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Abstract: General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale,
streamlined and reproducible analysis of bacterial 16S rRNA data and prediction of microbial
metagenomes, enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow
introduces reproducible data analyses at each of the three levels of resolution (genus; operational
taxonomic units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible
analyses enables production of datasets that ultimately identify the biochemical pathways character-
istic of disease pathology. These datasets coupled to biostatistics and mathematical approaches of
machine learning can play a significant role in extraction of truly significant and meaningful informa-
tion from a wide set of 16S rRNA datasets. The adoption of GUMPP in the gut-microbiota related
research enables focusing on the generation of novel biomarkers that can lead to the development of
mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.

Keywords: 16S rRNA; amplicon; Mothur; PICRUSt 2; Piphillin; genus; OTU; ASV; predicted
metagenomes; predicted enzymatic reactions; predicted metabolic pathways; reproducible anal-
yses; human microbiome; gut; intestine; mice

1. Introduction

The gut microbiota is composed of a huge number of different bacteria, archaea, fungi
and protozoa, next to viruses and various mobile elements [1,2]. All these microbes interact
with the host, environmental stimuli and each other, thus producing an enormous diversity
of chemical compounds that play a key role in host development, wellbeing and aging [3–7].
The advent of large scale microbiome studies generates analytical opportunities to un-
derstand how these communities operate and respond to their complex environmental
stimuli [8]. Although knowledge of taxonomy and functional genes of microorganisms
are both important, functional genes are more directly related to enzymatic reactions and
metabolic pathways. It is increasingly recognized that the microbiome influences the host
health state and disease progression. For instance, disease progression can range from
mild gastrointestinal symptoms to inflammatory bowel disease and colorectal and liver
cancer [9]. In addition, a range of diseases have been implicated in metabolic imbalances,
ranging from metabolic syndrome and obesity to autoimmune diseases, psychological
disorders and infections [9].
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Amplicon sequencing of 16S rRNA has served as the key approach of the last decade
for the understanding microbial community structure, dynamics and how organisms might
influence or be influenced by environmental conditions [10]. Extensive sequencing of
bacterial communities is generating large collections of datasets available through public
repositories such as European Bioinformatics Institute (https://www.ebi.ac.uk/ accessed
on 30 April 2021), CuratedMetagenomicsData [11], or individual studies [12]. These data
have so far been described on the level of 16S rRNA taxonomy utilizing either (i) genus [12],
(ii) 97–98.5% 16S rRNA identity operational taxonomic units (OTU) [13] or (iii) amplicon
sequence variants (ASV) [14,15]. However, the processing and analyses of such datasets
are highly diverse due to the high number of published and benchmarked pieces of
software [16–20] and reports that lack significant technical details despite the Human
Microbiome Project outlines and introduction of standard operating procedures [21–23].

In addition, this wealth of 16S rRNA data gives access to an untapped pool of infor-
mation beyond the 16S rRNA taxonomy (genus, OTU, ASV), such as predicted functional
genes, enzymatic reactions and metabolic pathways (Figure S1). The tools such as Mi-
crobiomeAnalyst [24,25], PICRUSt [26], PICRUSt2 [27], Tax4Fun [28]; Tax4Fun2 [29] and
Piphillin [30,31] link 16S rRNA sequence information to representative genome sequences
and approximate metagenomics functional gene content relevant for the interpretation
of the studied human disease phenomena and clinical metadata [32]. As a number of
unexplored and large datasets encompassing thousands of samples and corresponding
metadata are made available in repositories (e.g., [12,33] the analyses (genus, OTU, ASV)
and improved predicted metagenomic, enzymatic and metabolic pathway datasets have the
potential to unravel important taxonomic, functional, biochemical and metabolic findings
(Figure S1).

However, in order to accomplish such intensive large scale data analyses effective
workflows are required. These workflows should ideally (i) integrate various pieces soft-
ware, (ii) streamline input and output formats, (iii) accommodate large datasets, (iv) main-
tain portability between benchtop PC and high performance computing clusters (HPC),
(v) enable flexible (customizable) but also reproducible analyses (setting documentation)
that can be (vi) shared with and utilized by other interested researchers.

