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Abstract: Hepatitis C Virus (HCV) genotype (GT) 6 demonstrates maximum genomic diversity out
of all the known genotypes of HCV, attributable to its inherent intra-genotype and inter-genotype
recombination property. This is the most common genotype seen in HCV/HIV co-infected cases.
HIV/HCV co-infection is linked with increased genetic diversity in HCV structural genes. The
detailed information on the distribution of HCV GT6, its subtypes, and resistance to currently
available antiviral drugs is limited in the Indian subcontinent. Therefore, in this single-center
retrospective cross-sectional study, we aimed to map the occurrence of HCV GT6, its subtypes and
resistance-associated substitution (RAS), and its correlation with antiviral treatment response in
HCV-infected patients. From a cohort of 2052 HCV-infected patients, the overall prevalence of GT6
was 2.5% (n = 53), with a maximum of 81.1% (n = 43) seen in HCV/HIV co-infected patients. Nine
different subtypes, 6a, 6b, 6f, 6i, 6n, 6u, 6v, 6w, and 6xa, were detected in the Indian population
for the first time, with a predominance of 6xa (41.5%), a rare subtype, followed by 6n (39.6%). The
phylogenetic analysis by the neighbor-joining method revealed three prominent viral clades, 6v, 6n,
and 6xa–6u. The baseline (before treatment initiation) plasma samples of all GT6-infected patients
were retrieved from−80 ◦C and a part of the NS5a and NS5b region of the viral genome was analyzed
for the presence of RAS. No RASs were seen in the NS5b region, while in two patients (3.7%) RASs
were seen at baseline in the NS5a region of the virus. Sustained viral response (SVR) was attained
in 81% (n = 43) of patients. No difference in GT6 subtype distribution or occurrence of RAS was
seen between mono-infected HCV and HIV/HCV co-infected cases. Our study revealed that RAS
at baseline did not influence the attainment of SVR and the currently available antiviral therapy is
effective against GT6 mono-infected and HIV/HCV co-infected patients.

Keywords: HCV GT6; occurrence; chronic hepatitis C; HCV/HIV; co-infection; phylogenetic analysis;
SVR; RAS

1. Introduction

Hepatitis C Virus (HCV), an enveloped, positive-sense single-stranded RNA virus, is
linked to liver-related morbidity and mortality. It is estimated that about 3% of the world’s
population remains chronically infected with HCV, accounting for 170 million individuals
infected with HCV worldwide. Infection with HCV often evolves into chronic hepatitis
C (CHC), potentially advancing to liver cirrhosis, fibrosis, and hepatocellular carcinoma.
The disease inflicts immense health and economic burden on endemic countries owing to
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hepatic and extrahepatic manifestations associated with it. HCV exhibits a high rate of ge-
netic variations within the genome, resulting in seven different genotypes (GT1, 2, 3, 4, 5, 6,
and 7) with several confirmed subtypes to date [1]. Enhanced incidence of HCV is reported
from high-risk populations, including HIV-infected groups [2], intravenous drug users,
and individuals with sexually transmitted diseases [3]; this necessitates studies evaluating
the genotype prevalence and existence of clinically relevant natural resistance-associated
substitutions (RAS) in them. Host immune responses influence the genetic diversity of
HCV, especially in HIV co-infection, and genetic variations in the structural genes of the
HCV virus have been observed [4]. Treatment response and disease management also
differ in the HCV genotypes [5]. HCV GT1 and 3 are the predominant genotypes globally,
with the predominance of GT3 in the Indian population [6].

