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Cryptococcus is an invasive fungus that seriously endangers human life and health,

with a complex andwell-established immune-escapingmechanism that interferes

with the function of the host immune system. Cryptococcus can attenuate the

host’s correct recognition of the fungal antigen and escape the immune response

mediated by host phagocytes, innate lymphoid cells, T lymphocytes, B

lymphocytes with antibodies, and peripheral cytokines. In addition, the capsule,

melanin, dormancy, Titan cells, biofilm, and other related structures of

Cryptococcus are also involved in the process of escaping the host’s immunity,

as well as enhancing the ability of Cryptococcus to infect the host.

KEYWORDS
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1 Introduction

The Cryptococcus genus is affiliated with Basidiomycota, Agaricmycotina,

Tremelloymcetes, and Tremellales (Heitman et al., 2010), and is a group of capsule-

covered opportunistic pathogenic fungi. Of the 37 species known, Cryptococcus

neoformans (Cn) and Cryptococcus gattii (Cg) are the main human pathogenic

cryptococci (Franco-Paredes et al., 2015). Cn is widespread in nature, often originating

from pigeon feces, and mainly infects immunocompromised individuals, such as the

elderly, HIV/AIDS patients, and organ transplant recipients, as well as often causing

central nervous system infections (NYu et al., 2021). It is estimated that 223,000 people

with HIV/AIDS develop cryptococcal meningitis each year, of which 181,000 die

(Rajasingham et al., 2017). Cg was initially thought to be transmitted only in tropical

and subtropical eucalyptus areas; there has been a steady increase in the number of Cg

infections in the world in temperate regions since the outbreak on Vancouver Island. Cg

can infect both immunocompetent and immunosuppressed people, and has a mortality

rate of nearly 33% (Jamil et al., 2020). Cryptococcus has become a lethal pathogen that

poses a serious threat to public health safety (Jamil et al., 2020).
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The host immune system has established a large and

complex immune mechanism in response to invasion by

Cryptococcus (reviewed in Hernández-Chávez et al., 2017).

Cryptococci invade the host alveoli via the respiratory tract in

the form of fungi or fungal spores, and are then exposed to the

host immune response with phagocytes as the first barrier. The

pattern recognition receptors (PRRs) of alveolar phagocytes

recognize the conserved pathogen-associated molecular

patterns (PAMPs) of Cryptococcus and mediate the formation

of phagosomes by macrophages, dendritic cells, neutrophils, etc.

(Hatinguais et al., 2020). In addition, phagocytes can secrete

large amounts of cytokines and chemokines, and can act as

antigen-presenting cells (APCs) to present antigens to T

lymphocytes for the clearance of cryptococci through cellular

and humoral immunity (reviewed in Li et al., 2019).

However, Cryptococcus has also evolved a targeted and well-

established immune escape capability from being identified and

killed (reviewed in Hernández-Chávez et al., 2017). In this

review, we focus on and determine the mechanisms of

Cryptococcus immune escaping, as well as the fungal structure

associated with Cryptococcus escaping immunity.
2 Mechanisms by which
Cryptococcus escapes host
immunity

2.1 Immune escape of host
cellular immunity

2.1.1 Immune escape of phagocytes
2.1.1.1 Immune escape of macrophages

Macrophages that infiltrate in large numbers into the alveoli

are the first line of defense of the host immune system against

cryptococci (Trevijano-Contador et al., 2016). The immune

process of macrophages against Cryptococcus includes capsule

polysaccharide recognition, phagocytosis, killing, cytokine and

chemokine production, and antigen presentation (Barreto-

Bergter and Figueiredo, 2014; Trevijano-Contador et al., 2016).

Previous studies have suggested that the phagocytic process of

Cryptococcus is mostly dependent on opsonin, including

antibody and complement opsonization, such as antibody

receptor in the Fc region against the capsule antigen

component glucuronoxylomannan (GXM) in addition to the

capsule-dependent C3-C3b complement system, which together

complete the phagocytosis and internalization of Cryptococcus

(reviewed in Rohatgi and Pirofski, 2015; Sun et al., 2019).

However, recent studies have shown that macrophages can

also phagocytose pathogens in a non-opsonic manner, i.e.,

through the direct recognition of fungal cell wall PAMPs by

PRRs (Sun et al., 2019). In contrast to the “mannoprotein

receptor-mannoprotein” recognition mode of other fungi,
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macrophages rely on the spleen tyrosine kinase pathway to

recognize Cryptococcus, in which Cn can be recognized by

both Dectin-1 and Dectin-2 receptors, whereas Cg is only

recognized by Dectin-1 receptors, and the difference is

determined by the different PAMPs in the cell walls of the two

species (Lim et al., 2018) (Figure 1).

