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Abstract: Clinical evidence suggests an improvement or stabilization of lung function in a fraction of
patients with bronchiolitis obliterans syndrome (BOS) treated by extracorporeal photopheresis (ECP);
however, few studies have explored the epigenetic and molecular regulation of this therapy. The aim
of present study was to evaluate whether a specific set of miRNAs were significantly regulated by
ECP. Total RNA was isolated from serum of patients with established BOS grade 1–2 prior to the start
and after 6 months of ECP treatment. We observed a significant downregulation of circulating hsa-
miR-155-5p, hsa-miR-146a-5p and hsa-miR-31-5p in BOS patients at the start of ECP when compared
to healthy subjects. In responders, increased miR-155-5p and decreased miR-23b-3p expression levels
at 6 months were found. SMAD4 mRNA was found to be a common target of these two miRNAs in
prediction pathways analysis, and a significant downregulation was found at 6 months in PBMCs of
a subgroup of ECP-treated patients. According to previous evidence, the upregulation of miR-155
might be correlated with a pro-tolerogenic modulation of the immune system. Our analysis also
suggests that SMAD4 might be a possible target for miR-155-5p. Further longitudinal studies are
needed to address the possible role of miR-155 and its downstream targets.

Keywords: circulating microRNAs; BOS; ECP

1. Introduction

Lung transplantation (LTx) is a therapeutic option for selected patients with end-
stage lung disease [1]. However, the onset of bronchiolitis obliterans syndrome (BOS),
the obstructive phenotype of chronic lung allograft dysfunction (BOS), hinders long-term
survival after LTx [2].

Despite many immunosuppressive drugs and novel therapies that have been devel-
oped in the last decade to prevent immunological rejection, there are no established treat-
ment of BOS. Extracorporeal photopheresis (ECP) has emerged as a promising treatment in
patients who develop CLAD [3]. Several studies have indicated the immunomodulatory
effect of ECP therapy on patients after solid organ transplantation, in particular in the
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setting of chronic rejection [4–7]. Few studies analyzed the ECP mechanism of action
in CLAD, and thus the most broadly accepted mechanistic hypothesis is derived from
studies in GVHD patients [8]. This includes an initial activation of immature dendritic cells
(DCs) by an inflammatory cascade, followed by an expansion of plasmacytoid DC with a
stimulation of tolerogenic mechanisms and inhibition of allospecific effectors [9]. Some of
these mechanisms have also been suggested in lung recipients, but remain inconclusive.
Few studies have explored the epigenetic and molecular regulation mediated by ECP, and
to date, no data are available on microRNAs (miRNAs) dysregulation resulting from this
treatment in BOS patients. MiRNAs are small, non-coding RNA that can inhibit gene
expression at the post-transcriptional level by binding to the 3′UTR of target messenger
RNAs, thereby promoting their degradation or inhibiting translation [10]. The aberrant ex-
pression of miRNAs is associated with initiation and progression of pathological processes
including immune-mediated disorders, cancer and fibrosis [11–13]. Moreover, miRNAs are
found to be involved in regulating the differentiation and proliferation of specific immune
subsets [14].

The aim of the present study was to evaluate the molecular regulation underlying the
effects of ECP and to analyze the differential expression of miRNAs potentially involved
in ECP response in CLAD patients. Moreover, our aim was to evaluate whether the
dysregulation of any miRNAs could provide insights on ECP mechanisms of action.