In this study, we introduce a workflow (Figure 1) that integrates Human Microbiome
Project tested procedures for amplicon sequence analysis with one of the most popular
programs Mothur [34], and PICRUSt2 [27] for prediction of metagenomic functional genes,
enzymatic reactions and metabolic pathways. In addition, the workflow presented here
generates also formatted inputs for Piphillin [30,31], another popular sister program for
metagenomic predictions. The benchmarking of the integrated programs such as Mothur,
PICRUSt2, Piphillin and other comparable sister programs were already reported before
in numerous studies [16–20,23,27,30,31]. The inbuilt Human Microbiome Project stan-
dard operating procedures can be tailored according to user analytical preferences and
sequencing details. The whole workflow is delivered as portable all-inclusive container
(Singularity [35]; https://sylabs.io accessed on 14 April 2021) amenable for teaching or/and
research purposes, using personal computer or HPC. Depending on the size of data and
complexity of analyses (genus-, OTU-, ASV- levels), the GUMPP workflow enables max-
imum utilization of information present in the original 16S rRNA amplicon datasets by
producing additional three data types approaching multiomics view of the microbiome:
metagenomics functional genes, enzymatic reactions and metabolic pathways. All four
data types can serve as inputs for machine learning to unravel novel mechanistic insight
into human disease development in relation to microbiome characteristics. To showcase the
efficient analyses and utilization of computing resources two datasets describing human
(n = 307) and mice gut (n = 365) were used for demonstration purposes.

https://www.ebi.ac.uk/
https://sylabs.io
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Figure 1. Schematic representation of the General Universal Microbiome Profiling Pipeline 
(GUMPP). The integral part consists of Mothur, PICRUSt2 and Piphillin outputs. Paired-end or 
single-end fastq sequence are used as input for mothur processing. The resulting biom and fasta 
files serve as an input for PICRUSt2. The data can be analyzed at genus-, OTU- and ASV- levels. 
QC–sequence quality control; OTU-Operational Taxonomic Units (generally 97% identity of 16S 
rRNA); ASV–Amplicon Sequence Variants (unique sequence variants). KO–KEGG Orthologs 
(Kyoto Encyclopedia of Genes and Genomes); EC-Enzyme Commission number; BioCyc-BioCyc 
collection of Pathway/Genome Databases. For each level, four output tables are generated (Please 
see Figure S1 and Figure S2 for additional information). The resulting data can be analyzed in the 
data integration step using a variety of distinct machine learning approaches. 

2. Results and Discussion 
2.1. Design of GUMPP Workflow 

GUMPP (http://gumpp.fe.uni-lj.si, accessed on 24 May 2021) is a freely available 
skeleton application for executing Mothur [34] using paired-end fastq files and executing 
the  
PICRUSt2 analyses next to producing also Piphillin [30,31] web-server input files (Figure 
1). A single GUMPP run can process an arbitrary number of input files. Inputs are 
preprocessed by an integrated Mothur (V1.44.1) script in conjunction with Silva database 
(version 138), and creates biom and fasta representative sequence files as input for 
PICRUSt2 and outputs necessary for Piphillin [30,31]. The workflow was designed to 
support three levels of analysis differing in the increased extent of utilized information 
and fairness in data treatment: genus-, OTU- and ASV- levels (Figures S1 and S2). Users 
may freely replace the built in scripts and databases with their own. Customization of the 
built-in script (http://gumpp.fe.uni-lj.si) is also possible by template parameters. 

The primary design goal of the GUMPP application was to deliver efficient analyses 
and utilization of computing resources. The application relies on recently developed 
Singularity container technology ([35]; https://sylabs.io accessed on 14 April 2021) making 
the pipeline straightforward to use as all its ingredients are fully integrated, preinstalled 
and preconfigured in a ready-made Singularity image. These consist of the Mothur and 

Figure 1. Schematic representation of the General Universal Microbiome Profiling Pipeline (GUMPP).
The integral part consists of Mothur, PICRUSt2 and Piphillin outputs. Paired-end or single-end fastq
sequence are used as input for mothur processing. The resulting biom and fasta files serve as an
input for PICRUSt2. The data can be analyzed at genus-, OTU- and ASV- levels. QC–sequence quality
control; OTU-Operational Taxonomic Units (generally 97% identity of 16S rRNA); ASV–Amplicon
Sequence Variants (unique sequence variants). KO–KEGG Orthologs (Kyoto Encyclopedia of Genes
and Genomes); EC-Enzyme Commission number; BioCyc-BioCyc collection of Pathway/Genome
Databases. For each level, four output tables are generated (Please see Figures S1 and S2 for additional
information). The resulting data can be analyzed in the data integration step using a variety of distinct
machine learning approaches.