Previous studies have reported the prevalence of HCV GT6 among the Indian popu-
lation, particularly from the north-eastern region [7,8]. A retrospective study by Panyala
et al. demonstrated the association of temporal changes with the prevalence of HCV geno-
types (Genotype 1 being predominant) over seven years in a tertiary health care setting [6].
Intriguingly, the prevalence of HCV GT6 is becoming apparent in high-risk groups with
limited information on real-life treatment responses. Epidemiological studies have shown
that HCV GT6 is most prevalent in south-east Asia and accounts for approximately 5% of
all HCV infections [9]. A study by Jia et al. identified a new HCV GT6 subtype, 6xj, and
baseline RAS associated with it. They demonstrated that 28V and 32L substitutions did not
affect attainment of sustained biological responses [10]. In addition, literature regarding
genetic diversity within HCV GT6, its epidemiological manifestations, and prevalence of
RASs is still insufficient. It is believed that repeated viral exposure during intravenous drug
use and sexual contact leads to the circulation of more than one subtype of HCV, promoting
viral recombination and increasing the risk of the emergence of resistant HCV strains [11].
Thus, in this pilot study, we estimated the occurrence of HCV GT6 and its subtype in the
Indian population and identified naturally occurring baseline RASs (BL-RAS) for GT6.

2. Materials and Methods

This is a retrospective study conducted at the Institute of Liver and Biliary Sciences,
New Delhi, from January 2011 to July 2021, where records of clinician-initiated testing for
HCV genotyping were available in the laboratory database. The details of patient history,
diagnostic test results, CD4 cell counts, and clinician-recommended treatment regime were
sorted for data analysis. Out of all the patients infected with HCV, the study included pa-
tients infected with HCV GT6 (as per the inclusion criteria). The HCV GT6 positive patients
with a history of an HIV co-infection were also included in the study. The distribution of
HCV GT6 subtypes was also calculated to gather a geographical estimate of the variant
viral population. The plasma samples of the recruited patients (before therapeutic interven-
tion) were thawed from a deep freezer, and were used for RNA extraction and sequenced
by direct PCR-based sequencing for the NS5a and NS5b regions of HCV as described
in our previous study. For identification of GT6 RAS in the NS5a region, the following
primers were used: Fwd primer (6103 position)-5′GRGGBAAYCAYGTNTCHCCHAC3′,
Rev primer (6867 position)-5′TGDGAKGGRTCDGTBARCATKGA3′. The NS5b region
of HCV GT6 was amplified using the following primers: Fwd primer (7980 position)-
5′TGGRAGGACYTGYTRGARGAC3′, Rev primer (8661 position)-5′GRGGNGCNGARTAY-
CTGGTC3′. The FASTA sequences of the NS5b region of the viral variants were subjected to
phylogenetic analysis. The phylogenetic tree was constructed by the maximum likelihood
method using the Kimura-2 substitution model (K2 + G + I) to further enhance tree accu-
racy, followed by bootstrapping with 100 replicates in MEGA software (version 6.06). The
patients were prescribed a combination drug regime of Sofosbuvir (SOF) and Daclatasvir
(DCV) with/without Ribavirin (RBV) as per the National guidelines. Sustained Virological
Response (SVR) is defined as undetectable HCV RNA 12 weeks after treatment completion
(as per WHO guidelines). SVR12 is considered equivalent to the cure of HCV infection.
The study was approved by the Institutional Ethics Board (IEC/2020/79/MA03) and con-
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ducted as per the principles of the Declaration of Helsinki. The study was performed on
de-identified, anonymous, archived clinical plasma samples. Hence, the requirement for
individual patient consent forms was waived.

3. Results
3.1. Distribution of HCV GT6 and Its Subtypes

Genotype information of 2052 HCV positive patient samples was available from the
institutional database. A schematic diagram of our workflow has been depicted in Figure 1.
Patients had a mean age of 39 (±11.5 SD) years, the majority (69.8%) being male. Median
HCV RNA levels (IU/mL) in log10 were: 6.39 (IQR: 5.67–6.79) and 19 (35.8%) patients were
cirrhotic as per the records.
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Figure 1. A schematic representation of workflow of this study.

The GT distribution in 2052 enrolled patients: GT3 in 1382 (67.3%), GT1 in 546 (26.6%),
GT4 in 68 (3.3%), GT6 in 53 (2.5%) and GT5 in 3 (0.1%) (Figure 2). In the selected cohort of
GT6 (n = 53), 9 subtypes, including common (6a and 6n) and 7 rare subtypes, were seen,
viz. 6b, 6f, 6i, 6u, 6v, 6w and 6xa. Among these, there was a predominance of 6xa (41.5%)
followed by 6n (39.6%) (Figure 2).

