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Introduction

Osteoarthritis (OA), a common bone disease in clinical 
practice, is characterized by inflammation and articular 
cartilage damage and manifested as severe pain synovial 
edema, osteophytes, and subchondral sclerosis (1). During 
aging, the articular cartilage is destroyed, which leads 

to joint stiffness and deformity, ultimately leading to an 
inability to move (2). According to a survey in the United 
States, the prevalence of OA in community-dwelling 
adults can reach 10.4%, and the high cost of treatment 
for OA results in heavy economic burden (3). With the 
development of bioinformatics, more research is focusing 
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on the genetic factors of OA. For example, genetic variants 
in the OPRM1 and OPRD1 genes have been shown to be 
associated with the pain phenotype of OA (4). This study 
suggests that genetic variants in certain genes may affect the 
sensitization of the nociceptive system, leading to increased 
sensitivity to noxious stimuli in humans, with OPRM1 
thought to be associated with altered thresholds for pressure 
pain (from muscle) and OPRD1 thought to be associated 
with altered pain thresholds for contact heat stimulations (4). 
Genome-wide association studies (GWAS) have been widely 
used to identify variants associated with disease. A previous 
GWAS identified an OA-related locus on chromosome 12, 
located near the matrix Gla protein and CCDC91 gene (5). 
Although thousands of single-nucleotide polymorphisms 
(SNPs) related to human diseases have been identified by 
GWAS, certain limitations remain. For example, first, the 
disease-related loci identified by GWAS are often located 
in noncoding regions of the genome and usually require 
subsequent colocalization analysis to elucidate relevant 
functions and in vitro experiments for validation (6). Second, 
related studies have reported that insignificant regulatory 
variants in GWAS account for a large proportion of the 
genetic power of traits (7,8). Third, the locus identified 
by GWAS are often difficult to characterize biologically, 
and these studies associate locus with recent genes, which 
inevitably leads to a preference for long genes and does not 
necessarily accurately characterize the true role of the locus. 

In contrast, because transcriptome-wide association 
studies (TWAS) use disease-associated cell types and 
tissues, and the availability of databases detailing tissue-
specific expression, more interpretable biologically relevant 
results are available (9). The approach derives relationships 
between genotype and gene expression to create reference 
panels consisting of predictive models applicable to larger 
independent data sets (10). Ultimately, TWAS offers the 
opportunity to increase the ability to detect putative genes 
associated with the disease. Dall’Aglio et al. performed 
a TWAS analysis for major depression and identified 94 
transcriptome-wide genes with significant difference, 
about half of which were not identified by the original 
GWAS analysis (11). This result suggested that TWAS was 
more valid than GWAS. In addition, some scholars have 
recently applied Mendelian randomization (MR) to the 
study of genetic variation as well. MR is a common method 
that allows the inference of causal relationships between 
exposures and disease outcomes (12). It treats genetic 
variants that are significantly associated with exposure 
(e.g., gene expression) as genetic tools that are then used to 

detect a causal effect of the outcome. If a causal relationship 
exists, the variation in exposure affects the outcome in  
proportion (12). Compared to observational epidemiology, 
MR has some advantages in its ability to control for 
environmental confounders (13). Further, Zhu et al. 
proposed a method named summary-data-based Mendelian 
randomization (SMR), by which Zhu et al. successfully 
identified 33 novel relevant genes for complex traits (14,15).