2. Results and Discussion
2.1. Design of GUMPP Workflow

GUMPP (http://gumpp.fe.uni-lj.si, accessed on 24 May 2021) is a freely available
skeleton application for executing Mothur [34] using paired-end fastq files and executing
the PICRUSt2 analyses next to producing also Piphillin [30,31] web-server input files
(Figure 1). A single GUMPP run can process an arbitrary number of input files. Inputs are
preprocessed by an integrated Mothur (V1.44.1) script in conjunction with Silva database
(version 138), and creates biom and fasta representative sequence files as input for PICRUSt2

http://gumpp.fe.uni-lj.si
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and outputs necessary for Piphillin [30,31]. The workflow was designed to support three
levels of analysis differing in the increased extent of utilized information and fairness
in data treatment: genus-, OTU- and ASV- levels (Figures S1 and S2). Users may freely
replace the built in scripts and databases with their own. Customization of the built-in
script (http://gumpp.fe.uni-lj.si) is also possible by template parameters.

The primary design goal of the GUMPP application was to deliver efficient analyses
and utilization of computing resources. The application relies on recently developed
Singularity container technology ([35]; https://sylabs.io accessed on 14 April 2021) making
the pipeline straightforward to use as all its ingredients are fully integrated, preinstalled
and preconfigured in a ready-made Singularity image. These consist of the Mothur and
PICRUSt2 programs, the needed Mothur scripts, two Silva taxonomy databases (V138 and
V138 seed), a few supporting utilities written in C++, as well as a skeleton framework
consisting of slightly less than 11,000 lines of Python code which orchestrates the execution
of individual pieces and takes care of executing programs and building their command
lines. The actual parameters under which the workflow is executed are at the control of the
user (Figure 2, ESM Figures R1–R3).
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Aside from reproducible execution of the workflow and the control of algorithm
settings, GUMPP offers some additional benefits. First, results of Mothur preprocessing
may optionally be stored in a specially crafted storage area, where each result is associated
with its full context (hash of input files, Mothur script and its values of template parameters,
or other relevant information). This enables efficient workflow re-executions with different
Mothur and PICRUSt2 parameters. When GUMPP detects that upon its re-execution only
PICRUSt2 parameters are changed, it instantly recycles the previously obtained Mothur
results. This opens up a possibility of efficient experimenting with changed PICRUSt2
parameters to observe their impact on end results. In addition, Mothur processing is split
into a common and an analysis specific part. If only analysis type or its related parameters
are changed, the previously computed common results are again recycled instantly, which
is a significant time saver, since the common part consists of e.g., sequence alignment to
a taxonomy database. The system also enables crash recovery: in the case of GUMPP
interruption during e.g., PICRUSt2 step (operating system crash, power outage, abort due
to administrative policies on High-Performance Computer (HPC), upon restart only the
PICRUSt2 step is re-executed. Crash recovery is completely automatic and transparent. A
user need not to specify any directives to inform GUMPP that execution is being repeated.

The system is suitable for autonomous execution on domestic hardware as well
as on HPC facilities. All command-line parameters and intermediate file formats are
handled automatically by the system, enabling the experienced users to prescribe their own
parameters for PICRUSt2 or for template Mothur script parameters in order to finetune the
workflow execution.

In order to aid in documenting analyses and inspection of execution, GUMPP stores
an accurate verbatim copy of its screen output as a part of end report. Also, the actual com-
mand lines, standard output streams, standard error streams and exit codes of individual
programs are stored on a disk in a hierarchical way for easy navigation, inspection and
debugging. Analysis setup relies on configuration files, where a complete workflow config-
uration is prescribed and hence also documented. GUMPP presented in this study thus
builds on the highly popular and tested programs that were benchmarked in numerous
past studies as reported before [16–20,27,30,31].

