GCMC, screening via machine learning exhibits overwhelming

advantage. The time consumption for identifying one MOF structure via GCMC is several orders of magni-

tude larger than that via the machine learning, indicating the MOF screening could be dramatically accel-

erated via machine learning. Compared to the regression models, the classification models could offer

more accurate predictions for high energy efficiency (>5%). In the SVM-based classification model,

95.8% of the anticipated high energy efficiency (>5%) obtained in the GCMC can be identified. In the

ensemble-based regression model, 81.7% of the high energy efficiency (>5%) is identified.

However, the classification models can only predict the energy efficiency intervals via the MOF structure

and properties and fail to predict the specific value of the energy efficiency. Therefore, the regression

model was also used to identify the optimal structure properties of MOFs for energy efficiency. The GA

is employed to conduct the optimization through the ensemble-based regression model with maximum

energy efficiency as the objective function. Details of the optimization process can be found in the Supple-

mental Information. Optimal structure properties of the MOFs are LCD = 15.00 Å, VF = 0.84, ASA = 3583

m2/g, Va = 1682.88 cm3/g, density = 0.6 g/cm3, and KH = 3.75 3 10�5 mol/kg/Pa. All the optimal structure

properties are located in the suggested intervals in the aforementioned analysis. Due to the fitting errors of

the machine learning, the maximum energy efficiency (6.53%) is slightly less than the maximum energy

Figure 7. Relationship between energy efficiency and structure properties

(A and B) (A) Energy efficiency vs KH colored by ASA; (B) working capacity vs KH colored by energy efficiency.
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efficiency predicted using the GCMC simulations. The obtained optimal structure properties of MOFs

could facilitate the rational design of efficient MOFs for upgraded heat-to-electricity conversion.

Conclusion

In this study, for the first time, a high-throughput computational screening based on GCMCwas conducted

to reveal the relationship between structure property of 1322 CoRE MOFs and the heat-to-electricity en-

ergy conversion efficiency for adsorption-driven OHEs under given operation conditions with LiCl-meth-

anol as the working fluids. MOFs with LCDs between 8 Å and 16 Å exhibited the high working capacity

and relatively low adsorption enthalpy, which are favorable for the energy efficiency. PCA analysis revealed

that MOFs with the high working capacity, high pore size and surface area, and moderate adsorption

enthalpy comparable to the evaporation enthalpy exhibited the high energy efficiency. Moreover, small

KH also benefits the energy efficiency possibly due to the presence of stepwise adsorption for MOFs

with small KH. Machine learning is also conducted to accelerate the computational screening of MOFs

for adsorption-driven OHEs. The relationship between the energy efficiency and structure properties of

MOFs (LCD, ASA, Va, VF, density, and KH) is corelated via classification and regression machine learning

models optimized by the Bayesian optimization. Compared to the regression models, the classification

models could offer more accurate predictions for MOFs with high energy efficiency. The optimal structure

properties of MOFs are identified via the ensemble-based regression model through the GA. It should be

noted that the optimal structure properties are obtained based on the limited 1322 CoREMOFs, whichmay

vary as more MOFs are considered. Moreover, although the screening process was conducted under spe-

cific working conditions, the tendencies in the structure property relationship may be also applicable to

Figure 8. Confusion matrix for predictions of energy efficiency

(A–D) (A) Ensembles, (B) k-nearest neighbor (KNN), (C) decision trees (DTs), and (D) support vector machines (SVMs).
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different operating conditions and working concentrations of the LiCl-methanol solution. The structure-

property relationship extracted from this work provides insightful guidance for quick exploration of

high-performance MOFs and facilitates rational design of efficient MOFs for upgraded heat-to-electricity

conversion of adsorption-driven OHEs.