The activation state of macrophages includes the classically

activated M1 type, which is protective of the host, and the

alternatively activated M2 type, which is nonprotective. M1/M2

macrophages can be interconverted by immediate changes in

cytokines in the immune microenvironment (Davis et al., 2013;

Subramani et al., 2020). M1 macrophages are activated by IFN-g
produced by type 1 immune responses via the signal

transduction and activator of transcription-1 (STAT1)

signaling pathway, which in turn produces reactive oxygen

species (ROS) and reactive nitrogen species (RNS) to kill

pathogenic bacteria (Leopold Wager and Wormley, 2014). M2

macrophages, in turn, are activated by IL-4 and IL-13 of type 2

immune responses with the induction of Arg1 and CD206

(mannose receptor) expression (Leopold Wager and Wormley,

2014; Subramani et al., 2020). Furthermore, Müller U (Müller

et al., 2012) et al. demonstrated that the interleukin-4 receptor

(IL-4R) on T helper (Th) cells suppressed host resistance in

pulmonary cryptococcosis with an enhancing type 2 immunity.

Cryptococci cannot be eliminated by M2 macrophages; instead,

cryptococci can grow, multiply, and spread within M2

macrophages or even go dormant in preparation for latent

infection (Subramani et al., 2020). Interestingly, cryptococci

were proved to weaken the fungicidal ability of inflammatory

monocytes (IM) and aggravate the progression of infection,

which is independent of lymphocyte priming, eosinophil

recruitment, or downstream M2 macrophage polarization

pathways (Heung and Hohl, 2019). Cryptococcus can escape

from M1 macrophages by inducing the polarization of

macrophages towards the M2 phenotype via the Hsp 70

homolog Ssa1 (Eastman et al., 2015a). Recent research has

revealed that macrophages, while maximizing the killing of

Cryptococcus, are also “accomplices” in facilitating the immune

escape of Cryptococcus. Sabiiti W (Sabiiti et al., 2014) et al. found

that macrophages provide an ecological niche for Cryptococcus

to replicate intracellularly, which limits the effect of extracellular

antifungal drugs, as well as the fact that Cryptococcus crosses the

blood-brain barrier to enter the brain via macrophages as a

Trojan horse transmission (Santiago-Tirado et al., 2017).

Interventional reductions in host macrophages have even been

shown to reduce the risk of Cryptococcus spreading in vivo

(Charlier et al., 2009).

It has been reported that the phagocytosed cryptococcal

capsule component GXM may induce the apoptosis of

macrophages mediated by the Fas/FasL pathway and inhibite

subsequent immune activation (Villena et al., 2008). At the same

time, Cryptococcus has evolved a way of escaping macrophages

via vesicle encapsulation, known as nonlytic exocytosis, or
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“vomocytosis”, which not only assists Cryptococcus in invading

the central nervous system but also protects Cryptococcus from

the immune system during the incubation period (Santiago-

Tirado et al., 2017).

2.1.1.2 Immune escape of dendritic cells

DCs are densely distributed in the host’s respiratory mucosa

and serve as a bridge between innate and adaptive immune

responses, with their main function being the uptake and

presentation of pathogenic antigens (Trombetta and Mellman,

2005; reviewed in Mukaremera and Nielsen, 2017). Similar to

macrophages, opsonization by antibodies or complements in the

immune environment enhances phagocytosis and the killing of

cryptococci by DCs (Campuzano and Wormley, 2018). DCs are

induced to mature by costimulatory molecules (CD40, CD80,

and CD86, etc.) and migrate to T-cell-rich lymphoid organs,

where the major histocompatibility complex class II (MHC-II)

on their surface presents the processed antigenic component to

the initial T cells, namely mannoprotein (MP), initiating the

subsequent T lymphocyte immune response. DCs engulf

cryptococci and recruit lysosomes to fuse with them, which
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are independently segregated within the phagocytosed

lysosomes and killed by oxidative and nonoxidative

mechanisms, while cathepsin B forms pores in the cryptococci

cell wall and accelerates cryptococci lysis (Nelson et al., 2021).

As a heterogeneous population, DCs comprise different

subtypes, such as CD11b+ myeloid DCs, plasmacytoid DCs

(pDCs), and CD103+ DCs (Condon et al., 2011; Nelson et al.,

2020). During cryptococcal infection, CD11b+ DCs migrate to

the lung and present antigens to cryptococcal-specific T cells,

which is of significance for the clearance of cryptococci

(Wozniak et al., 2006; Osterholzer et al., 2009a). The

recognition and uptake of Cryptococcus by pDCs rely on the

expressive level of Dectin-3 and the chemokine receptor CXCR3,

and the fungicidal activity of pDCs depends on the production of

ROS within the lysosome (Hole et al., 2016). CD103+ DCs

infiltrate into the lung mucosa and distribute along the lung

vascular wall; however, the CD103+ DCs population occupied a

very small proportion of the total DCs (Eastman et al., 2015b;