2.2. Reanalysis and Extension of Mice Gut Microbiome Data Using GUMPP: The Choice of Level
of Analysis (Genus, OTU, ASV) Is far from Arbitrary

Mice data analysis using GUMPP enabled us to explore a technical question of how
user reports on different taxonomic levels (genus; OTU; ASV) affected the exact rela-
tionships between underlying samples when studied utilizing the four data types (16S
rRNA; functional genes; enzyme reactions; metabolic pathways). The results of Mantel
test between taxonomic levels (Figure 3) show that the correlations between 16S rRNA vs.
KO, 16S rRNA vs. EC and 16S rRNA vs. pathways decreased from 0.90, 0.91 and 0.90 at
genus level, to 0.75, 0.75 and 0.76 at OTU level, and to 0.61, 0.61 and 0.66 at ASV level,
respectively (n = 9999 permutations, p < 0.0002). The fact that ASV type of analysis resulted
in lower correlations between datatypes is in line with past observations that there is little
congruency between rather variable taxonomic descriptions of microbial communities and
their corresponding even more diverse metagenomic functional gene makeup [36].

A between level analysis for each data type separately (Figure 4) illustrates the re-
lationships between data of the same type, obtained using a different taxonomic level
of analysis (Genus, OTU or ASV). The correlations > 0.88, describing the relationships
between samples were retained only for distance matrices from genus and OTU levels of
analyses and were also reproduced in all four data types (Figure 4). On the other hand, the
initially high correlation between OTU and ASV at 16S rRNA level dropped below 0.55 for
KO, EC and Pathway datasets, reflecting the increased number of categories (genus = 148,
OUT = 1328, ASV = 13,244) and their different numerical abundance [11]. These results
illustrate how the user selected levels of taxonomic assignment of the sequence data can
affect the relationships between samples. Switching from genus level to utilizing ASV
level of analysis does not only represent a way to maximize information content of the
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underlying 16S rRNA sequences [30], but it also represents a distorting transformation of
the information due to the many predominantly biological limitations of such analyses:
(i) differences in 16S rRNA gene copy numbers range from 1 to 15 in bacteria and 1 to 5 in
Archaea [37], hence a frequently recovered sequence may represent a high copy number
taxon of lesser abundance, or a low copy number taxon of higher abundance. This 16S
copy number of the organism that contributed the sequence is estimated and data adjusted
accordingly by utilizing PICRUSt2 [27] in GUMPP; (ii) intragenomic heterogeneity of 16S
rRNA operons can be as large as 20.4%. Genus level classification encompasses rather
divergent sequences of that specific genus into one category. On the other hand, single
nucleotide polymorphism present within e.g., 10 copies of 16S rRNA operon within one
organism represent distinct ASVs. In comparison to genus level analysis 16S rRNA variants
of one organism are split to several ASV categories inflating ASV estimates of microbial
taxonomic diversity and of functional diversity of underlying metagenomes [38–40]; (iii) In
contrast, almost identical 16S rRNA copies and hence the lack of differences found within
some genera do not enable stratification of species and strains present within, falsely de-
flating the number of present ASVs [10,38–42]; (iv) different hypervariable regions of 16S
rRNA utilized in amplicon sequencing can result in additional distortion of signal relative
to each other [43] hence compromising direct comparison of the results between studies
utilizing distinct primers.
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Figure 3. A within level analysis for all derived data types. A schematic representation of GUMPP generated data types
analyzed at each of the three levels of 16S rRNA analysis (A) genus, (B) OTU, (C) ASV for the same sequence dataset and
extended further to respective predicted functional genes (KO), enzymatic reactions (EC) and metabolic pathways (Pathw).
Numbers designate the Mantel test correlation coefficients between various pairs of data types: (i) 16S and functional genes
(KO)(orange), (ii) 16S and enzymatic reactions (EC) (yellow), (iii) 16S and metabolic pathways (Pathw) (blue), (iv) pathw
and EC (pur-ple), (v) pathw and EC (grey), (vi) KO and EC (green). All analyses were performed with 9999 permutations
and were statistically significant (p = 0.0001).