Limitations of the study

This study screens MOFs for adsorption-driven OHEs via GCMC simulations and machine learning, which fa-

cilitates rational design and selection of efficient MOFs for upgraded heat-to-electricity conversion. In present

study, the LiCl-methanol is employed as the working fluid. Future work is required to screen appropriate salt-

methanol working fluids, thus to enhance the energy efficiency of the adsorption-driven OHEs. Futhermore,

experimental studies can also be conducted to validate the obtained optimal MOF structure properties.

Resource availability
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Further information and requests for resources and reagents should be directed to and will be fulfilled by
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The data that support the findings of this study are available from the corresponding author upon reason-
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Figure 9. Energy efficiency predicated via various regression machine learning models

(A–D) (A) Ensembles, (B) Gaussian process, (C) decision trees, and (D) support vector machines.
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Methods

All methods can be found in the accompanying Transparent methods supplemental file.
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Supplemental information can be found online at https://doi.org/10.1016/j.isci.2020.101914.
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Transparent Methods 

Thermodynamic description of the adsorption-driven osmotic heat engine  

Solution regeneration process. The isosteric diagram of the adsorption-driven 

regeneration cycle is presented in Figure 2, which consists of four steps, two for 

adsorption (isosteric cooling, isobaric adsorption) and two for desorption (isosteric 

heating, isobaric desorption). The temperatures during the evaporating and condensing 

processes are equal to the environmental temperature (Teva=Tcon=Tenv). With salt 

dissolved in the solvent (Methanol in present study), the saturated pressure of the 

solvent decreases. Therefore, the evaporating pressure (Peva) is lower than that of the 

condensing pressure (Pcon). 

Process 1-2: isosteric heating  

The sorbent achieves it maximum adsorption capacity (Wmax) of the solvent at point 

I. Before desorption, the sorbent should be heated to a certain temperature (T2) so that 

the pressure is increased from Peva to Pcon for condensing. In this isosteric heating 

process, no solvent is released, and adsorbent vessel is disconnected from both the 

evaporator and condenser. Heat required is calculated as 
2 2

1 1
1 2 max( ) ( )

T Teff sol
sb sb liqT T

Q m Cp T dT m W Cp T dTρ− = +∫ ∫                          (S1) 

where effCp  is the effective specific heat of the sorbent with heat exchangers 

considered, which is assumed as the same as specific heat of the sorbent (1 kJ/(kg⋅K)) 

in present study. liqρ and solCp are the density and specific heat capacity of adsorbed 

solvent, respectively.  

Process 2-3: isobaric heating  

When the pressure is increased to Pcon, the sorbent is continuously heated 

meanwhile adsorbent vessel is connected to the condenser. The solvent is desorbed, and 

is then condensed in the condenser. The process stops when the temperature of the 

sorbent reaches the desorption temperature (Tdes), where the working capacity of the 

adsorbent reaches its minimum value Wmin. Heat needed in this isobaric process is given 

by  



3 3

2 2

max min
2 3 ( ) ( )

2
T Teff sol

sb sb liq sb soprtionT T

W WQ m Cp T dT m Cp T dT m Qρ−

+
= + −∫ ∫          (S2) 

where soprtionQ  is the extra energy needed during the desorption process.  

max

min

1 ( )
W

soprtion liq adsW
w

Q H W dW
M

ρ= ∆∫                                       (S3) 

Process 3-4: isosteric cooling  

Before beginning the adsorption process, the pressure should be decrease from 

Pcon to Peva, which is achieved by cooling the sorbent from T3 to T4. In this isosteric 

cooling process, no solvent is released, and adsorbent vessel is disconnected from both 

the evaporator and condenser. Heat released in this process is  
4 4

3 3
3 4 min( ) ( )

T Teff sol
sb sb liqT T

Q m Cp T dT m W Cp T dTρ− = +∫ ∫                          (S4) 

Process 4-1: isobaric cooling  

When the pressure is decreased to Pcon, the sorbent is continuously cooled 

meanwhile adsorbent vessel is connected to the evaporator. The solvent is evaporated 

in the evaporator, and is then adsorbed by the sorbent. The process stops when the 

temperature of the sorbent decreases to T1, where the working capacity of the sorbent 

reaches its maximum value Wmax. Heat released in this isobaric process is given by  

