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Editorial on the Research Topic

The Roles of Mitochondria in Immunity

INTRODUCTION

The manuscripts presented in our special topic - ‘The Roles of Mitochondria in Immunity’ enhance
our understanding of the mechanistic link between mitochondrial function, tricarboxylic acid
(TCA) cycle metabolites, inflammation, mitochondrial-derived reactive oxygen species (mROS),
and mitochondrial quality control pathways in health and disease. Here, we highlight mitochondrial
biology relevant to the special topic.
MITOCHONDRIA REGULATECELLULAR ENERGYANDMETABOLISM

As drivers of cell and organism fate and function, mitochondria generate most of the energy supply
to meet the demands of dormancy, growth, replication, and survival. Under appreciated is the
importance of mitochondrial energy network of the TCA cycle intermediates that promote diabetes,
obesity and cancer (1, 2). Mitochondrial energy shortage underlies immunosuppressive pathologies
and contributes to acute inflammatory syndromes of sepsis and immunosenescence. Cross–talk
between the nuclear and mitochondrial genome regulates mitochondrial biogenesis, fusion, fission,
and mitophagy (3), thereby controlling energy demand and supply. Mitochondria also are the
predominant source of intracellular reactive oxygen species (mROS). Physiological levels of mROS
are critical for cellular signaling pathways connected to nutrient metabolism and energy synthesis,
Uncontrolled generation of mROS causes oxidative stress–induced cellular injury and death
mechanisms (4, 5). TCA cycle balancing of anabolism and catabolism, as well as ATP levels
relative to ADP and AMP play a critical role in cellular energy homeostasis.
INFLAMMATIONREMODELSTCACYCLECITRATE,a–KETOGLUTARATE,
SUCCINATE, FUMARATE,MALATEANDOXALOACETATE

Inflammation reprograms mitochondrial metabolism leading to accumulation of key TCA cycle
metabolites (6–9). Recent discoveries emphasize that mitochondrial metabolic remodeling during
org May 2022 | Volume 13 | Article 9146391
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stress in innate immune cells and organ specific cells increases
expression of the immune responsive gene 1 (Irg1) which redirects
the TCA cycle by diverting citrate to itaconate (10). Other
mitochondrial metabolites regulate diverse functions in
leukocytes, including epigenetic modifications of inflammation,
antimicrobial functions, and cell death or survival routes (11, 12).
Citrate and succinate enhance leukocyte inflammation and
immune resistance (13), while itaconate attenuates inflammation
and promotes disease tolerance (14–16). Derivatives of itaconate,
dimethyl itaconate analog (DMI) and 4–octyl itaconate (4OI)
activate Nrf2, an antioxidant regulator and inhibit NLRP3 driven
inflammation (15, 17). Some studies question the direct role of
endogenous itaconate in repressing inflammation (18). The
molecular biology of itaconate in non–immune cells is unclear.
KNOWLEDGE ABOUT THE NOVEL
ANTI–INFLAMMATORY, ANTIOXIDANT,
AND ANTIMICROBIAL EFFECTS OF
ITACONATE AND ITS CHEMICAL
ANALOGS IS EMERGING

Oh et al. evaluated the effect of itaconate and its derivatives on
muscle cell differentiation.Using an in vitromodelofC2C12muscle
cells, this study supported that itaconate and its derivatives, DMI
and 4OI, disrupt muscle cell differentiation by blunting the
expression of key transcriptional and protein markers such as
Myogenin (MYOG), which is required for myogenesis. Previous
studies reported that itaconate regulates anti–inflammatory effects
by limiting succinate dehydrogenase (SDH), at electron chain
complex II (15, 19). Oh et al. showed in C2C12 cells that SDH
inhibitors such as diethyl malonate, and exogenous succinate
inhibit myogenesis, similarly to itaconate. 4OI also inhibits injury
induced–MYOG expression in vivo. Thus, itaconate and its
derivatives can interfere with myogenesis by inhibiting SDH
function, highlighting itaconate signaling as a potential
therapeutic target in muscle wasting states. Temporal assessments
of itaconateonmuscle physiologyandmechanismsother thanSDH
inhibition are not reported, underscoring the need to identify non–
immune and deleterious effects of itaconate in reducing
inflammation, such as prolonged immunometabolic repression.
mROS SUCH AS SUPEROXIDE AND
EXCESSIVE H2O2 PROMOTE THE OXIDANT
STRESS OF SEPSIS–INDUCED ORGAN
INJURY, CANCER, CARDIOVASCULAR
DISEASES, AND NUMEROUS
INFLAMMATORY CONDITIONS