A previous TWAS for OA identified several variant genes 
by a loose significance threshold; however, an extensive 
description on the association was not provided and the 
sample size in the study was relatively small (6,858 OA 
patients and 27,478 controls) (16). Therefore, we performed 
TWAS and SMR analysis using more GWAS summary-
data obtained from the UK Biobank (30,727 OA patients 
and 297,191 controls) to identify genetic loci and risk genes. 
The associations were also systematically characterized 
using confocal analysis, conditional analysis, fine-mapping 
analysis, and HaploReg (http://pubs.broadinstitute.org/
mammals/haploreg/haploreg.php) (Figure 1). As a result, 
some of the shortcomings in previous studies were rectified 
and new insights were provided for subsequent functional 
studies on OA. We present the following article in 
accordance with the STREGA reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-4471/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Study cohort

First, 5 OA GWAS datasets from the UK Biobank were 
used, including self-reported (SR), hospital diagnosis (HD), 
HD of knee OA (HD-knee), HD of hip OA (HD-hip), 
and HD of hip or knee OA (HD-hip/knee) (17). A total 
of 30,727 OA patients of European genetic ancestry and 
297,191 controls were included. Second, SNP weights from 
different samples (European genetic ancestry) and tissues 
(muscle-skeletal tissue and whole blood) were used. The 
SNP weight indicated the correlation between the SNP and 
its annotated gene expression (9). SNP weights for muscle-
skeletal tissue and whole blood were downloaded from the 
TWAS FUSION website (http://gusevlab.org/projects/
fusion/#reference-functional-data), after selection based on 
previous literature (16). Finally, linkage disequilibrium (LD) 

http://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
http://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://atm.amegroups.com/article/view/10.21037/atm-22-4471/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-4471/rc
http://gusevlab.org/projects/fusion
http://gusevlab.org/projects/fusion
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from the 1000 Genomes Project Phase 3 European subset 
(n=489) was downloaded from the FUSION website (http://
gusevlab.org/projects/fusion/) (18).

TWAS for OA

To identify the genes associated with the risk of OA, 
TWAS analyses were conducted using FUSION with 
default settings. FUSION leveraged a set of reference 
individuals to measure both gene expression and SNPs. The 
cis components of genetic expression were then utilized 
for imputation among a much larger set of individuals 
using the SNP genotype data (9). The precomputed 
expression reference weights of different tissues were 
downloaded from the FUSION websites. For TWAS of 
OA, 2 expression reference panels were applied, including 
muscle-skeletal tissue and whole blood (19). TWAS P value 
was obtained for each gene. In addition, the Bonferroni 
correction was applied to correct for significance threshold: 
P=0.05/number of genes (18). Further, we tested the 
association between the best SNPs in OA GWAS and the 
corresponding best expression quantitative trait loci (eQTL) 
SNPs in the Genotype-Tissue Expression (GTEx) project 
database (v7) using HaploReg (v4.1). Whether LD was met 
was determined based on r2.

Bayesian colocalization

To explore  whether  SNPs of  GWAS could exert 
synergistic effects with eQTLs, we used the COLOC 
R package (https://cran.r-project.org/web/packages/
coloc/,version5.1.0). All genes with transcriptome-wide 

significance (PTWAS <0.05) and within a 1.0-megabase (Mb) 
window were used in Bayesian colocalization analysis. 
Bayesian colocalization is driven by a shared causal variable 
or variant in strong LD and estimates the association 
between 2 outcomes (GWAS and eQTL signals) within a 
locus, i.e., the posterior probability (PP). PP4 is the set of 
PPs that we focused on. When PP4 >75% (20), GWAS and 
eQTL signals were consistent, and genes in the credible 
group that met this PP (PP4 >75%) were preferentially 
identified as putative causal genes (20).

Joint/conditional analysis

To determine whether multiple association features were 
independent signals, we performed conditional analysis 
on the genome-wide Bonferroni-corrected TWAS signals 
using FUSION software. The association gene model was 
used for each OA GWAS association with an SNP, 1 SNP at 
a time (21). In addition, conditional analysis demonstrated 
the extent to which the GWAS association signal within 
each locus could be explained by the functional associations 
detected by TWAS (22). Each significant locus was aligned 
using FUSION. The loci tested by alignment showed 
heterogeneity in expression capture, which ensured that 
the association was independent. In this study, 1,000 
permutation tests were performed for each TWAS gene, 
with P<0.05 indicating the significance of the permutation 
test (22).