2. Materials and Methods
2.1. Study Design

This is a comparative pilot study, including serum samples of LTx recipients who
developed BOS and started ECP, prospectively collected between 1995 and 2015. Twenty-six
adult patients with BOS were treated with ECP: 16 patients subject to LTx from 1995 to
2006 at the Medical University of Wien started ECP by on-line methods, and 10 patients,
transplanted from 2003 to 2015 at IRCCS Policlinico S. Matteo Foundation in Pavia, started
ECP by off-line method at Apheresis Unit of Immunohaematology and Transfusion Service.
Venous blood samples were collected from patients at two time-points: at ECP enrollment
and after 6 months of treatment. The serum was separated by centrifugation at 2000 g
for 10 min, followed by 15 min high-speed centrifugation to completely remove the cell
debris. To minimize degradation, samples were processed within 2 h. Serum samples were
then stored at −80 ◦C until further analysis. At the same time-points, peripheral blood
mononuclear cells (PBMCs) and bronchoalveolar lavages (BAL) supernatants, derived from
four BOS patients, were collected. Inclusion criteria were primary lung transplantation,
adult age and serum samples availability both at time of ECP beginning and 6 months
after ECP treatment. Exclusion criteria were multi-organ transplantation and age ≤18. The
16 control patients were healthy subjects matched for gender and age. All subjects included
in the study provided written consent to the use of anonymized personal and clinical data
prior to treatment (the study was approved by the ethical committee of the San Matteo
Foundation n◦68792/2018).

2.2. ECP Procedures

On-line ECP was performed using the THERAKOSTM photopheresis system (Therakos
(UK) Ltd., Surrey, UK, a Mallinckrodt Pharmaceuticals company), which is a closed-loop
sterile system. The procedure is described in detail elsewhere [15]. During ECP, peripheral
blood mononuclear cells were separated from the whole blood in a Latham centrifuge
(Latham International, Chesterton, UK) at 2700 rpm. The collected cells (buffy coat bag)
were treated with 8-methoxypsoralen solution (Uvadex; Therakos) and exposed extra-
corporeally to ultraviolet A light (1–2 J/m2) before reinfusion into the patient. During
each treatment, 4–6 collection cycles were performed, or 1500 mL of peripheral blood was
processed, depending on the patient’s hematocrit level.

When ECP was performed using off-line technique, PBMCs were collected from the
patient using a cell separator device, processing 1.5–2 blood volumes. Hemocytometric
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analysis was performed on the product at the end of each collection (quality control).
Then, cells were irradiated (UV-A at 2 J/cmq; Macogenic, Macopharm a, France) after
the dilution with saline solution and the addition of 8-methoxypsoralen (at 200 ng/mL
concentration). Finally, the photoactivated PBMCs were immediately reinfused into the
patient [16]. During the entire ECP procedure, vital parameters, such as blood pressure,
heart rate and oxygen saturation, were monitored. Major reinfusion adverse events were
defined as asthma, bronchospasm, dyspnea or bleeding [16]. Patients whose FEV1 declined
less than 10% with respect to basal value were classified as responders.

2.3. miRNAs Selection

For the present study, we selected fourteen miRNAs previously reported as involved
in regulating the proliferation and function of the main immune cell types of the innate and
adaptive immunity. In particular, we investigated the relative expressions of hsa-miR-155-
5p, hsa-miR-146a-5p, hsa-miR-31-5p, hsa-miR-125a-5p, hsa-miR-30b-5p, hsa-miR-99a-5p,
hsa-miR-17-5p, hsa-miR-23b-3p, hsa-miR-98-5p, hsa-miR-182-5p, hsa-miR-181a-3p, hsa-
miR-21-5p, hsa-miR-24-3p and hsa-miR-223-5p in serum samples. These miRNAs were
reported to be involved in the regulation of immonospoppressive properties of dendritic
cells (DCs), B cells ad T cells, the major cell types that play critical roles in maintaining
tolerance and/or driving rejection of grafts. In particular, miR-30b, miR-125a, miR-99a, miR-
17 and miR-23b were previously demonstrated to be dysregulated in tolerogenic DC [17].
Previous studies showed that miR-181 expression increased the production of B lymphoid
lineage cells both in vivo and in vitro, and miR-155 was found to be required by B-cells for
high-affinity antibody production and immunoglobulin class switching [18]. miR-17–92
cluster was also shown to regulate B-cell proliferation, development and immunoglobulin
rearrangement [19]. In addition, some miRNAs, such as miR-125a, miR-155, miR-182,
miR-181a, miR-21, miR-24, miR-31 and miR-146a, were reported to be potentially involved
in T cell development and the regulation of Treg differentiation and function [20–22].