Mitochondrial derived reactive oxygen species and oxidative
stress contributes to numerous pathological conditions (20–
23). Mizuguchi et al. investigated the role of complement
component 1q subcomponent binding protein (C1qbp/p32),
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mitochondrial function and mROS in psoriasis. Mutations in
C1qbp has been shown to cause defective mitochondrial function
and cardiomyopathies (24). Using a hematopoietic cell–specific
genetic deletion of C1qbp, Mizuguchi et al. demonstrated that
C1qbp protects mice from imiquimod–induced psoriatic
inflammation. Dendritic cells lacking C1qbp impair pro–
inflammatory cytokine production including IL–1b, IL–23, and
mROS upon imiquimod stimulation. Thus, mROS can promote
psoriatic inflammation through C1qbp. Whether mROS should
be investigated as a therapeutic target in psoriasis merits further
research. The role of C1qbp–mROS in epithelial fate and
function, and inflammasome biology in humans is unknown.
ACETAMINOPHEN (APAP)–INDUCED
LIVER INJURY IS A CRITICAL PUBLIC
HEALTH TOPIC DUE TO ITS PROLIFIC
USE AS AN ANALGESIC AND
ANTIPYRETIC

APAP overdose can induce serious liver injury (25). Wang et al.
investigated mROS–induced pyroptosis effects on APAP–
induced liver injury and the countering effect of peroxiredoxin
3 (PRX3). PRX3 antioxidant mediator scavenges peroxide ROS.
Pyroptosis is a form of inflammatory cell death caused by
infection and the resulting inflammasome activation increases
IL–1b and IL–18 proinflammatory cytokines (26). mROS
activate hepatocyte pyroptosis controlled by the NLRP3
inflammasome, and APAP–induced liver injury increases
oxidative stress and inflammation (26). Liver–specific silencing
of PRX3 using short hairpin RNA (shRNA) technique
augmented APAP–induced pyroptosis and liver injury, which
was attenuated by the antioxidant, mito–TEMPO. Mitochondrial
PRX3 limits mROS–induced oxidative stress and liver injury
during APAP toxicity. In summary, PRX3 inhibits APAP–
induced pyroptosis via inhibiting mitochondrial oxidative
stress and NLRP3 activation.
IMPACT OF OXALATE AND TAURINE ON
MACROPHAGE METABOLISM AND
ANTIMICROBIAL FUNCTION

Patients with calcium oxalate (CaOx) kidney stones show
repressed cellular energetics in peripheral monocytes (27).
Healthy subjects consuming an oxalate enriched diet also show
impaired monocyte mitochondrial function (28). Oxalate
promotes pro–inflammatory macrophages (29). CaOx kidney
stones increase susceptibility to urinary tract infections caused by
uropathogenic E. coli (UPEC) (30). Tissue macrophages play a
critical role in host antimicrobial defense, however the impact of
oxalate on macrophage metabolism is not well defined. Using an
in vitro model of human monocyte (THP–1 cells) derived
macrophages, Kumar et al. demonstrated that oxalate
treatment increased pro–inflammatory cytokine production
May 2022 | Volume 13 | Article 914639
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(IL–6 and IL–1b), increased ROS levels, and reduced
mitochondrial complex I and IV activities and ATP levels.
Oxalate treatment also reduced macrophage antimicrobial
capacity as demonstrated by reduced capacity to clear E. coli.
These findings show that increased oxalate exposure increased
oxidative stress and disrupted macrophage mitochondrial
homeostasis and antimicrobial functions. Whether oxalate
exposure also reprograms the TCA cycle leading to alterations
of mitochondrial metabolites and inflammatory signaling
pathways needs investigation.