Phylogenetic Analysis of HCV GT6 Subtypes

The NS5B sequences of the viral subtypes were aligned by multiple sequence align-
ment (gapped) using the MUSCLE algorithm in MEGA. Four reference sequences for each
subtype—6xa (KP323812.1), 6n (AB291038.1), 6v (KP323811.1), and 6u (KX940866.1) were
obtained from the NCBI nucleotide database and included in the alignment to validate
the tree. Based on the alignment generated by MUSCLE, the best-fit substitution model
selection test was performed. The results were generated by the maximum likelihood
method and confirmed the choice of Kimura 2 +G + I as the best-fit substitution model with
the lowest AICc and BIC scores in the list of twenty-four fits obtained as hits. Subsequently,
the phylogenetic tree yielded an ingroup of subtypes 6n, 6xa, 6u, and an outgroup of
subtype 6v with a node score of 100. These two groups could be attributed to the status of
parental subtypes, both arising from a common ancestral variant (Figure 3). The ingroup
subtypes (giving 6n, 6xa, and 6u) diverge to evolve into two offspring variants, 6n and 6xa,
6u, each with an independent node score of 100. The reference sequences for each subtype
appeared in their respective viral subtype clades (Figure 3).
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6u, and 6n, while 6v is the outgroup. The reference sequences for each subtype are indicated by
black arrows.
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3.2. Correlation of HCV GT6 Subtypes with Viral Load and CD4+ T Cell Count

Notably, most of the patients with HCV GT6 were co-infected with HIV (n = 43, 81.1%)
with a median CD4+ T cell count of 413 (IQR 223.7–546.7) cells/mm3, and all the HCV-HIV
co-infected patients belonged to the Northeast states of India. There was a significant
difference between HCV GT6 subtypes and their corresponding viral load (p = 0.0058),
with the highest viral load of 1.48 × 107 IU/mL and 107 IU/mL for subtypes 6v and 6f
respectively, and the lowest viral load of 1.5 × 103 IU/mL for subtype 6a. There was, how-
ever, no significant difference among HCV GT6 subtypes towards attainment of treatment
response (p = 0.755). In patients co-infected with HIV, the count of CD4+ T cells/mm3

showed a significant variation between the subtypes harbored by the patient, with the
highest CD4+ T cell count of 565 cells/mm3 and 549 cells/mm3 for subtype 6f and 6a
respectively, and lowest CD4+ T cell count of 106 cells/mm3 for subtype 6i (p = 0.0355)
(Table 1).

Table 1. A table showing baseline demographics, CD4+ T cell count, and viral load of the patients
enrolled in our study.

Variables Count p-Value Significance

Demographics

Age 44 ± 12.40

Gender Male 37/53 (69.8%)

Female 16/53 (30.2%)

Patient Characteristics

Total subjects 53/2052 (2.5%)

HCV GT6 co-infection with HIV 43/53 (81.1%)

HCV GT6 infection alone 10/53 (18.9%)

HCV GT6 subtypes distribution

6a, 6f, 6i, 6w 1/53 (1.9%)

6b, 6u, 6v 2/53 (3.8%)

6n 21/53 (39.6%)

6xa 22/53 (41.5%)

Gender

Viral Load 0.263 NS

Subtype 0.077 NS

Treatment Outcome 0.123 NS

HCV GT6 subtypes

Viral Load 0.006 S

CD4+ T Cell Count 0.036 S

Treatment Outcome 0.755 NS

Treatment Outcome

Viral Load 0.171 NS

CD4+ T Cell Count 0.652 NS

Choice of Therapy 0.066 NS

Sustained Virological Response (SVR)

Viral Load 0.015 S

CD4+ T Cell Count 0.197 NS

Choice of Therapy 0.182 NS
Abbreviations: NS-Not significant, S-Significant.
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3.3. Occurrence of BL-RAS and Its Association with the Treatment Response

We examined the sequences of HCV GT6 for the presence of RAS as per our previously
published protocol [12]. None of the viral variants carried any naturally occurring RASs in
their NS5b region, whereas two samples carried mutation at the NS5a region (one patient
with T93A and another one with T93S).