Nelson et al., 2020). Studies on CD103+ DCs in response to

pulmonary cryptococcosis deserve more attention (Nelson

et al., 2020).
FIGURE 1

The strategy of Cryptococcus immune escaping. Cryptococcus can attenuate the host’s correct recognition of the fungal antigen components
and escape the immune response mediated by host phagocytes. Red arrows indicate the mechanism by which the host immune system clears
Cryptococcus, and black arrows indicate the mechanism by which Cryptococcus escapes host immunity. Created in BioRender.com.
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Activated by IL-12, a protective Th1-type cytokine produced by

mature DCs in the presence of IFN-g, Th1 cells possess a positive

interrelationship with DCs, together activate the inflammatory

response against Cryptococcus and enhance host protection

(Vieira et al., 2000; reviewed in Mukaremera and Nielsen, 2017),

whereas the nonprotective DCs expressing the costimulatory

molecules CD86 and OX40L induced Th2 cells to secrete IL-4,

IL-5, and IL-13, and recruit eosinophils to participate in the anti-

inflammatory response, enhancing the immune escape of

Cryptococcus from the host (Ohshima et al., 1998; reviewed in

Mukaremera and Nielsen, 2017). Cryptococci were found to evade

immune surveillance by DCs through the virulence factor urease,

which impedes the maturation of DCs and inhibits their antigen

presentation role (Osterholzer et al., 2009b). While the O-acetyl

groups in the GXM of the capsule assist DCs in recognizing

cryptococci, the deacetylation of an O-acetyl group in the GXM

structure of Cg further limits the immune recognition function of

DCs compared to Cn, making Cg more immune-evasive from host

clearance (Urai et al., 2016) (Figure 1).

In addition, Cg phagocytosed by DCs forms a persistent

actin cage at the periphery of the phagosome, a cage-like

structure that spatially and functionally effectively prevents the

fusion of phagosomes with lysosomes as well as inhibiting the

formation of phagolysosomes and the further immune activation

of DCs, leading to the immune paralysis of Cg by DCs. This

unique immune evasion mechanism may be an important

reason for the highly virulent phenotype of Cg, and partially

explains its ease of infection of immunocompetent hosts (Jamil

et al., 2020).

2.1.1.3 Immune escape of neutrophils

Neutrophils are one of the key immune mechanisms for host

resistance to cryptococcal infection, and can be rapidly recruited

to the site of infection in response to chemokines released by the

pathogen or host cells. The augmentation of neutrophil

fungicidal activity by stimulation of granulocyte colony

stimulating factor (G-CSF) and granulocyte-macrophage

colony-stimulating factor (GM-CSF) remarkably reduced the

fungal burden and prolonged the survival time (Chiller et al.,

2002). The recruitment of neutrophils to Cryptococcus requires

the activation of the complement C5a-C5aR pathway, as well as

the activation of the mitogen-activated protein kinase (MAPK)

system of extracellular signal-regulated kinases (ERK) and p38,

resulting in the production of large amounts of proinflammatory

cytokines, including high concentrations of IL-4, IL-10, IL-12,

and TNF-a (Sun et al., 2015). Leukotriene B4 (LTB4), a kind of

eicosanoid produced by the expression of complement C3 and

CD11b, was quickly released by neutrophils during interactions

with cryptococci, motivating large amounts of neutrophils to the

site of infection, swarming and engulfing cryptococci (Sun and

Shi, 2016). Neutrophils also form neutrophil extracellular traps

(NETs) to trap cryptococci, and NETs limit the retaining and
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killing of cryptococci just within their own traps, so as to prevent

excessive inflammatory factors associated with these traps from

causing damage to the body (Springer et al., 2010; reviewed in

Hernández-Chávez et al., 2017) (Figure 1).

However, it was found that although cryptococcal capsule

GXM has chemotactic activity against neutrophils, the O-acetyl

groups in it inhibit neutrophil migration and phagocytosis in

addition to even restricting the formation of NETs, enhancing

the ability of Cryptococcus to escape the immune effects of the

host (Rocha et al., 2015; reviewed in Campuzano and Wormley,

2018). In addition, GXM induces the shedding of L-selectin and

TNF-a receptors on the surface of neutrophils, thereby reducing

neutrophil adhesion to the endothelial surface of blood vessels

and preventing their migration to the site of infection, which

explains the reduced infiltration of neutrophils into host tissues

infected with disseminated cryptococci (Ellerbroek et al., 2004).

2.1.2 Immune escape of innate lymphoid cells
Innate lymphoid cells (ILCs), a vital part of the innate

immune system, are stemmed from lymphoid lineages lacking

PRRs (Spits et al., 2013). Although ILCs fail to recognize

antigens specifically, they contribute immediately in tissue

homeostasis, pathological inflammation, and immunity against

infections through cytokine stimulation bringing about direct

subsequent innate and adaptive immune responses (Elemam

et al., 2021). ILCs are generally classified into three major

subgroups of innate lymphoid cells: group 1 (ILC1s), including

natural killer (NK) cells, group 2 (ILC2s), and group 3 (ILC3s)

(Spits et al., 2013). ILC1s drive type 1 immune responses which

respond to intracellular pathogenic bacteria and fungi with the

secretion of IFN-g and TNF (Elemam et al., 2021). NK cells play

crucial roles in fungi clearance in various ways, including

cytokine production (IFN-g, GM-CSF, and TNF-a) and the

secretion of cytotoxic molecules secretion (perforin,

granzymes, and granulysin) (Elemam et al., 2021). Granulysin

participates in interference with oxidative metabolism and the

energy generation of fungi, and it can also directly kill

extracellular pathogens by altering the membrane integrity,

while further decreasing the viability of intracellular pathogens

when combined with perforin (Elemam et al., 2021). ILC2s

mediate type 2 immune responses producing Th2 cytokines,

including IL-4, IL-5, and IL-13 (Elemam et al., 2021). ILC3s are

found to act as equivalents of Th17 cells, and mainly maintain

the microbiota-host homeostasis of intestinal immunity

(Elemam et al., 2021).