These cautionary notes listed above are intended to raise the awareness of the biologi-
cal caveats of the genus, OUT and ASV levels of analyses for users. From this integrative
view of biological influences the genus level analysis fits a more reserved type of analysis
with arguably lower resolution, but congruent with an existing microbial taxonomy system
in comparison to the ASV level of analysis, whereas OTU represents a compromise [14,44].
By utilizing ASV some genera expand into species and strains that have sufficient diversity
within the 16S rRNA and contribute to ASVs, while other genera that contain species and
strains with identical 16S rRNA in the region analyzed do not [14,44]. This biological
distinction between genus, OTU or ASV levels of analysis has potentially large implica-
tions for the information forwarded to subsequent data types (functional genes, enzymatic
reactions, metabolic pathays) irrespective of program utilized (PICRUSt, Tax4Fun, Piphillin
or GUMPP).
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Recent research highlights the risk of splitting a single bacterial genome into separate
clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is
also a risk of clustering ASVs from different species into the same OTU when using broad
distance thresholds, those risks are of less concern than artificially splitting a genome into
separate ASVs and OTUs [14,44]. Based on the results presented here (Figures 3 and 4), the
choice of level of analysis (genus, OTU, ASV) is far from arbitrary and may lead researchers
to draw different biological conclusions. The work presented in this study highlights the
utility of GUMPP that enables researchers to analyze the data at all three levels at the same
time, generates functional gene, enzymatic reactions and metabolic pathways datasets for
downstream machine learning exploration in relation to human diseases [44].

Metabolites 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. A within level analysis for all derived data types. A schematic representation of GUMPP generated data types 
analyzed at each of the three levels of 16S rRNA analysis (A) genus, (B) OTU, (C) ASV for the same sequence dataset and 
extended further to respective predicted functional genes (KO), enzymatic reactions (EC) and metabolic pathways 
(Pathw). Numbers designate the Mantel test correlation coefficients between various pairs of data types: (i) 16S and 
functional genes (KO)(orange), (ii) 16S and enzymatic reactions (EC) (yellow), (iii) 16S and metabolic pathways (Pathw) 
(blue), (iv) pathw and EC (pur-ple), (v) pathw and EC (grey), (vi) KO and EC (green). All analyses were performed with 
9999 permutations and were statistically significant (p = 0.0001). 

 
Figure 4. A schematic representation of GUMPP results showing a between level correlations for 
each data type: (A)16S rRNA (16S), (B) functional genes (KO), (C) enzymatic reactions (EC) and 
(D) metabolic pathways (Pathw). Numbers designate the Mantel test correlation coefficients 
between various pairs of levels for the same data type: (i) Genus and OTU (orange), (ii) OTU and 
ASV (blue), (iii) Genus and ASV (green). All analyses were performed with 9999 permutations and 
were statistically significant (p = 0.0001). 

2.3. Reanalysis and Extension of Human Gut Microbiome Data Using GUMPP 
In this study a reanalysis of published human gut data (n = 307) [45] was conducted 

utilizing GUMPP at the levels of 16S rRNA, predicted metagenomes, enzymatic reactions 
and metabolic pathways. Differences between the gastrointestinal patients (n = 121) from 
a single ward and 186 healthy volunteers were explored. This effectively enabled us to 
reproduce previously reported findings [45] utilizing GUMPP. Analyses were extended 
to three additional data types: predicted functional genes, enzymatic reactions and 
metabolic pathways. First, as reported before in the original study [45], gut microbial 

Figure 4. A schematic representation of GUMPP results showing a between level correlations for each data type: (A)16S
rRNA (16S), (B) functional genes (KO), (C) enzymatic reactions (EC) and (D) metabolic pathways (Pathw). Numbers
designate the Mantel test correlation coefficients between various pairs of levels for the same data type: (i) Genus and OTU
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2.3. Reanalysis and Extension of Human Gut Microbiome Data Using GUMPP

In this study a reanalysis of published human gut data (n = 307) [45] was conducted
utilizing GUMPP at the levels of 16S rRNA, predicted metagenomes, enzymatic reactions
and metabolic pathways. Differences between the gastrointestinal patients (n = 121) from
a single ward and 186 healthy volunteers were explored. This effectively enabled us to
reproduce previously reported findings [45] utilizing GUMPP. Analyses were extended to
three additional data types: predicted functional genes, enzymatic reactions and metabolic
pathways. First, as reported before in the original study [45], gut microbial community
description was not sufficient to differentiate the subjects based on their underlying five
broad medical diagnoses: (i) ulcerative colitis; (ii) Crohn’s disease, (iii) tumor (pancreatic,
gastric or liver cancer), (iv) infection (pneumonia, cholangitis, hepatitis, gastritis or pancre-
atitis) and (v) other (cirrhosis or peptic ulcers, unidentifiable abdominal pain) [45]. The
three mixed clusters independent of the underlying medical diagnosis were also repro-
duced (Figure S3), showing the robustness of GUMPP analysis. Second, by calculating the
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statistical power for each medical diagnosis a much larger number of samples (within each
medical diagnosis) would be needed (n > 1000) to be able to build classification models
for each diagnosis (Table S2). Third, the PCA representation confirmed the existence of a
core microbiome in healthy individuals as described in the original study [45]. Human
gut microbiome in patients was disturbed and significantly altered relative to the healthy
microbiome (Figure S3).