TWAS fine mapping

To address the issue of coregulation and LD, we used fine-

5 OA GWAS datasets 

from the UK Biobank

Muscle-skeletal and 

whole blood eQTL data

TWAS SMR

Bayesian colocalization Conditional analysis Fine-mapping of causal 

gene sets (FOCUS)

Figure 1 Flowchart of the study design. OA, osteoarthritis; GWAS, genome-wide association studies; eQTL, expression quantitative trait 
locus; TWAS, transcriptome-wide association studies; SMR, summary-data-based Mendelian randomization.

http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
https://cran.r-project.org/web/packages/coloc/
https://cran.r-project.org/web/packages/coloc/
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mapping of causal gene sets (FOCUS) to prioritize genes 
with strong causal evidence in TWAS analysis (23). FOCUS 
integrates GWAS summary-data and eQTL weights 
(consistent with the eQTL reference panel used by TWAS) 
and includes LD for all SNPs in the risk region. TWAS hits 
were prioritized such that they were included in the default 
90% confidence set, and a posteriori inclusion probability 
(PIP) was estimated. PIP value >0.5 for each gene in the 
region of interest indicated that the gene was more likely 
to be causally related than any other gene in the region of 
interest (11).

SMR analysis

To assess the relationship between genetic variation, 
gene expression, and OA, SMR (https://cnsgenomics.
com/software/smr/) analysis was conducted (14). In SMR 
analysis, we integrated 2 eQTL datasets [muscle-skeletal 
tissue and whole blood from GTEx (v7)] (19) and 5 GWAS 
datasets (17) to examine pleiotropic associations between 
gene expression and OA. This method uses pooled data 
to perform transcriptome-wide association analysis and 
improves statistical power by using large sample sizes of 
GWAS and eQTL data.

In our SMR analysis,  cis-eQTL was used as an 
instrumental variable, gene expression was the exposure, 
and OA was the outcome. To control the rate of genome-
wide type I error, Bonferroni correction was used to account 
for multiple testing so that the significance level for each 
trait or tissue was P=0.05/number of genes. Since 2 eQTL 
datasets and 5 GWAS datasets were used, 10 significance 
thresholds were set (details are presented in Table S1 in the 
supplementary material). In addition, to assess whether the 
observed associations were caused by a single causal variable, 
heterogeneity in dependent instruments (HEIDI) was 
used to test the heterogeneity of the statistics on resulting 
associations, and the probes with low heterogeneity were 
retained (13). Only genes detected by SMR with PHEIDI 
>0.05 were considered significantly different. Finally, the 
results were visualized by R code provided by Zhu et al. (14).

Statistical analysis

Statistical analyses were conducted using the statistical 
computing programming language R (version 4.0.3). The 
results were visualized with R package qqman (https://cran.
r-project.org/web/packages/qqman/index.html).

Results 

TWAS analysis performed by FUSION

To reveal novel genes significantly associated with OA 
susceptibility, 5 publicly available GWAS datasets (SR, 
HD, HD-hip, HD-knee, and HD-hip/knee) were obtained 
from a European case-control cohort. In 2 SNP weight 
sets (muscle-skeletal tissue and whole blood), we identified 
6 significant transcriptome-wide features (6 unique 
genes) (Table 1, Figure 2, Figure S1). Four significant 
transcriptome-wide loci were observed for the 6 unique 
genes (Figure 3). Since only significant features from 3 
GWAS datasets (SR, HD-hip, and HD-hip/knee) were 
detected in this study, and no genes below the significance 
threshold were available in the other 2 GWAS datasets 
(HD and HD-knee), we only described and presented 
the relevant genes closest to the significance threshold in 
these 2 GWAS datasets (HD and HD-knee) (details are 
elucidated in Table S2 and Figure S2 in the supplementary 
material).