Recent studies have illustrated that the activation of ILC1s

and M1-type macrophages strongly restricts Cn infections

during cryptococcosis, whereas type 2 immunity plays a

reverse role in disease progression that exacerbates pulmonary

infections with ILC2s as well as M2-type macrophages

(Kindermann et al., 2020). Activated by the stimulation of

alarmin IL-33, ILC2s were shown to exert high amounts of
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type 2 cytokines, which modulate mucus hyperproduction,

eosinophilia, and the activation of alternatively activated

macrophages (M2) in infected organs (Kabata et al., 2018;

Kindermann et al., 2018). Furthermore, it was demonstrated

that highly virulent Cryptococcus strains induced type 2

immunity significantly, including ILC2s induction, by

triggering the alarmin IL-33 in alveolar type 2 epithelial cells

(Flaczyk et al., 2013; Heyen et al., 2016; Knipfer et al., 2019;

Kindermann et al., 2020). Remarkably, ILC2s suppress

pulmonary type 1 immunity and classical macrophage (M1)

activation, resulting in attenuated fungal control, suggesting a

detrimental role of ILC2s during cryptococcosis (Kindermann

et al., 2020) (Figure 1).

2.1.3 Immune escape of T lymphocyte
2.1.3.1 Immune escape of effector T lymphocytes

T-lymphocyte-mediated immune responses contributed greatly

against Cryptococcus, as phagocytes process cryptococcal antigens

and present them to T lymphocytes, inducing the initial T cells to

proliferate and mature as well as differentiate into various subtypes

(Elsegeiny et al., 2018). Studies have shown that both effector CD4+

T cells and CD8+ T cells are involved in the immune response to

Cryptococcus, and both proliferate in large numbers as well as

produce granulysin to kill cryptococci (Zheng et al., 2007).

Pulmonary infiltrating effector T lymphocytes stimulated by

cryptococcal antigens secrete both protective Th1-type (IFN-g, IL-
2) and Th17-type (IL-17) cytokines, as well as nonprotective Th2-

type (IL-4, IL-5) cytokines (reviewed in Mukaremera and Nielsen,

2017; Mills, 2022). Both CD4+ T and CD8+ T cells produce

anticryptococcal Th1-type and Th17-type cytokines, whereas

Th2-type cytokines are only produced by CD4+ T cells (Mills,

2022). It was found that Cryptococcus was not sitting still and that

capsule GXM prompted IL-4 and IL-10 secretion while inhibiting

TNF-a and IFN-g production, enhancing the ability of

Cryptococcus to escape the killing effects of CD4+ T and CD8+ T

cells (Scriven et al., 2016) (Figure 1). IL-4Rwas proven to be amajor

determinant affecting the host susceptibility to cryptococcosis,

which is expressed on Th cells via Th2 responses (Müller et al.,

2012). IL-4R complexes can bind to the IL-4 and IL-13 involved in

Th2 responses, suppressing host resistance in pulmonary

cryptococcosis with an enhancing type 2 immunity. Conversely,

lacking IL-4R on Th cells shows a protective classically activated

macrophages (M1 macrophages) response and controls the

pulmonary cryptococcosis (Müller et al., 2012).

In addition, immunocompetent CD4+ T cells also cause the

host to develop immune reconstitution inflammatory syndrome

(IRIS) and postinfectious inflammatory response syndrome

(PIIRS), which severely disrupt the central nervous system

(CNS) (Shourian and Qureshi, 2019). Neal et al. (2017) found

that although CD4+ T cells significantly reduced the fungal load

of target organs, more than half of the mice died from

neurological dysfunction in the late stages of infection. This

explains in part the high morbidity and mortality associated with
Frontiers in Cellular and Infection Microbiology 05
CNS cryptococcal infection in immunocompetent patients.

Cryptococcus causes an immune overreaction in the host that

disrupts the immune homeostasis and triggers a lethal

inflammatory response.

2.1.3.2 Immune escape of other subtypes of
T lymphocytes

Regulatory T cells (Tregs) are one of the CD4+ T cell

subtypes that negatively regulate the host immune response

during most fungal infections (Wiesner et al., 2016). When

infected with Histoplasma and Candida albicans, fungal

clearance is promoted with increasing proinflammatory

cytokines and a reduction in Tregs. However, Tregs were

discovered to suppress the nonprotective Th2 immune

response during infect ions with Pneumocyst is and

Cryptococcus. With the assistance of the C-C chemokine

receptor type 5 (CCR5) and IFN regulatory factor 4 (IRF4) in

cryptococci-infected lungs, Tregs are able to localize the infected

sites and subsequently suppress Th2 effector cells subsequently

(Schulze et al., 2016; Wiesner et al., 2016). During pulmonary

cryptococcal infection, elevating Tregs lead to limit

Cryptococcus-infection-induced allergic airway inflammation

by reducing IgE, mucus production, and Th2 cytokine

production, while not altering the cryptococci burden

(reviewed in Schulze et al., 2016; Mukaremera and Nielsen,

2017) (Figure 1).