1 1

4 4

max min
4 1 ( ) ( )

2
T Teff sol

sb sb liq sb soprtionT T

W WQ m Cp T dT m Cp T dT m Qρ−

+
= + −∫ ∫         (S5) 

Total heat needed in the desorption process, named regeneration heat, is 

1 2 2 3= +regQ Q Q− − . As the working capacity is much less than the mass of the sorbent, 

regQ can be simplified as 

1sorbent
reg sb sb liq adsQ m Cp T m H W

M
ρ≈ ∆ − ∆ ∆                              (S6) 

where the average adsorption enthalpy ads H∆  of the solvent can be calculated as 

max min

2
ads ads

ads
H HH ∆ + ∆

∆ =                                           (S7) 

Maximu power extracted during the PRO process. In the PRO process, solvent from 



the feed solution permeates through a semipermeable membrane into a pressurized 

draw solution at pressure PROP , and then is depressurized through a hydro turbine to 

generate electricity. The effluent concentration (Cf ) of the draw solution is given by 

0 0

0
f

C VC
V V

=
+ ∆

                                                    (S8) 

where V0, C0 are respectively the inlet volume flow rate and concentration of the draw 

solution. V∆   is the transmembrane water flow rate. When the applied hydraulic 

pressure equals to the osmotic pressure ( PRO H fP R T Cν Φ= ), water stops transferring 

through the membrane. Therefore, the power extracted in the PRO process is   

0 0

0
PRO

C VP P V R T V
V V

ν= Φ∆ = ∆
+ ∆

                                     (S9) 

It increases with increasing V∆ . Under steady state operation, the maximum permeate 

flow should equal to that in the upstream adsorption-driven regeneration process. The 

final draw concentration is equal to the working concentration C1. Then corresponding 

applied pressure in the PRO module is thus 1PRO HP R T Cν Φ=  .The maximum power 

extractable is 1 1 ROP R T C Vν= ∆Φ . Therefore, the maximum work can be calculated as  

1 1 sb
extracted

liq

R T C WmW ν
ρ

Φ ∆
=                                            (S10) 

Energ efficiency of the adsorption-driven osmotic heat engine. Acording to 

aforementioned analysis, the heat needed is regQ  , and the work extracted is 

1 1 sb
extracted

liq

R T C WmW ν
ρ

Φ ∆
= . Therefore, the energy efficiency is calculated as  

1 1= 1
extracted

sorbent wfreg
p liq ads

w

W R T C W
Q c T H W

M

νη
ρ

∆
=

∆ −

Φ

∆ ∆
                           (S11) 

 

Osmotic coefficient 

The dimensionless osmotic coefficient Φ can be calculated using the following 



equation (Pitzer and Mayorga, 1973) 

( ) ( )3/221 2 / 2 /Z Z f m v v v B m v v v Cφ φ φ
+ − + − + −

 Φ − = + +                       (S12) 

where Z is the ion charge, v is the number of ions. m is the molality. And the other 
coefficients are listed below 

1/2 1/2= / (1 )f A I bIφ
φ− +                                                (S13) 

( ) ( ) ( ) ( ) ( )0 1 21/2 1/2
1 2exp expB I Iφ β β α β α= + − + −                           (S14) 

( )( ) ( )3/21/2 2
01/ 3 2 / 4A N e kTφ π ρ πε ε=                                    (S15) 

where ( )0β , ( )1β , ( )2β , and Cφ  are Pitzer’s ion-interaction parameters. Aφ  is the 

Debye-Huckel constant. 1α  , 2α  , and b are adjustable parameters. I is the ionic 

strength. N is Avogadro’s number. e is the elementary charge, 0ε   is the vaccum 

permittivity, and k is the Boltzmann constant. ε   the relative dielectric constant. 

( )0 0.11458β −=  , ( )1 3.95303β −=  , ( )2 3.421β =  , 0.06478φ =C   (Zafarani-

Moattar and Nasirzade, 1998). 