Chromosome 1q36.12

ASAP3 (PTWAS =6.63E−07) and TCEA3 (PTWAS =4.24E−07) 
are located within the chromosome 1q36.12 locus  
(Figure 3A). In this locus, the top GWAS SNP [rs1555024, 
odds ratio (OR) =0.84, PGWAS =4.24E−07] was the same as 
the best eQTL SNP in the GTEx database (v7) associated 
with the expression of ASAP3 (muscle-skeletal tissue) (PeQTL 
=1.11E−47) and TCEA3 (whole blood) (PeQTL =8.88E−5). 
Bayesian colocalization showed that PP4 for ASAP3 and 
TCEA3 was 99.9% and 83.7%, respectively, suggesting that 
GWAS and eQTL (muscle-skeletal tissue and whole blood) 
shared the same variant at this locus. To further determine 
whether multiple association features within the locus were 
independent signals, a conditional analysis was performed. 
The results showed that ASAP3 and TCEA3 genes were 
related to all signals at their loci (best SNP: rs1555024, 
PGWAS =4.24E−07; conditional on ASAP3 and TCEA3, 
PGWAS =1.000) (Table S3). In addition, to prioritize putative 
causal genes, FOCUS was used to assign a PIP for genes in 
each transcriptome-wide risk region and associated tissue 
type. However, no gene in the chromosome 1q36.12 locus 
was included in the default 90% confidence set, which was 
probably due to few genes meeting the default significance 
threshold of FUSION in the GWAS dataset used in our 
study (17). 

https://cnsgenomics.com/software/smr/
https://cnsgenomics.com/software/smr/
https://cdn.amegroups.cn/static/public/ATM-22-4471-Supplementary.pdf
https://cran.r-project.org/web/packages/qqman/index.html
https://cran.r-project.org/web/packages/qqman/index.html
https://cdn.amegroups.cn/static/public/ATM-22-4471-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-4471-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-4471-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-4471-Supplementary.pdf
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Chromosome 17q24.2

Within the chromosome 17q24.2 locus, ABCA9 (PTWAS 
=1.78E−07) corresponded to a significant association feature 
with transcriptome-wide significance (Figure 3B). In this 
locus, rs2521348 was the most significant SNP associated 
with OA (OR =1.18, PGWAS =1.01E−06) Furthermore, 
rs2251855 was the best eQTL SNP associated with the 
expression of ABCA9 (PeQTL =4.98E−4) in whole blood 
from the GTEx database (v7), which showed a strong LD 
with rs2521348 (r2=0.8). Bayesian colocalization analysis 
demonstrated a PP4 of 70.6% for ABCA9, suggesting 
that GWAS and eQTL (whole blood) might be driven by 
the same causal variant on the ABCA9 locus. In addition, 
conditional analysis found that ABCA9 was related to 
98.8% of the signal at this locus (best SNP: rs2521348, 
PGWAS =1.01E−06; conditional on ABCA9, PGWAS =0.588)  
(Table S3).

Chromosome 20q11.22

Both UQCC1 (PTWAS =2.00E−07) and MYH7B (PTWAS 
=1.03E−06) were located within the chromosome 20q11.22 
locus (Figure 3C). In this locus, rs224331 was the most 
significant SNP associated with OA (OR =0.91, PGWAS 

=8.17E−09). Furthermore, rs1540927 was the best eQTL 
SNP associated with the expression level of UQCC1 (PeQTL 
=2.05E−25) in muscle-skeletal tissue from the GTEx 
database (v7), which showed a strong LD with rs224331 
(r2=0.81). Rs17092378 was the best eQTL SNP associated 
with the expression level of MYH7B (PeQTL =6.75E−5) 
in whole blood from the GTEx database (v7), which 

showed a weak LD with rs224331. In addition, Bayesian 
colocalization analysis presented a PP4 of 95.9% for 
UQCC1, suggesting that the significant GWAS signal and 
the expression level of the UQCC1 gene were driven by the 
same causal variant. However, PP4 was 8.6% for MYH7B 
gene in the same genomic region. Thus, we could not 
conclude that the significant GWAS signal and whole-blood 
eQTL signaling shared the same variants at their loci.