Natural killer T (NKT) cells, especially Va14+ NKT cells,

activated by cryptococcal lipid antigens presentation via DCs

and recruited to the lung by monocyte chemoattractant protein-

1 (MCP-1) chemokines (Kawakami et al., 2001), play an

important role in inducing a protective Th1 immune response.

Further studies on Va14+ NKT cells have revealed that, when

activated by a-galactosylceramide, Va14+ NKT cells induced

Th1 immune responses with IFN-g synthesis during

Cryptococcus infection. At the same time, NKT cells also cause

delayed-type hypersensitivity in the host and a local allergic

inflammation in the lung, even necrosis (Sato et al., 2020).

gd T cells are also activated by cryptococcal antigens

presented by macrophages and DCs, while MCP-1 is not

required during the accumulation. Notably, gd T cells inhibit

IFN-g synthesis and downregulate protective Th1 immune

responses, which impede host immunity towards cryptococci

(Wiesner et al., 2016; reviewed in Mukaremera and Nielsen,

2017). The various subtypes of T lymphocytes in the host are

functionally interlocked, allowing the opportunity for

Cryptococcus to escape host immune clearance.
2.2 Immune escape of host
humoral immunity

The humoral immune responses against cryptococci are

mainly mediated by B lymphocytes and antibodies. B-1 cells, a
frontiersin.org
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subtype of mature B cells, play a crucial role in enhancing

resistance to and preventing the dissemination of cryptococci.

Antibodies produced against cryptococcal proteins and capsule

GXM are detected in the sera of the vast majority of children,

suggesting that humans can develop humoral immune responses

to environmental exposure to cryptococci at an early age

(Goldman et al., 2001). B-1 cells from hosts infected with

Cryptococcus secrete cryptococci-binding IgM, the depletion of

which would result in reduced alveolar macrophages

phagocytosis and increased fungal dissemination to the brain

(Rohatgi and Pirofski, 2012). IgM suppresses pulmonary

cryptococcal load and reduces host susceptibility to

cryptococci, as well as limiting cryptococcal Titan cell

formation (Garcıá-Barbazán et al., 2016; Trevijano-Contador

et al., 2020), while IgG antibodies enhance the clearance of

cryptococci by splenic NK cells (Nabavi and Murphy, 1986;

reviewed in Mukaremera and Nielsen, 2017). The levels of serum

GXM-binding IgM and IgG are far lower in HIV-infected than

HIV-uninfected individuals, as well as in HIV-uninfected organ

transplant recipients infected with Cryptococcus than those who

are not (Jalali et al., 2006). It has also been shown that B

lymphocytes and antibodies prevent systemic infection with

Cryptococcus when T lymphocyte immune function is

impaired (Aguirre and Johnson, 1997; reviewed in

Mukaremera and Nielsen, 2017).

Moreover, the antibodies also act as opsonins to enhance the

phagocytic uptake of cryptococci (Aslanyan et al., 2017). Anti-b-
glucan monoclonal antibodies and anti-GXM monoclonal

antibodies, which bind to the cryptococcal cell wall and

capsule separately, enhance the macrophage killing of

cryptococci in vitro (Torosantucci et al., 2009; Probert et al.,

2019). The prophylactic infusion of anti-Cryptococcus antibodies

can also control the fungal load of target organs and reduce the

damage caused by cryptococcal infection (Torosantucci

et al., 2009).

In a previous review, antibodies such as IgM, IgG, and IgA

were attributed to protect hosts against Cryptococcus

(reviewed in Mukaremera and Nielsen, 2017). However,

diverse studies have revealed that the protective efficacy of

antibodies against cryptococci is dependent on not only

antibodies’ classification, but also their specificity. Two

clonally related immunoglobulin M (IgM) monoclonal

antibodies (MAbs) (12A1 and 13F1) differ in specificity and

protective efficacy, presumably due to variable (V)-region

sequence di ffe rences . MAb 12A1 is protec t ive in

Cryptococcus infection, while MAb 13F1 is nonprotective

(Nakouzi et al., 2001). As for IgGs sharing identical V

regions, IgG1, IgG2a, and IgG2b MAbs to the capsular

glucuronoxylomannan of Cryptococcus prolong the host

survival, while IgG3 displays a nonprotective role in

enhancing infection (Beenhouwer et al. , 2001). IgA

mediates the complement-independent phagocytosis of

Cryptococcus by macrophages with the assistance of
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complement receptor 3 (CR3) expression, promoting

protective efficacy in hosts (Taborda and Casadevall, 2002).

Furthermore, increased IgE is associated with a nonprotective

type 2 immune response that exacerbates the Cryptococcus

infection (Zaragoza et al., 2007; Qiu et al., 2013) (Figure 1).