Extending the original 16S rRNA analysis by GUMPP derived datasets (functional
genes (KO), enzymatic reactions (EC), metabolic pathways (pathway)) enabled us to explore
the differences between the gastrointestinal patients and healthy volunteers utilizing
machine learning. This coupling between GUMPP produced datasets and machine learning
enabled us to generate, train and validate four separate models for classification of samples
(Figure S3; Supplementary Electronic Material) using JADBIO AutoML approach [46,47].
In short, at all four data levels, logistic ridge regression with penalty hyperparameter
lambda = 0.1 was selected as the best interpretable model with AUC metrics of 0.937 (16S
rRNA), 0.949 (KO), 0.954 (EC), and 0.947 (pathway) (Figure S3). For the best microbial
feature selection, LASSO algorithm was selected for the most differentiating pathways,
and Test-Budgeted Statistically Equivalent Signature (SES) algorithm was selected for the
search of the most differentiating 16S rRNA, KO and EC between groups of patients and
healthy individuals. Models based on KO and EC data performed better than those based
on 16S rRNA and pathway data (Figure S4).

The optimization of model selection allowed us to reliably identify microbial features
(taxa, functional genes, enzymatic reactions, metabolic pathways) from datasets analyzed
and produced by GUMPP (Figure 1, Figures S2 and S3) that discriminated between gut
microbiomes of gastrointestinal patients and healthy volunteers: 25 taxonomy level 16S
rRNA OTUs, four KOs, 12 ECs and 15 pathways (Table S1). As the complete in-depth bio-
logical description of these results is beyond the scope of this study, the major differences
between the healthy in diseased groups at the level of metabolic pathways are reported
(Figure 5). The following findings are highlighted as proof of concept of GUMPP extended
data analysis: lactocepin (EC:3.4.21.96; K01361) was identified in this study as one of the
most important features at the level of functional genes and enzymatic reactions distin-
guishing healthy from IBD, UC and CD. High lactocepin in healthy cohort is involved in the
selective degradation of pro-inflammatory chemokines, leading to reduced cell infiltration
and reduced inflammation in IBD models [48,49]. Further, Cu+-exporting ATPase were
also found to be significantly increased in healthy, hence acting at the level of enzymatic
reactions in metabolism [50]. In contrast, the elevated values of the P-type Mg2+ transporter
observed in gastrointestinal patients were previously shown to be important for increased
virulence in Escherichia coli and Salmonella thyphimurium [51]. Similarly, higher activity of
enzyme maltose-6’-phosphate glucosidase were identified in the maltose degradation path-
way of Enterococcus faecalis leading to increased virulence of this pathogen [52]. Another
important enzyme NADH oxidase that exerts the main protection against oxidative stress
in the human gut was low in the healthy group [53]. Thiazole component of thiamine
diphosphate biosynthesis pathway I and thiamine phosphate synthase were identified as
important for separation between healthy and diseased individuals [54–56]. One of the
distinguishing features was also the peptidoglycan biosynthesis pathway IV, previously
described in Ruminococcus gravus, which is abundant in the intestines of patients with
Crohn’s disease [57]. Bifibacterium shunt was identified as another pathway that has been
previously shown to be important in providing positive health benefits to their host with
its metabolic activities [58].