The results of the conditional analysis showed that 
UQCC1 and MYH7B were related to all signals at its loci 
(best SNP: rs224331, PGWAS =8.17E−09; conditioned on 
UQCC1 and MYH7B, PGWAS =1.000) (Table S3). In addition, 
FOCUS results showed that both UQCC1 (muscle-
skeletal tissue, PIP =0.295) and MYH7B (whole blood, PIP 
=0.00326) were also included in the 90% confidence set 
within the genomic locus 20:32813689-20:34960446. 

Chromosome 21q21.3

In the chromosome 21q21.3 locus, only RWDD2B 
(P TWAS =5.93E−08)  corresponded to a  s ignif icant 
association feature with a transcriptome-wide significance  
(Figure 3D). Within this locus, rs2832155 was the most 
significant SNP associated with OA (OR =1.13, PGWAS 
=5.39E−08). In addition, rs2150403 was the best eQTL 
SNP associated with the expression of RWDD2B (PeQTL 
=1.55E−12) in whole blood from the GTEx database (v7), 
which showed an extremely strong LD with rs2832155 
(r2=0.99). Bayesian colocalization analysis showed that PP4 
was 99.6% for RWDD2B, indicating that GWAS had the 
same variation as eQTL (whole blood) at the RWDD2B 

Table 1 Transcriptome-wide significant osteoarthritis risk genes identified by TWAS in OA

Trait Gene Chr Best GWAS IDa eQTL IDb TWAS Zc TWAS P Tissue

HD-hip TCEA3 1 rs1555024 rs1555024 −5.1 4.24E−07 Whole blood

ASAP3 1 rs1555024 rs1555024 −5.0 6.63E−07 Muscle-skeletal

ABCA9 17 rs2521348 rs2251855 5.2 1.78E−07 Whole blood

SR UQCC1 20 rs224331 rs1540927 5.2 2.00E−07 Muscle-skeletal

MYH7B 20 rs224331 rs17092378 −4.9 1.03E−06 Whole blood

HD-hip/knee RWDD2B 21 rs2832155 rs2150403 −5.4 5.93E−08 Whole blood
a, the SNP showed the most significant association with OA in this locus; b, the SNP showed the most significant association with gene 
expression in this locus; c, the Z statistic reflects the association strength between this gene and OA. Z<0 suggests that this gene was 
predicted to be downregulated in OA compared with controls and vice versa. TWAS, transcriptome-wide association studies; OA, 
osteoarthritis; Chr, chromosome; GWAS, genome-wide association studies; eQTL, expression quantitative trait loci; HD-hip, hospital 
diagnosis of hip OA; SR, self-reported; HD-hip/knee, hospital diagnosis of hip or knee OA; SNP, single-nucleotide polymorphism.

https://cdn.amegroups.cn/static/public/ATM-22-4471-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-4471-Supplementary.pdf
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indicates the threshold of significance (P=1.72E−06) within the transcriptome used in this study. (A) A dataset from the hospital-diagnosed 
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status data was used to identify UQCC1 and MYH7B as significant risk genes for OA. (C) A dataset from the hospital-diagnosed hip and 
knee arthritis data was used to identify RWDD2B as significant risk genes for OA. HD, hospital diagnosis; HD-hip, hospital diagnosis of 
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locus. Conditional analysis showed that RWDD2B was 
related to 99.6% of the signals at this locus (best SNP: 
rs2832155, PGWAS =5.39E−08; conditional on RWDD2B, 
PGWAS =0.148) (Table S3). Within the genomic locus 
20:32813689-20:34960446, RWDD2B (whole blood, PIP 
=0.0238) was included in the 90% confidence set of genes.