These results suggest that antibody-mediated immunity

against cryptococcal infection is a complex process and that

cryptococci can survive within the host humoral immune

environment through an immune escape effect.
2.3 Immune escape of host cytokine-
mediated immune responses

Cytokines are small molecular proteins that mediate the

interactions and signaling functions between different immune

cells. During cryptococcal infection, protective and nonprotective

cytokines are produced by the host.The main protective cytokines

include IFN-g, IL-12, and IL-2, all of which enhance the

macrophage expression of ROS in addition to RNS phenotypes

and reduce the target organ fungal load, while decreasing host

susceptibility (Wang et al., 2015; Firacative et al., 2018). In addition,

a class of supporting cytokines are involved in the induction of Th1-

type immune responses, including TNF-a, IL-6, IL-8, IL-18, IL-23,
and IP10. Of these, TNF-a, IL-6, IL-8 and IP10 are associated with
prognoses in patients with HIV/AIDS cryptococcal meningitis

(Jarvis et al., 2015; Mora et al., 2015) and IL-6 is also involved in

anticryptococcal drug resistance (Blasi et al., 1995).

Nonprotective cytokines are usually produced by Th2-type

immune responses, mainly IL-4, IL-5, and IL-13, all of which

induce increased lung fungal load and lung eosinophil

production, as well as enhanced host susceptibility (Wiesner

et al., 2015; Liu et al., 2020). In addition, high levels of IL-13 in

cerebrospinal fluid are positively associated with high morbidity

and mortality in patients infected with HIV/AIDS cryptococcal

meningitis (Scriven et al., 2015). Th1-type and Th2-type

immune responses are supposed to be some of the

mechanisms by which the body maintains immune

homeostasis, and cryptococci break this homeostasis by

suppressing Th1-type and enhancing Th2-type immune

responses, escaping host immune surveillance and killing.

In addition, there is a specific nonprotective cytokine-related

immune response known as immune reconstitution

inflammatory syndrome (IRIS), a pathological inflammation

that results from an over-recovery of the body’s immune

response following antiretroviral therapy in patients with HIV/

AIDS cryptococcal meningitis (Eschke et al., 2015). Studies have

confirmed that multiple cytokines are associated with

cryptococcal IRIS, including serum proinflammatory cytokines

such as TNF-a, granulocyte colony-stimulating factor (G-CSF),

granulocyte-macrophage colony-stimulating factor (GM-CSF)

and vascular endothelial growth factor (VEGF) (Brienze et al.,

2021) (Table 1).
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3 Fungal structure and
corresponding immune escape
mechanisms associated with
Cryptococcus escaping host
immunity

3.1 Cryptococcal fungal structure and
immune escape

3.1.1 Immune escape effect of the capsule
Polysaccharide capsules (PC) are the outermost protective

structure of Cryptococcus, activating and participating

throughout the host immune response, including phagocytic

uptake, antigen presentation, antibody production, and

mediating the production of functionally diverse cytokines

(O'Meara and Alspaugh, 2012; reviewed in Rohatgi and

Pirofski, 2015). PC is composed of 90%-95% GXM, 5%

galactoxylomannan (GalXM), and less than 1% mannoprotein

(Reuwsaat et al., 2018). As the most important virulence factor of

Cryptococcus, the capsule is also the most important immune-

escape-related structure of Cryptococcus. In the host, the capsule

has multiple self-protective functions, including inhibiting

macrophage phagocytosis, reducing the antigen presentation

capacity of APCs, downregulating inflammatory cytokine

levels, and depleting complement components, thereby

attenuating the host immune response (O'Meara and

Alspaugh, 2012; Denham et al., 2018; Colombo et al., 2019;

Freitas and Santos, 2021). Additionally, once in macrophages,

the capsule can also resist killing by host ROS and RNS (Naslund

et al., 1995; Casadevall et al., 2019). The capsule can actively
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sense the immune environment, induce Titan cell formation,

and even drive the fungi into dormancy, and its major

component, GXM, can induce the apoptosis of macrophages

mediated by the Fas/FasL pathway, inhibiting subsequent

activation of immune function in addition to maximizing the

protection of Cryptococcus from attack and clearance by the host

immune system (Santiago-Tirado et al., 2017). Moreover,

GalXM contributes to immune escaping by inducing apoptosis

of T cells, which attributes to the caspase 8 activation and the

consequent DNA fragmentation (Pericolini et al., 2006).

Denham (Denham et al., 2018) compared the virulence and

immune escape of the cryptococcal capsule to “a sword and a

shield”, illustrating its crucial function (Figure 2).

The analysis of inositol polyphosphate kinases (IPKs) in Cn

by Li et al. (2017) revealed that, among IPKs, cell-wall-related

Arg1 regulates capsule production to defend phagocytosis by the

innate immune system. Greater exposure of surface b-glucan
and mannoprotein by reduced capsule size in the arg1D
cryptococci mutant to the binding of opsonizing antibodies is

suggested to increase phagocyte recognition and phagocytosis.

Furthermore, the polysaccharide capsule of Cg was

demonstrated to block the functional maturation of human-

monocyte-derived DCs, thereby reducing subsequent

Cryptococcus phagocytosis (Huston et al., 2016). It was also

found that GXM not only adheres to the surface of the

cryptococcal cell wall to form capsules, but also enters the

blood or cerebrospinal fluid in the free form of exo-GXM.