These results illustrate the insight supported by GUMPP into the potential differences
in the gut microbiomes, functional genes, enzymatic reactions and metabolic pathways
between the diffuse group of gastrointestinal patients (five medical diagnoses) and healthy
cohort coupled to machine learning.
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3. Materials and Methods
3.1. GUMPP Implementation

GUMPP utilization is described in user manual, Electronic Supplementary Materials,
Config file, all available as part of this publication at http://gumpp.fe.uni-lj.si. Analyses
running GUMPP were executed on a Dual Xeon system with 32 CPU cores (64 hyper-
threads), 512 GB of RAM and 6 TB SATA disk. The runtime depends on the data size,
sequencing depth and type of analysis (genus-, OTU-, ASV- level). For instance, human
gut microbiome data analysis consisted of 307 samples, that each contained independent
forward (R1) and reverse (R2) files. In total, it took <10 h, <50 h and <60 h runtime to
finalize genus-, OTU- and ASV- levels of analyses, respectively. Similarly, runtime of
analyzing less deeply sequenced mice dataset (n = 365 paired-end samples) took <4, <16
and <18 h to finalize genus-, OTU- and ASV- levels of analyses, respectively. Portability
and HPC performance of the GUMPP generated in this study was confirmed on Leo3e
(https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo3e/ accessed on 30 April 2021)
and Leo4 (https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo4/ accessed on 30 April
2021) HPC infrastructure of the University of Innsbruck as described recently [60].

http://gumpp.fe.uni-lj.si
https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo3e/
https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo4/
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3.2. Sequence Data Collections

The workflow was tested using two large collections of data sets arising from hu-
man [45,59] and mice experiments ([7]; https://mothur.org/ accessed on 30 April 2021). In
short, a multi-disease hospitalized cohort included various gastroenterological pathologies:
ulcerative colitis, Crohn’s disease, tumor, infection, cirrhosis and peptic ulcer, unidentifiable
abdominal pain. Gastrointestinal patients (n = 121) from a single ward were compared to
186 healthy volunteers [45] in order to fine-map the gut microbiota dysbiosis, using the bac-
terial (V3 V4) amplicon sequencing. In total, 6.6 million pairs of sequences were analyzed
with an average coverage of 35,484 pairs of sequence reads from the 16S rRNA gene.

The mice dataset explored the separation between daily murine fecal samples (n = 360)
obtained from C57BL/6 male and female mice at 0 to 9 (early) and 141 to 150 (late) days
after weaning [7]. In total, 4.3 million pairs of sequence reads from the 16S rRNA gene with
an average coverage of 9913 pairs of V4V5 reads per sample [22] were analyzed. During the
first 150 days post weaning mice were allowed ad libitum feed with no specific influence
in order to monitor whether the rapid change in weight at 10 days post weaning (obesity)
affected the stability microbiome compared to the microbiome observed between days 140
and 150.

3.3. Statistical Analyses and Machine Learning

The two 16S rRNA sequence data collections were analyzed using GUMPP and
according to three layers of information, namely genus, 97% OTU and ASV, and the addi-
tional three data types were calculated using PICRUSt2 integrated in GUMPP: predicted
metagenomes; enzyme reactions; metabolic pathways. Piphillin-ready outputs for clinical
exploration were calculated alongside, formatted and prepared. The underlying settings
used in these analyses are part of the GUMPP configuration file and can be utilized and
shared among researchers for reproducibility and ease of additional calculations. The
resulting genus level data analysis of human gut microbiomes (four data matrices (16S
rRNA; metagenomes; enzyme reactions; metabolic pathways) were subjected to machine
learning in JADBIO [47] (version 1.1.164) for identification of microbial, genetic, enzymatic
and pathway variables responsible for separation of the healthy and patient groups.

JADBIO [47] provides high-quality predictive models for diagnostics using state-of-
the-art statistical and machine learning methods. Personal analytical biases and method-
ological statistical errors were eliminated from the analysis by autonomous exploration
of several settings in modeling steps, exploring wide analytical space and producing con-
vincing discovered features to discriminate between patients and healthy individuals. The
JADBIO approach was adopted for modeling because of number of reason: First, auto-
mated parameter and algorithm selection without human inference enables testing and
coverage of a wide machine learning algorithm-settings space. Second, JADBIO includes
several algorithms for feature selection and modeling (linear regression, SVM, decision
trees, random forest and Gaussian kernel SVMs) and all possible options with different
parameters are tested during the process. Third, the obtained models were trained with
different configurations of sub-data of the original dataset (all results are cross-validated
with recently developed Bootstrap Bias Corrected CV (BBC-CV) [61]). Fourth, analyses
were run on data with biomedical characteristics (sparse matrices, nonnormal distribu-
tions). Algorithm, hyperparameter and space selection protocols (AHPS) in JADBIO were
used for selecting the most appropriate algorithm for preprocessing and transformation
of a given dataset, for feature selection and modeling. The output of AHPS step was then
evaluated through the configuration evaluation protocol in order to find the optimal model
configuration for a given dataset [46,47]. JADBIO 1.1.164 was used with extensive tuning
effort and 6 CPU cores in modelling various dataset selections. All four datasets were split
70 to 30 according to machine learning protocols. The training set (70% of the data in the
dataset) was used to build the best interpretable models and the rest of the data (30%)
was used for performance validations at all four levels of data analysis (16S rRNA genus
level (424 features), KO (6126 features), EC (1887 features), pathways (365 features)). The