SMR analysis results

Next, we performed SMR using GWAS and eQTL 
data. Two risk genes related to OA were identified by 
SMR integrative analysis: UQCC1 (PSMR =2.05E−6, beta 
=0.311674) and ASAP3 (PSMR =1.49E−6, beta =−0.374363) 
(corrected by Bonferroni multiple comparison testing) 
(Figure 4, Table 2). In addition, the HEIDI test results found 
that UQCC1 and ASAP3 could pass the heterogeneity test 
(PHEIDI >0.05) (13). Overall, this MR study showed a causal 

relationship between high UQCC1 expression and low 
ASAP3 expression and OA risk (Figure S3). 

Comparison with previous literature

The significance threshold in previous TWAS for OA was 
set loosely (P<0.05) (16), and thus some spurious OA risk 
genes might have been included in the results. Our study 
used Bonferroni correction to correct for significance 
thresholds to obtain more reasonable results. A previous 
TWAS for OA (16) identified a total of 572 risk genes 
using TWAS analysis, among which ASAP3, TCEA3, 
UQCC1, and RWDD2B risk genes overlapped with our 
TWAS results. The 5 GWAS datasets used in our study 
were derived from the study by Zengini et al. (17). By 
constructing Manhattan plots (Figure S4) and quantile-
quantile plots (Figure S5) for these 5 datasets, we found that 

Figure 3 Regional association plot. The panel above shows all protein-coding genes or genes in the transcriptome correlation study. Co-
significant genes are marked in red, and genes not involved in transcriptome association studies (NA) are marked in gray. The following 
panels show Manhattan plots of genome-wide association study data before (gray) and after (blue) the conditional effects of jointly significant 
genes. (A) Chromosome 1 regional association plot. (B) Chromosome 17 regional association plot. (C) Chromosome 20 regional association 
plot. (D) Chromosome 21 regional association plot. NA, not available; Mb, megabase.
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Figure 4 Two loci from SMR analysis. (A) In the top panel, gray dots represent the P values of SNP from OA GWAS. The bottom plot 
shows the eQTL P values of the ENSG00000101019.17 probe SNP from the self-reported status dataset (muscle-skeletal) labeled UQCC1. 
Indicated in red are genes (UQCC1) that passed SMR and HEIDI tests. (B) In the top plot, gray dots represent P values of SNP from OA 
GWAS. The lower panel shows the eQTL P values of SNP from ENSG00000088280.14 probe marker ASAP3 in the hospital-diagnosed 
hip dataset (muscle-skeletal). The red marker is the gene (ASAP3) tested by SMR and HEIDI. GWAS, genome-wide association studies; 
SMR, summary-data-based Mendelian randomization; eQTL, expression quantitative trait loci; Mb, megabase; SNP, single-nucleotide 
polymorphism; OA, osteoarthritis; HEIDI, heterogeneity in dependent instruments.
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the observed P value distribution was well matched with the 
expected one, indicating less overall inflation of genome-
wide statistics. In addition, by comparing our results 
with the GWAS for OA by Zengini et al. (17), we found 
that 2 important TWAS genes (UQCC1 and RWDD2B) 
overlapped with the GWAS results by Zengini et al. (17). 
Overall, our study identified 2 new OA susceptibility genes 
(ABCA9 and MYH7B) compared with the previous TWAS 
and GWAS (16,17).

Discussion

OA is one of the more common musculoskeletal disorders 
at present (24), and it is also the leading cause of disability 
worldwide. OA affects 40% of people over 70 years of age 
and is associated with a higher risk of comorbidity and 
death (25). Although GWAS has recently been successfully 
applied in identifying risk loci associated with OA, the 
functional significance of these associations remains elusive 
because tissue-specific and tissue-associated genes cannot be 
finely mapped. Our study aimed to detect candidate genes 
closely associated with OA and explain the relationship 
between these genes and the disease. First, we identified 
UQCC1, MYH7B, ABCA9, TCEA3, ASAP3, and RWDD2B 
as risk genes for OA by integrating the larger GWAS 
dataset from UK Biobank and eQTL data for TWAS 
analysis. MYH7B and ABCA9, which were not identified in 
previous TWAS and GWAS (16,17,26-28), were localized 
in 4 different regions: chromosome 1q36.12, chromosome 
17q24.2, chromosome 20q11.22, and chromosome 21q21.3.