Exo-GXM inhibits the migration of immune cells to the brain

and also suppresses the host systemic inflammatory response,

thereby exacerbating the host systemic infection, especially in

the central nervous system (Denham et al., 2018).
TABLE 1 Cytokine function based on the interaction between Cryptococcus and host immunity.

Classification Cytokines Function References

Protective
cytokines

IFN-g
IL-12
IL-2

Th1-type cytokines. Decrease lung and brain fungal burden, lung eosinophilia, fungal dissemination
to the brain and susceptibility to infection. Induce numbers of macrophages expressing inducible
nitric oxide synthase.

(Wang et al., 2015;
Mukaremera and Nielsen,
2017; Firacative et al., 2018)

Protection
support cytokines

TNF-a
IL-6
IL-8
IL-18
IL-23
IP10

Induce or promote the three major protective cytokines (IFN-g, IL-12 and IL-2). TNFa, IL-8, IL-6
and IP10 was associated with improved outcome in AIDS patients with CM. IL-23 and IL-18 play a
protective role against cryptococcal IL-23 and IL-18 play a protective role against cryptococcal
infection.

(Jarvis et al., 2015; Mora
et al., 2015; Mukaremera and
Nielsen, 2017)

Non-protective
cytokines

IL-4
IL-5
IL-13

Th2-type cytokines. Increase lung fungal burden, pulmonary eosinophilia, sensitivity to Cryptococcus
infection.

(Scriven et al., 2015; Wiesner
et al., 2015; Mukaremera and
Nielsen, 2017; Liu et al., 2020)

IRIS-related
cytokines

TNF-a
CSF
GM-CSF
VEGF

The absence/reduction of serum TNFa, G-CSF, GM-CSF and VEGF predispose AIDS patient with
CM to developing subsequent CM-IRIS.

(Eschke et al., 2015;
Mukaremera and Nielsen,
2017; Brienze et al., 2021)
AIDS, acquired immune deficiency syndrome; CM, cryptococcal meningitis; IRIS, immune reconstitution inflammatory syndrome; G-CSF, granulocyte-colony-stimulating factor; GM-
CSF, granulocyte-macrophage colony-stimulating factor; VEGF, vascular endothelial growth factor. G-CSF, granulocyte-colony-stimulating factor; GM-CSF, granulocyte-macrophage
colony-stimulating factor; VEGF, vascular endothelial growth factor.
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3.1.2 Immune escape effect of melanin
Melanin is a negatively charged, high-molecular-weight

hydrophobic substance within the cell wall of Cryptococcus,

which helps to improve the mechanical strength of the cell

wall, enhance resistance to environmental UV light, and

reduce the sensitivity of the fungus to degradative enzymes,

while melanin reduces cytokine reactivity, attenuates

phagocytosis, neutralizes the oxidative substances (e.g.,

ROS) released by inflammatory cells, and inhibits antifungal

drugs activity, serving to protect the fungus and escape from

host immune function (reviewed in Nosanchuk et al., 2015;

Eisenman et al., 2020). Melanin is regulated by a synthetic

network of core transcription factors, including Bzp4,

Usv101, Hob1, and Mbs1, as well as the core kinases Gsk3

and Kic1, which all provide possible targets for the clinical

development of drugs that inhibit melanin synthesis (Lee

et al., 2019a) (Figure 2).
3.2 Three specific mechanisms of
cryptococcal escape immunity

3.2.1 The role of dormancy in immune escape
The close interaction of Cryptococcus and phagocytes in the

host dictates why it is defined as a facultative intracellular

pathogen (Wang et al., 2022). Phagocytes provide a protective

niche for Cryptococcus to replicate, proliferate, and even be

dormant when the host immunity is overexpressed. The ability
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of Cryptococcus to escape the immune effects of the host is

enhanced by its greater adaptability to the immune environment

(Sorrell et al., 2016). Previous research has observed differences

in the cell wall immune recognition epitopes between Cg and

Cn, and phagocytic cells were less likely to recognize Cg (Huston

et al., 2016), so this section only focuses on the dormant

characteristic of Cn to escape host immunity.

Cn infection consists of three stages: early exposure to the

immune environment activates the host immune system;

subsequently, cryptococci is dormant and latent; and, finally,

cryptococci will be reactivated when the immune system

declines. Cn is largely nonpathogenic in immunocompetent

hosts, and patients are often diagnosed by a pathological

biopsy of unexplained pulmonary nodules (Walsh et al., 2019;

Alanio, 2020). Studies have shown that the G1 and G2 phases of

the interphase of dormant Cn are at standstill, and that highly

energetic behaviors such as division and proliferation are

terminated, leaving only basic metabolic functions, such as

membrane potential and cell morphology, to be maintained

(Takeo et al., 1995). However, when the host is exposed to severe

immunosuppressive events, such as HIV/AIDS infection, organ

transplantation, and severe burns, the dormant cryptococci

rapidly activate and cause fatal central nervous system

infections, becoming the “ last straw” to crush the

immunosuppressed patient (Gerstein et al., 2019). Thus,

dormancy is essential for the immune escape of Cn, making it

the first fungal pathogen to be studied concerning host

immunity (Alanio, 2020) (Figure 2).
FIGURE 2

The function of Cryptococcus immune escaping. Capsule, melanin, dormancy, titan cells and biofilm of Cryptococcus are also involved in the
process of escaping the host’s immunity, enhancing the ability of Cryptococcus to infect the host. APCs, antigen presenting cells; ROS, reactive
oxygen species; RNS, reactive nitrogen species; MØ, APCs, antigen presenting cells; ROS, reactive oxygen species; RNS, reactive nitrogen
species; MØ, macrophage; UV, ultra violet; CNS, central nervous system. Created in BioRender.com.
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3.2.2 The role of Titan cells in immune escape
Titan cells are macrophage-induced cryptococci larger than 10