 

Physical properties of Methanol 

The density, relative dielectric constant, and heat capacity of the liquid methanol 

are given as (Haghbakhsh and Raeissi, 2018, Bezman et al., 1997) 

( )2exp A BT CTρ = + +                                              (S16) 

2ε a bT cT= + +                                                      (S17) 

( )2 1
1 2 3pc C C T C T M −= + +                                             (S18) 

where 0.08584=A  , 4 19.60 10− −= − ×B K  , 7 24.30 10− −= − ×C K  , 37.909=a ,

3 12.2838 10− −×= −a K , 4 26.659 10− −×= Kc , 5 -1 -1
1 1.06 10= ×C J kmol K  ,

2 -1 -2
2 3.62 10= − ×C J kmol K  , and 1 -1 -3

3 9.38 10−= ×C J kmol K   (Haghbakhsh and 

Raeissi, 2018) (Bezman et al., 1997). 

 



MOF structure property calculations 

The computationally ready experimental (CoRE) MOF database consisting of 2932 

structures with DFT-derived density-derived electrical and chemical(DDEC) atomic 

charges are used for accurately describing the methanol adsorption behavior in present 

study (Nazarian et al., 2016). After excluding the structures without accessible surface 

area (ASA) and working capacity, 1322 structures from the CoRE-MOF database are 

eventually employed for computational screening. The helium void fraction (VF) and 

Henry’s constant (KH) are obtained via the Widom insertion method in RASPA (Widom, 

1963, Dubbeldam et al., 2016). The largest cavity diameter (LCD), ASA, and available 

pore volume (Va) were calculated by using a nitrogen probe with a radius of 1.86 Å in 

Zeo++ 0.3 (Willems et al., 2012). 

 

GCMC simulations 

The GCMC simulations were performed for 1322 MOFs to compute the methanol 

adsorption uptake and heat of adsorption under specific operating conditions. The 

parameters for Lennard-Jones interactions of all the MOFs are from the universal force 

field (UFF) (Rappe et al., 1992) and the atomic charges are from DDEC charges(Manz 

and Sholl, 2010). The parameters of methanol were obtained from the transferable 

potentials for phase equilibria (TraPPE) force field (Chen et al., 2001). The reliability 

of illustrating the adsorption properties via the UFF and TraPPE force fields can be 

found in previous literatures (Nalaparaju et al., 2010, Bueno-Perez et al., 2017). For all 

the studied MOFs, more than 2×105 Monte Carlo cycles were performed for each 



structure until the complete equilibration of methanol adsorption. In each cycle four 

Monte Carlo moves including insertion, deletion, rotation, and translation were 

implemented with equal probability. The methanol uptake and heat of adsorption were 

obtained from 1×105 cycles for production after equilibration. 

 

Experimental details 

Chemicals: All chemicals were used without any further purification after purchasing 

from commercial sources. Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99 %), 

terephthalic acid (H2BDC, 99 %) from Shanghai Aladdin Bio-Chem Technology Co., 

Ltd. N,N-dimethylformamide (DMF, AR), dichloromethane (CH2Cl2, AR) and 

anhydrous methanol from Sinopharm Chemical Reagent Co., Ltd. Nitrogen gases (N2, 

99.999 %) and helium gases (He, 99.999 %) from Huaerwen Industrial Co., Ltd. 

Synthesis of EDUSIF (i.e. MOF-5). 2.25 g (7.50 mmol) of Zn(NO3)2∙6H2O and 0.415 

g (2.50 mmol) of H2BDC were dissolved in 245 mL of DMF and 5 mL deionized water 

in a 500 mL teflon-lined autoclave. The mixture was heated at 373 K for 7 h. After 

cooling to room temperature, the solvent was decanted. The remaining solid was 

washed with 250 mL of DMF six times in which the solid was soaked in DMF for 8 h 

each time. Then, the solid was washed six times with 250 mL of CH2Cl2 similarly to 

DMF. Finally, CH2Cl2 was decanted and the solid was dried under vacuum at 393 K for 

12 h.  