We further investigated the significant associations 
through a conditional analysis to determine whether 
gene associations within the same genomic region were 
independent or whether the associations resulted from 
correlated predicted expression. The results showed that 
the 6 risk genes adequately explained most of the genetic 
variation signals in the region where the 4 loci were located. 
We compared GWAS (17,28) summary statistics before and 

after conditioning on significant TWAS associations. It was 
revealed that GWAS (17,28) associations could be explained 
to a major extent by TWAS associations, further suggesting 
the possibility of transcriptomic mediation in genetic risk 
for OA.

To further determine whether GWAS and eQTL signals 
were driven by the same variants, we performed a Bayesian 
colocalization analysis to calculate PP4 of each gene. We 
found that 4 of them were greater than 75% (20), indicating 
that these 4 significant features could be considered as 
colocalized states and the same genetic variants could 
drive the association with OA through these 4 features. 
Although the importance of several candidate genes was 
demonstrated, none of the above results could identify 
whether their association with OA was causal or not. 
Therefore, SMR analysis was conducted and corrected by 
Bonferroni's multiple comparison test. Two genes, UQCC1 
and ASAP3, were identified, and both passed the test of 
heterogeneity (PHEIDI >0.05) (13), and thus their association 
with OA was considered a causal effect.

Our study again demonstrated the importance of the 
ASAP3, TCEA3, UQCC1, and RWDD2B genes in OA 
genetic variation. Related studies have shown that UQCC1 
is expressed during chondrocyte differentiation (29).  
In humans, polymorphisms in this gene are mostly 
associated with bone mass (30), hip dysplasia (31), hip shaft 
length (32), and height (33). Additionally, 2 genome-wide 
and candidate gene association studies showed that common 
variants between growth/differentiation factor 5 (GDF5) 
and UQCC1 resulted in a 2-fold increased risk of OA in 
the hip and knee joints (33,34). ASAP3, a member of the 
ASAP subfamily, is mainly involved in cellular endocytosis 
and actin cytoskeleton remodeling (35). According to an 
earlier study, the content of cytoskeletal actin and wave 
proteins in knee chondrocytes varied greatly in OA patients 
but remained relatively constant in healthy people (36). 
TCEA3, an isoform of the transcriptional elongation factor 
TFIIS, has been shown to promote cell differentiation 

Table 2 Osteoarthritis risk genes identified by SMR integrative analysis in OA

Gene Chr Top SNP Top SNP_Chr A1 A2 HEIDI Pa SMR P Tissue Trait

UQCC1 20 rs6579234 20 G A 2.14E−1 2.05E−6 Muscle-skeletal SR

ASAP3 1 rs6686497 1 C T 5.07E−1 1.49E−6 Muscle-skeletal HD-hip
a, HEIDI test was used to distinguish pleiotropy from the linkage. If a gene passes the HEIDI test (P>0.05), it suggests that there is a 
single causal variant influencing both disease risk and gene expression. Thus, expression change of this gene may have a role in disease 
susceptibility. SMR, summary-data-based Mendelian randomization; OA, osteoarthritis; Chr, chromosome; SNP, single-nucleotide 
polymorphism; HEIDI, heterogeneity in dependent instruments; HD-hip, hospital diagnosis of hip OA; SR, self-reported; OA, osteoarthritis.



Wang et al. TWAS of OAPage 10 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(20):1116 | https://dx.doi.org/10.21037/atm-22-4471

and myotubular fusion (37). TCEA3 can regulate the 
proliferation of muscle precursor cells and myotube 
formation by interacting with myogenic regulatory factors, 
facilitating the recruitment of RNA polymerase II (RNAPII) 
to the promoter, and moving with RNAPII to the coding 
region of the gene (38,39). RWDD2B has been confirmed as 
a target for OA-related genetic and epigenetic effects by a 
previous study (40).