mm in diameter, up to 100 mm, which cannot be cleared by alveolar

macrophages and are an important immune escape mechanism for

Cryptococcus (Crabtree et al., 2012; Dambuza et al., 2018).

Morphological transition of cryptococci from normal size to

titanization was generally stimulated by exposure to external

signals, such as CO2, hypoxia, and serum stimulation (Dambuza

et al., 2018; Trevijano-Contador et al., 2018). Titanization was

proved to be related with cAMP-mediated signaling, which

depends on Gpr4/Gpr5 receptors, adenylyl cyclase Cac1, Pka1

kinase, and the transcription factor Rim101 (Okagaki et al., 2011;

Choi et al., 2012). Electron microscopy revealed that Cryptococcal

Titan cells were enlarged (> 10 mm) and contained features such as

mononuclear polyploids, large cytoplasmic vesicles, dense capsules,

and a broad cell wall (Hommel et al., 2018). Although Titan cells are

unable to cause CNS infection via the Trojan horse model, it has

been found that they can induce a normal size of surrounding

cryptococci into the CNS (Crabtree et al., 2012). Recent studies have

shown that the transcription factor Pdr802 is involved in regulating

the formation of Cryptococcal Titan cells and mediates the entry of

Cryptococcus into the CNS to cause infection (Reuwsaat et al., 2021).

Progeny proliferated by Cryptococcal Titan cells are resistant to

unfavorable immune environments such as oxidation and

nitrosylation, and have a greater capacity to proliferate within

phagocytes (Garcıá-Rodas et al., 2019). Titan cells are an

important form of Cryptococcus resistance to host immune

phagocytosis, escape from host immune responses, and

exacerbate the infection of the host CNS (Figure 2).

3.2.3 The role of biofilms in immune escape
Biofilms are functional three-dimensional structures commonly

found on the surface of pathogens that enhance the ability of the

organism to survive in a hostile immune environment by protecting

important intracellular genetic material and energy metabolic

activities against external physical and chemical stresses (Butassi

et al., 2021). Biofilm structures can be observed around cryptococci

in the host and help Cryptococcus to resist the immune effects of the

host (Schlafer et al., 2018). Biofilm formation is also observed

around cryptococci during nonlytic exocytosis from macrophages,

suggesting that biofilms are involved in the transmission of

Cryptococcus (Lee et al., 2019b). The protective effect of biofilms

greatly limits the penetration of antifungal drugs, and therefore

cryptococci are often clinically resistant to amphotericin B,

fluconazole and voriconazole (Tits et al., 2020) (Figure 2). As

previous studies have reviewed (reviewed in Moranova et al.,

2009; Hernández-Chávez et al., 2017; Alanio, 2020; Rizzo et al.,

2021), the strategy of a low proliferation rate and a specific

transcriptome of Cryptococcus under hypoxia may induce

cryptococcal dormancy as well as biofilm formation for immune

escaping and survival in host tissue, possibly resulting in a life-

threatening secondary acute infection.
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4 Conclusion

Cryptococcus is a serious threat to human life and health;

although host immunity plays a major role in defending against

Cryptococcus, this fatal fungal pathogen has evolved complicated

immune escaping strategies to evade surveillance and clearance

by the host immune system, enhancing the ability of

Cryptococcus to infect its hosts. Understanding its immune

escaping strategies is crucial for infection control and the

development of immunotherapies. This review summarized a

series of immune escaping mechanisms of Cryptococcus,

focusing on anticellular immunity, antihumoral immunity, as

well as fungal structures and special mechanisms that contribute

to immune escaping. Among these, we have particularly

highlighted throughout the detrimental role of the

cryptococcal capsule against host immunity. Recent studies

(Freitas and Santos, 2021; Rizzo et al., 2021) have revealed that

capsular polysaccharide (CP) GXM as well as its extracellular

vesicles were deemed as vital targets in the field of developing

vaccines against cryptococcosis. Further research on the role of

capsule immune escape indeed helps increase the understanding

of cryptococcal infection and immune escape, and also sheds

new light on enhancing the clearance of cryptococci and solving

difficult clinical problems, such as cryptococcal drug resistance.

In addition, normal immunity is an important safeguard

against cryptococcal infection but an overactive immune response

not only disrupts the body’s immune homeostasis, but also causes

an excessive inflammatory response. Therefore, clinical treatment of

cryptococcal infections should not only activate the host’s immune

function or reduce the immune escape of cryptococci, but also focus

on maintaining the body’s immune homeostasis to maximize the

patient’s prognosis.
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