2.4. miRNAs Analysis

RNA was isolated from serum using miRNeasy serum/plasma kit (Qiagen, Germany).
RNA concentration and purity were assessed using an Eppendorf Biophotometer. RNA con-
centrations ranged from 25 to 50 ng/µL, and the purity was verified by use of A260/A280
ratios (range 1.7–1.9). Complementary DNA (cDNA) was synthesized with miRCURY
LNA RT Kit (Qiagen) at 42 ◦C for 60 min and 95 ◦C for 5 min. For the quality control of
differences in RNA extraction or RT efficiencies, a synthetic cel-miR-39 was utilized as
spike-in control RNA. Real-time PCR analysis was performed to evaluate miRNAs’ expres-
sion levels using miRCURY LNA miRNA PCR-specific Detection Probe and miRCURY
LNA SYBR Green PCR Kit (Qiagen) with a LightCycler 480 (Roche, Switzerland), according
to the manufacturer’s recommendations. Thermal cycling conditions consisted of initial
denaturation at 95 ◦C for 10 min, followed by 45 cycles of 95 ◦C for 10 s followed by 60 ◦C
for 1 min. The threshold cycle (Ct) was defined as the fraction cycle number at which
fluorescence exceeded the given threshold. The stable Ct values of cel-miR-39 obtained
from all spike-ins indicated successful RNA isolation, reverse transcription and qPCR
detection system.

Expression levels of the small nuclear RNA RNU6 were used as the normalization
control. RNU6 was chosen as candidate reference for this study on the basis of our previous
experience and literature data. Serum U6 levels were analyzed by quantitative qPCR and
used as reference genes based on the criteria that it was expressed in all samples. The mean
Ct value < 35 and it was not significantly different among the subgroups of the population
studied (p > 0.05).

Expression levels of dysregulated miRNAs were evaluated in BAL supernatant, as
described above. BAL of four BOS patients, prior to the start and after 6 months of ECP
treatment, were collected. All bronchoscopies were performed for diagnostic purposes.
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BALs were centrifuged at 400 rpm for 10 min at room temperature, and BAL supernatants
were then stored at −20 ◦C until analysis.

Each experimental condition was performed in triplicate. Relative quantifications
were calculated with the comparative Ct method.

2.5. miRNAs Target Prediction and Pathway Analysis

DIANA miRPath v.2.0 was used to predict target genes ofdysregulated miRNAs into
know KEGG (Kyoto Encyclopedia of Gene and Genome) pathways [23]. The output of
the program provides an overview of the parts of the pathways modulated by miRNAs.
The statistical significance value associated with the identified signaling pathways and
biological process was calculated by the program.

2.6. miRNAs and Targets Expression Analyses in PBMCs

In order to validate some of the specific targets identified by prediction analysis, we
decided to concentrate further on processes of lung fibrogenesis and graft tolerance, such as
STAT3, SMAD3 and SMAD4 [24–27]. RNA was isolated from PBMCs derived from 4 BOS
patients, prior to the start and after 6 months of ECP treatment, by miRNeasy Mini Kit
(Qiagen). MiR-155-5p and miR-23b-3p expression levels were evaluated as described above.
To evaluate STAT3, SMAD3 and SMAD4 gene expression, cDNA was retro-transcribed
from 1 µg of total RNA using LunaScript RT SuperMix Kit (NEB). Relative levels of
STAT3, SMAD3 and SMAD4 mRNA were assessed using SYBR® Green Luna® Universal
qPCR Master Mix (NEB) and normalized to the levels of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA. Each experimental condition was performed in triplicate.
Relative gene expression level quantification was compared with internal standards and
analyzed using the 2−∆∆Ct method.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

To quantify TGF-β released in the BAL supernatant, ELISA assays were performed.
We quantified TGF-β (Abcam) following the manufacturer’s instructions and the results
were expressed as pg mL−1.