The patients had been prescribed a combination drug regime of Sofosbuvir (SOF),
Daclatasvir (DCV), and Ribavirin (RBV) with combinations of SOF-DCV or SOF-DCV-RBV
as per the National guidelines [13]. We defined a successfully completed regimen when
SVR was attained i.e., HCV RNA levels were below the limit of quantification at 12 weeks
post-treatment. Treatment failure in patients was considered when detectable HCV viral
load was present 12 weeks post-treatment. Attainment of SVR inversely correlates with
viral load (p = 0.015, Table 1). In our study, SVR was attained in 81% (n = 43) of CHC
patients with direct-acting antiviral (DAA) therapy. Although the existence of RAS (NS5a
region) at baseline did not influence the attainment of SVR, we need large sample size
studies to draw firm confirmations on the impact of BL-RAS on treatment response in HCV
GT6 infected patients.

4. Discussion

HCV infection is a public health concern in developing countries, especially in Asia
and Africa. Emerging genotypes and subtypes of HCV have contributed to the severity of
the disease with the generation of viral variants and drug-resistant mutants. Globally, the
burden of HCV infection is primarily due to HCV 1 and 3 genotypes. Despite geographical
restrictions, HCV GT6 exhibits the highest genetic diversity, with 23 known subtypes
identified in the last decade. In Asian countries, infection from HCV GT6 is most prevalent
in Thailand, Myanmar, China, and Hong Kong [14]. HCV/HIV co-infection is often
associated with increased genetic diversity in the HCV structural genes, probably due to
immune pressure or viral persistence [4,15]. GT6 is the most prevalent genotype in the
HCV/HIV co-infected cohort. Current literature available on epidemiology and treatment
response of HCV GT6 is limited and warrants further investigation. The present study,
which is the first of its kind from this part of the world, highlights the treatment response
of HCV GT6 to standard DAAs and investigates the different subtypes in this genotype. In
our study, GT6 was seen in 53 patients (2.5%), slightly higher than previously reported in
our country [6], probably as our Institute is a dedicated tertiary care liver institute, hence
most difficult to treat cases are referred to our Institute from different parts of our country.

A clear predominance of HCV GT6 was seen in our study among the north-eastern
population, which concurs with a previous report showing HCV GT6 as the most prevalent
genotype among eastern and north-eastern parts of India [7]. A study by Barman et al.
from the north-eastern part of India, demonstrated that approx. 30% of the HCV sequences,
isolated from CHC patients, belong to GT6, second to GT3 [16]. A previous study from our
group has reported HCV GT6 as the dominant GT in HCV/HIV co-infected cohort, [12].
Detailed information on HCV genotyping and sub-genotyping and its geographical map-
ping could contribute immensely to the effective elimination of HCV from our country and
faster achievement of the global goal of HCV elimination by 2030.

Understanding the treatment response to conventional drugs for all existing HCV
genotypes in our population is important if we wish to extend our National Viral Hepatitis
Control Program to reach the sub-district level of control (National Viral Hepatitis Control
Program-Operational Guidelines, 2018 by the Ministry of Health and Family Welfare,
Government of India). This work is the first attempt to enumerate the types and numbers
of HCV GT6 subtypes in the Indian population. In the selected cohort, nine subtypes were
discovered, viz. 6b, 6f, 6i, 6u, 6v, 6w and 6xa. Among these, there was a predominance of 6xa
(41.5%) followed by 6n (39.6%); a predominance of 6n was also reported in Myanmar [17],
mainland China [18], and Thailand [19]. The prevalence of the 6xa subtype was almost
50% in the study cohort, which is one of the rarest HCV GT6 subtypes. Patients with
HCV/HIV co-infection showed significant differences between CD4+ T cell numbers and
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the viral subtype they carried. The prevalence of HIV/HCV co-infection is significantly
high among injection drug users (IDU). Previous studies conducted in north-eastern India
showed that more than 90% of HIV-infected people (among IDU) had HCV co-infection,
emphasizing the need to screen HIV-infected drug users for HCV infection and initiate
timely and appropriate treatment [20,21]. Though our results are promising, they need to
be validated in a large prospective cohort before drawing any general conclusions.