https://mothur.org/
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area under the curve (AUC) metric was used to evaluate model performance. In total, the
analytical space of algorithms and their corresponding settings was explored and 5960 of
models and their individual settings were tested for genus and 11,920 for functional gene,
enzymatic reactions and metabolic pathways, before the optimal configuration for the most
informative model were obtained.

In addition to this, statistical power analysis of human microbiome data was per-
formed [45,59] on all four data levels: 16S rRNA, KO, EC and pathways, between patients
with different diseases and healthy individuals and according to presence/absence of
the disease. Data was cube root normalized and mean centered. False discovery rate set
to 0.1 was used in MetaboAnalyst module prepared for data analysis of population and
metabolic studies [62].

All models created in analyses of the human gastrointestinal dataset can also be run
on the local machine and are provided as part of the supplementary data (for local model
execution, see the instructions in the electronic supplementary materials).

Mice data (n = 365) were processed and analyzed as described above in order to
explore the differences between the four data types (16S rRNA; metagenomes; enzyme
reactions; metabolic pathways) in terms of consistency of intersample relationships between
the three layers of information routinely utilized in studies (genus; OTU; ASV). The
intersample relationships were assessed by Mantel tests (p < 0.0002) utilizing (i) Pearson
and (ii) Spearman correlation between data matrices (Bray-Curtis distance measure) and
permutations (n = 9999) in either vegan-R [63] and/or PAST software (version 2.17c) [64].
The Mantel test tests the correlation between two distance matrices. It is non-parametric
test and computes the significance of the correlation through permutations of the rows and
columns of the input distance matrices.

4. Conclusions

By including the user preferences of genus, OTU or ASV type of analyses, GUMPP
is the first workflow that introduces traceability and portability of all its parameters
used in analyses. The workflow integrates and orchestrates end to end the inputs and
outputs of the highly cited programs Mothur, PICRUSt2 and Pipihillin, controlled by
Python code, delivered as portable Singularity image and accompanied by customizable
configuration files. The whole GUMPP workflow can be executed for teaching or/and
research purposes using personal computer or HPC. The ability to support reproducible
analyses enables production of datasets that match multiomics layers of information,
such as metagenomics, metaproteomics and metabolomics that ultimately identify the
biochemical pathways characteristic of certain pathology [8]. These datasets coupled to
biostatistics and mathematical approaches of machine learning can play significant role in
extraction of truly significant and meaningful information from wide array of previously
unexplored datasets (e.g., [45,59]) in relation to (i) a number of diseases (metabolic [65]
or neurodegenerative [66] diseases), (ii) medical interventions, manipulations of bacteria-
gut-brain axis [67] or (iii) treatment strategies for complex diseases [68]. The adoption of
GUMPP in the gut-microbiota related research enables focusing on the identification of
novel biomarkers that can lead to the development of mechanistic hypotheses applicable
to the development of novel therapies in personalized medicine [2,9].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11060336/s1. Figure S1: A schematic overview of data layers, Figure S2: The data can
be analyzed at three different levels, Figure S3: An overview of the modelling step based on the four
layers of information obtained through the use of GUMPP, Figure S4: An overview of characteristics
of the models based on 16S rRNA, predicted metagenomes (KO), predicted enzymatic reactions
(EC) and metabolic pathways (Pathway) data. KO and EC data performed slightly better than those
based on 16S rRNA and pathway data, Table S1: Performance metrics of built models based on four
different levels of data generated by GUMPP from human dataset, Table S2: Human dataset, power
analysis. Sample size corresponding to calculated statistical power, Minimanual 1: GUMPP’s quick
run routine, Minimanual 2: Instructions for running a model on a local machine.

https://www.mdpi.com/article/10.3390/metabo11060336/s1
https://www.mdpi.com/article/10.3390/metabo11060336/s1
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