2.8. Statistical Analysis

The mean and standard deviation ore median and interquartile range are presented
for continuous variables, and numbers and percentages are presented for categorical
variables. Groups were compared to parametric or non-parametric tests, according to
data distribution, for continuous variables. Correlations were calculated using Spearman’s
correlation test. One-way analysis of variance was used to calculate the differences in
candidate reference genes between the patients and controls. Statistical analyses were
performed using GraphPad Prism (GraphPad Software, Inc., San Diego, CA, USA). All
statistical tests were two-sided, and a p-value < 0.05 was considered statistically significant.
The p-values were corrected for multiple testing using Bonferroni correction.

3. Results
3.1. Demographic and Clinical Features of Patients

Twenty-six patients were included in the analysis, and 69% of the patients were male
with a mean age at lung transplantation of 48.5 ± 10.5 years. The most represented un-
derlying diagnosis was chronic obstructive pulmonary disease (COPD, 27%), idiopathic
pulmonary fibrosis (IPF, 23%) and cystic fibrosis (CF, 15%). The preferred type of trans-
plantation was bilateral (69%). After BOS diagnosis, formulated according to recent ISHLT
consensus documents [28], sixteen patients were treated by on-line and ten patients by
off-line ECP, respectively. After 5.9 ± 1.7 months of treatments and 17.5 ± 6.2 procedures,
patients’ clinical and functional responses were evaluated. Serum samples were collected
from all enrolled patients at the timeline defined above. Peripheral blood mononuclear
cells (PBMCs) and BAL supernatants were collected at both time points in a subsample of
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enrolled patients (n = 4). All patients were treated with calcineurin inhibitors (Tacrolimus
or Cyclosporin A) in combination with low-dose steroids; in addition, most patients also
received Mycofeolate Mofetil. All patients had experienced a 3 month-course of low-dose
Azithromycin before starting ECP. There was no difference between those patients that
were treated by off-line or on-line ECP in terms of ECP outcome at the last follow-up.
According to the stabilization or improvement of lung function from basal ECP entry value,
8 (30%) patients were classified as non-responders, while the remaining 18 (70%) patients
were judged as responders after 6 months of ECP treatment. Table 1 summarizes patient
population features.

Table 1. Demographic and clinical data of study subjects.

On-Line (n = 16) Off-Line (n = 10)

Males (n, %) 11 (69%) 7 (70%)

Age at transplant (mean, DS) 49 ± 11 43 ± 7

Age at ECP (mean, DS) 54 ± 11 52 ± 9

Underlying diagnosis:
Chronic obstructive pulmonary disease (COPD)
Idiopathic pulmonary fibrosis (IPF)
Cystic fibrosis (CF)
Other

7 (44%)
2 (12.5%)

1 (6%)
6 (37.5%)

0
4 (40%)
3 (30%)
3 (30%)

Bilateral lung transplantation (n, %) 11 (69%) 7 (70%)

ECP outcome at last follow-up:
Responder
Non responder

11 (69%)
5 (31%)

7 (70%)
3 (30%)