From the phylogenetic tree, three viral clades emerge, viz. 6v, 6n, and 6xa–6u. Thus,
three individual subtype populations can be identified. The emergence of the three clades
from two distinct groups (ingroup and outgroup) makes certain one key fact: the divergent
evolution of 6v from 6n, 6xa, and 6u. The 6n subtype is predominant in most countries;
therefore, its separation from 6xa and 6u in the tree appears to be an evolutionary mech-
anism to increase its infectivity. The spontaneous emergence of 6u from parent roots of
6xa may indicate either a random mutation event or the initiation of another dominant
viral subtype, as is evident from the high node scores generated in the maximum likeli-
hood. More data on the prevalence of 6u in larger cohorts from longitudinal studies will
help validate this data’s hypothesis. An exciting finding was the divergence of the 6v
subtype, desperately attempting to increase its prevalence among the pathogenic variants
by incorporating more mutations. Despite significant advances in anti-HCV treatment and
therapy (DAAs), 100% SVR is still not possible and the most important cause attributable
to treatment failure, after non-adherence, is the existence of RAS in the viral genome [22].

In our study, none of the viral variants carried any naturally occurring RASs in
their NS5b region; whereas two samples carried one substitution each at the NS5a region
(one patient with T93A change and another with T93S change). We further evaluated the
impact of RAS on treatment response. Our findings show that SVR was attained in 81%
(n = 43) of CHC patients with DAA treatment. We found the presence of minimum RAS
in this genotype and the RAS responsive to currently existing treatment modalities. In
addition, Michaluk et al. demonstrated that SVR attained in HCV GT4 mono-infected
patients did not differ significantly from HCV/HIV co-infected patients, underlining the
safety and effectiveness of current DAA therapy for HCV/HIV co-infected patients [23]. A
study by Flower et al. demonstrated no contribution of RAS to treatment outcomes in a
cohort in Vietnam where HCV GT6 was predominant [24]. Although the existence of RAS
(NS5a region) at the baseline did not influence the attainment of SVR in our analysis, we
need large sample size studies to draw firm confirmations on the impact of BL-RAS on
treatment response in HCV GT6 infected patients.

Since studies demonstrate that IDUs are at an increased risk for HCV/HIV co-infection,
the link between HCV prevalence and socio-behavioral aspects warrants further investiga-
tion. This would facilitate large-scale screening for HCV infection among the susceptible
population, especially among HIV-infected drug users, and would ensure timely diagnosis
and treatment.

With the study’s highlight being the discovery of the prevalence of HCV GT6, a few
shortcomings limit the study’s extrapolation:(1) A limited cohort size was selected for the
study, which may have skewed accurate numbers if it had been a larger population. (2) The
schedule of therapeutic intervention was uneven in the group; therefore, it may have either
overestimated or underestimated the numbers of CD4+ T cells and, hence, the effect and
outcome of antiretroviral therapy. (3) The correlation between HCV GT6 and the spectra of
liver disease is not studied. (4) Since ours is a tertiary healthcare center, the overall data is
not a true reflection of the distribution of HCV GT6 in the Indian population. Despite these
limitations, our study provides an up-to-date report on the situation of the distribution of
HCV genotypes, their subtypes, and the impact of BL-RAS on treatment outcomes.

5. Conclusions

Our study contributes toward understanding the prevalence of HCV genotypes, par-
ticularly GT6 among CHC patients. This retrospective study testifies to the increase in the
incidence of HCV GT6 infection in the Indian population since 2015, and the prevalence
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and distribution of HCV GT6 subtypes, 6xa and 6n, as being predominant. It corroborates
the notion of a higher prevalence of HCV GT6 among the north-eastern population in
India, especially among HIV/HCV co-infected individuals. Large-scale prospective studies,
assessing epidemiology and rates of SVR attained among HCV GT6 mono-infected and
HCV/HIV co-infected patients in the Indian population, are imperative. Thus, our study
reinforces the need for national surveys and statistics to determine the burden of HCV GT6
as a risk factor for the development of severe liver disease.
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