In addition, based on previous studies, we identified 2 
susceptibility genes for OA, namely MYH7B and ABCA9. 
MYH7B is a myosin heavy chain gene, expressed in slow-
twitch muscle fibers (type I fibers) (41,42). Altered types 
and reduced numbers of muscle fibers are thought to be 
associated with quadriceps weakness and pain in knee OA 
(43,44). A recent study showed a significant increase in 
type IIa/x mixed fibers and a significant decrease in type 
I fibers in the muscle of the OA group compared to the 
control group (45). ABCA9, a member of the adenosine 
triphosphate (ATP)-binding cassette (ABC) transporter 
superfamily (46), plays an important role in intracellular 
cholesterol storage (47). Cholesterol metabolic pathways 
have a regulatory role in cartilage differentiation, and 
dysfunction of the pathways may disrupt the physiological 
metabolism of chondrocytes, which in turn leads to the 
development of OA (48).

The discovery of novel genetic risk factors may hasten 
the development of predictive biomarkers and personalized 
OA therapies (49). The development of TWAS has, in 
some ways, restricted the screening scope of OA genetic 
risk genes. Firstly, we found two significant transcriptome-
wide loci and six risk genes using TWAS analysis; Bayesian 
colocalization discovered UQCC1, ABCA9, TCEA3, ASAP3, 
and RWDD2B as potential causal genes; according to the 
joint/conditional analysis, all six risk genes were correlated 
with the majority of the signals on their loci. Through 
TWAS fine mapping, the UQCC1 and MYH7B risk genes 
were found more likely to be causative than other genes 
in the region of interest. Indeed, some OA medications in 
current clinical trials, such as intra-articular TGF-b and 
FGF18 growth factor treatments and Wnt inhibitors (50), 
target proteins from GWAS-identified genes (17,28). Is 
it possible to reposition therapeutic modalities for drugs 
that are clinically correlated with new genetic risk factors 
(for the treatment of other diseases)? This requires further 
exploration. Furthermore, our study failed to explain the 
correlation between joint sites and genetic risk variants, 
despite the use of GWAS datasets including knee, hip, 
hip/knee, and all OA (SR and HD), and the discovery 

of respective relevant genes and risk loci. In addition, 
a previous study showed that the association between 
genetically determined BMI and femoral neck bone mineral 
density varied with joint sites in humans (51). This indicates 
that exploring the association between genetic variation 
and phenotype is helpful for an indirect probe into the link 
between the joint site and genetic risk variation.

A prior epidemiological study also found that cholesterol 
metabolism had a strong association with hand, knee, 
hip, and systemic OA (52). Based on our analysis results 
and other investigators’ reports (47,48), genetic variants 
in the ABCA9 risk gene are considered to impact the 
occurrence and progression of OA via regulating cholesterol 
metabolism. As a result, it becomes a critical follow-up issue 
to investigate the relationship between genetic variants of 
ABCA9 gene and cholesterol metabolism in OA patients, 
which may also drive the development of personalized 
management models for patients with OA. Similarly, this 
holds true for subsequent studies on the association between 
genetic variants in the remaining risk genes (UQCC1, 
MYH7B, TCEA3, ASAP3, and RWDD2B) and OA.

In conclusion, we performed TWAS and SMR analysis 
by integrating larger GWAS pooled data on OA and 
expression weight sets. New OA-associated susceptibility 
genes and risk loci were found, and the identified 
associations were extensively characterized using confocal 
analysis, conditional analysis, fine-mapping analysis, and 
HaploReg. We provided new insights for subsequent studies 
on OA and also highlighted the potential and importance 
of resource integration in the era of big data for biomedical 
research. However, our study also had some limitations. 
First, only individuals of European ancestry were included 
in the analysis, and therefore the results might not be 
applicable to other ethnic groups. Second, although the 
sample size included in the current study was larger than 
the previous study, it was still somewhat restrictive, leading 
to possible bias in the results. Third, the results were not 
validated by experiments in this study, and the reliability of 
the results still need to be examined.
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