Taurine plays a critical cytoprotective role, predominantly
through augmenting cellular antioxidant defense and regulating
other processes including autophagy, calcium homeostasis and
cellular metabolism (31). Taurine supplementation decreases
inflammation in chronic diseases such as diabetes and chronic
obstructive pulmonary disease (COPD) (32, 33). However, the
impact of taurine on regulating macrophage polarization during
inflammation is not well defined. Meng et al. demonstrated that
inflammation and high taurine exposure (LPS/IFNg) upregulates
the expression of taurine transporter (TauT/Slc6A6) during M1
macrophage polarization. Increased intracellular taurine levels
impair methionine metabol i sm leading to low S–
adenosylmethionine (SAM) levels, which is important for
maintaining methylation of protein phosphatase 2A (PP2A).
Methylation at the leucine–309 residue of catalytic C–subunit
promotes macrophage–related inflammation in DSS–induced
enteritis and endotoxin models (34, 35). Meng et al. further
demonstrated that taurine inhibits PP2Ac methylation, thereby
blocking PINK1–mediated mitophagy flux, as methylated PP2Ac
served to activate PINK1. Taurine–exposed macrophages had
reduced glycolytic capacity, higher pyruvate dehydrogenase
activity, and increased ATP levels, thereby indicating a reversal
of the Warburg effect typically observed in M1 macrophages.
Inhibition of mitophagy, thereby blocking mitochondrial
turnover, is the major mechanism responsible for taurine–
induced macrophage metabolic reprogramming [Meng et al.].
These findings add to our understanding of macrophage
phenotype in the context of taurine and mitochondrial quality
control. Further studies using in vivo models of inflammation
and primary human cells are warranted to confirm the
translational relevance of these findings.
OTHER INSIGHTS INTO MITOCHONDRIA
AND IMMUNITY

Particulate matter (PM) exposure limits sperm quality and
induces higher male infertility (36). A study by Zhu et al.
demonstrated that PM exposure induced asymptomatic
orchitis in mice by activating NF–kB signaling in testes. PM
exposure reduced mitochondrial abundance and increased
mitochondrial DNA release coupled with cGAS–STING
inflammatory pathway activation. Treatment with aspirin–
induced cGAS acetylation inhibited testicular inflammation in
mice and rescued offspring growth in PM–expose mice [Zhu
et al.]. Studies elucidating the exact molecular mechanisms
Frontiers in Immunology | www.frontiersin.org 3
leading to PM–induced orchitis and the role of mitochondrial
dysfunction need defining.

Finally, Goldsmith et al. offer a perspective article
highlighting recent studies exploring the links between
exercise, on cellular metabolic pathways, and epigenetic
reprogramming, particularly regarding T cell plasticity.
Mitochondrial function, which can be greatly influenced by
exercise, is critical in the generation of metabolites and
cofactors needed for epigenetic reprogramming required for T
cell stability. Among the effects of exercise on T cell plasticity
include increased glycolysis, which regulates NAD+/NADH ratio
(regulator of sirtuin histone deacetylase), limiting of glutamine
metabolism, which reduces a–ketoglutarate levels (required for
histone demethylase reactions), and increase in peripheral
homocyste ine levels , which alters the methionine:
homocysteine ratio (regulator of DNA methylation reactions
through one carbon metabolism and S–adenosylmethionine).
Although more studies are needed to further identify the role of
exercise on immune cell plasticity, these studies highlight the
potential to modify mitochondrial function and epigenetic
remodeling via exercise.
CONCLUSION

In conclusion, 1.5–billion–year–old oxidative eukaryotic
mitochondria primarily depend on pyruvate to direct the TCA
cycle redox status and an energy supply chain that assures the
universal principles of growth, replication, and survival. Acute or
chronic disease occurs when mitochondrial control over the
energy supply chain for homeostasis becomes inadequate or
inflexible. This special edition in Frontiers Immunology
enlightens the role of these critical organelles in immunity,
health and disease.
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