Characterization. Powder X-ray diffraction (PXRD) data were collected on an 

Empyrean X-ray diffractometer from PANalytical B.V. in reflection mode using Cu Kα 

(λ= 1.540598 Å) radiation at 1600 W (40 kV, 40 mA). The 2θ rangs from 5° to 50° as 

a continuous scan with a step size of 0.01313° at room temperature. N2 adsorption 

isotherm was measured at 77 K on an Autosorb-iQ2 from Quantachrome Instruments. 

MOF-5 was activated at 393 K for 24 h under vacuum before measurement. Brunauer-

Emmett-Teller (BET) surface area was determined by fitting the BET model to the 

collected N2 adsorption isotherm. Total pore volume was calculated by the N2 uptake 



at P/P0 = 0.993, where P0 is the saturation pressure of N2 at 77 K. 

Methanol adsorption isotherm measurement. Adsorption isotherm of methanol 

vapor was measured at 293 K on an Autosorb-iQ2 gas analyzer from Quantachrome 

Instruments. Anhydrous methanol was added into the vapor generator as the vapor 

source. MOF-5 was activated at 393 K for 24 h to remove water and other impurities 

before the measurement. Adsorption isotherm was collected from 0.01 to 12 kPa.  

 

Machine learning details  

The Details of the classification and regression machine learning models used in present 

study are listed in Table S3 and Table S4. Indicators (R2, RMSE, and MAE) of 

regression machine learning models are included in Table S5. The learning curve for 

the ensemble-based regression model is depicted in Figure S5. 

 

Optimization process based the genetic algorithm    

The genetic algorithm (GA) originates from the theory of the natural selection in the 

biological genetic progress. It can be applied to complex optimization problems. The 

optimizable parameters are encoded as chromosomes, which forms a population. The 

GA employs selection, crossover and mutation to randomly generate populations, 

which are terminated while the stopping criterion is fulfilled, meanwhile the optimal 

solutions are obtained. As shown in Figure S6, firstly, we calculate energy efficiency of 

each MOF via GCMC and thermodynamic analysis. Then, regression machine learning 

models are employed to achieve the relation between the structure and adsorption 

properties of the MOFs and the energy efficiency. Base on the obtained regression, GA 

is used to obtain the optimal structure and adsorption properties with maximum energy 

efficiency as the objective function. 
  



Table S1. Top 10 MOFs selected with efficiency ≥ 6.3%. Related to Figure 5. 
MOF 

code 

LCD 

(Å) 

VF 

(-) 

ASA 

(m2/g) 

Va 

(cm3/g) 

Density 

(g/cm3) 

KH 

(mol/kg/Pa) 

∆W 

(g/g) 

<∆adsH> 

(MJ/kg) 

Energy 

efficiency  

EDUSIF 15.05 0.83 3674.7 1721.3 0.59 1.41E-05 0.57 -0.96 7.19% 

VUSKEA 15.00 0.83 3611.3 1709.2 0.59 1.98E-05 0.34 -0.94 6.93% 

MIBQAR18 15.00 0.84 3639.1 1726.0 0.60 1.30E-05 0.21 -0.83 6.89% 

PEVQEO 14.84 0.84 3573.9 1685.6 0.61 1.51E-05 0.87 -1.08 6.73% 

XEBHOC 12.08 0.86 4637.1 2172.9 0.47 5.25E-05 1.20 -1.10 6.73% 

PEVQIS 14.89 0.81 3571.6 1632.9 0.61 2.44E-05 0.83 -1.08 6.70% 

RONZID 6.45 0.63 2315.4 143.0 1.11 2.68E-05 0.37 -1.00 6.63% 

HAFTOZ 15.37 0.81 3571.8 1810.3 0.55 5.82E-05 1.00 -1.11 6.61% 

PEVQOY 14.79 0.83 3527.6 1642.3 0.61 1.83E-05 0.77 -1.11 6.52% 

IRMOF-6 15.03 0.80 3143.0 1442.9 0.65 2.32E-05 0.78 -1.14 6.34% 

 

 

Table S2. Structure properties from experiment measurement and simulations. 

Related to Figure 5. 

EDUSIF BET surface area (m2/g) Total pore volume (cm3/g) 

Experiment 1948 0.9428 

Simulation 3661 1.2155 

 

 

 

 

 

 

 

 

 

 

 



Table S3. Details of the classification machine learning models. Related to Figure 8. 

Models Optimizable Hyper-

parameters 

Optimized Hyper-parameters 

Ensembles 1. Ensemble method 

2. Maximum number of 

splits 

3. Number of learners 

4. Learning rate 

5. Number of predictors 

to sample 

Ensemble method: Bag 

Leaners: 62 

Maximum number of splits :408 

Number of predictors to sample: 3 

KNN 1. Number of neighbors 

2. Distance metric 

3. Distance weight 

4. Standardize 

Number of neighbors: 46 

Distance metric: City block 

Distance weight: Squared inverse 

Standardize: Ture 

SVM 1. Kernel function 

2. Box constraint level 

3. Kernel scale 

4. Multiclass method 

5. Standardize data 

Multiclass method: One-vs-One 

Box constraint 0.0177 

Kernel function: Polynomial 

Polynomial order: 3 

Standardize data: true 

Decision Trees 1. Maximum number of 

splits 

2. Split criterion 

Maximum number of splits: 35 

Split criterion: Ginis diversity index  

 

 

 

 

 

 

 



Table S4. Details of the regression machine learning models. Related to Figure 9. 

Models Optimizable Hyper-

parameters  

Optimized Hyper-parameters  

Ensembles 1. Ensemble method  

2. Minimum leaf size  

3. Number of learners  

4. Learning rate  

5. Number of predictors 

to sample 

Ensemble method：Bag 

Leaners: 471 

Minimum leaf size:1 

Number of predictors to sample: 6 

 

GPR  1. Basis function  
 2. Kernel function  
 3. Kernel scale  
 4. Sigma  
 5. Standardize  

Basis function: Zero 

Kernel function: RationalQuadratic 

Sigma: 0.1367 

Standardize: true 

SVM - - 

Decision Trees  Minimum leaf size  Minimum leaf size: 1 

Note: The hyper-parameters of the SVM model are default ones in the Matlab software for poor 

performance under the Bayesian optimization of the hyper-parameters.  

 

Table S5. Indicators of regression machine learning models. Related to Figure 9. 

Model RMSE R2 MAE 

Ensemble 0.0057 0.84 0.0043 

GS 0.0061 0.79 0.0047 

SVM 0.0067 0.76 0.0048 

DT 0.0067 0.78 0.0049 

 
  



 

Figure S1. The predicted adsorption uptake of 1322 CoRE MOFs. (a) maximum and 

(b) minimum values of adsorption uptake as a function of LCD colored by ASA. 

Related to Figure 3. 
  



 

Figure S2. PXRD patterns of EDUSIF from simulation and experimental measurement. 

Related to Figure 5. 

 
  



 
Figure S3. N2 adsorption isotherms of EDUSIF at 77 K. Related to Figure 5. 

  



 
Figure S4. Adsorption isotherms of selected EDUSIF from GCMC simulations and 

experiment measurement at 293.15K. Related to Figure 5. 

It should be noted that the simulated adsorption isotherm was scaled by 0.53 due to the 

reduced surface area of synthesized EDUSIF compared with perfect EDUSIF crystal 

used in simulations. The red star represents the simulated results at adsorption pressure 

(i.e. 4.480 kPa) after scaling.  
  



 

Figure S5. Learning curves of the ensemble-based regression model. Related to 

Figure 9. 
  



 

Figure S6. Flowchart of the GA optimization process. Related to Figure 9. 
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