3.2. Serum Expression Levels of Selected miRNAs

Among the analyzed miRNAs, we observed a significant downregulation of hsa-miR-
155-5p, hsa-miR-146a-5p (both Bonferroni adjusted p-value < 0.0001) and hsa-miR-31-5p
(adjusted p-value = 0.015) in LTx patients at ECP entry when compared to healthy controls
(Figure 1). In Supplementary Table S1, we reported the overall results of the 14 miRNAs in
the studied population.
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Figure 1. Quantitative expression of (a) miR-155, (b) miR-146a and (c) miR-31 in serum samples from
26 patients before ECP therapy and 17 healthy subjects. Relative expressions were expressed as log2
transformed values. *** p < 0.0001; * p < 0.05.
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After 6 months of ECP therapy, paired analysis showed hsa-miR-155-5p expression
levels increased with respect to the pre-ECP levels (Bonferroni adjusted p-value < 0.0001);
however, they did not reach the levels observed in the healthy population sera. Conversely,
hsa-miR-146a-5p and hsa-miR-31-5p expression levels did not significantly change after
6 months ECP. ECP treatment also induced a significant reduction in hsa-miR-23b-3p
expression levels (Bonferroni adjusted p-value < 0.0001), which were comparable to healthy
controls at start of ECP (Figure 2).
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Figure 2. Quantitative expression of (a) miR-155, (b) miR-146a, (c) miR-31 and (d) miR-23 in serum
of patients before ECP therapy and after 6 months of treatment. Relative expressions were expressed
as log2 transformed values. *** p < 0.0001.

In order to investigate whether any miRNAs could predict the response to ECP, we
compared miRNAs baseline levels in responders and non-responders; however, we could
not detect any significant difference between these two groups of patients. With the aim of
evaluating the role of miRNAs in the molecular mechanisms underlying the response to
ECP, we assessed their levels in patients who actually showed a clinical response to therapy.
By limiting the analysis to responders, a significant increase in hsa-miR-155-5p (p = 0.0056)
and a significant downregulation of hsa-miR-23b-3p in serum (p < 0.001, Figure 3) was
observed.
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Figure 3. Quantitative expression of (a) miR-155 and (b) miR-23b assessed by qRT-PCR in responder
patients. Relative expressions were expressed as log2 transformed values. *** p < 0.001; ** p < 0.01.

3.3. Signaling Pathway Prediction and Targets Analyses

A DIANA-mirPath analysis was applied to predict the biologic targets and pathways,
as well as cellular processes, modulated by the dysregulated miRNAs (hsa-miR-155-5p
and hsa-miR-23b-3p). The following signaling pathways were found to be enriched: TGF-
beta signaling pathway, steroid biosynthesis, adherens junction, hippo signaling pathway,
FoxO signaling pathway, chronic myeloid leukemia, ECM–receptor interactions, hepatitis
B, apoptosis, non-small cell lung cancer, proteoglycans in cancer, signaling pathways
regulating pluripotency of stem cells, colorectal cancer, pathways in cancer, endometrial
cancer and bladder cancer (Table S2). Some of the identified pathways were involved in
the processes of lung fibrogenesis and graft tolerance [24–27]. We decide to concentrate
further on three targets reported as deeply involved in these processes: SMAD3, SMAD4
and STAT3.

3.4. Dysregulated miRNAs and Selected Targets Expression Analyses in PBMCs

In order to evaluate the possible relations between miR-155-5p and miR-23b-3p ex-
pression levels and SMAD3, SMAD4, STAT3 mRNA levels, RNA isolated from PBMCs
were purified at time of ECP initiation and after 6 months of ECP treatment in four patients
of the included sample. A paired analysis showed increased expression levels of hsa-miR-
155-5p in PBMCs with respect to the pre-ECP levels (p = 0.016; Figure 4a). Conversely,
hsa-miR-23b-3p showed no significant differences after 6 months ECP from baseline. The
upregulation of miR-155-5p was not associated with a significant dysregulation of SMAD3
and STAT3 mRNA levels in PBMCs, while a significant downregulation of SMAD4 mRNA
levels was detectable (p = 0.027; Figure 4b).
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Figure 4. Quantitative expression of (a) miR-155 and miR-23b and (b) SMAD3, SMAD4 and STAT3
assessed by qRT-PCR in PBMCs of BOS patients. * p < 0.05.

3.5. Expression Levels of Dysregulated miRNAs and TGF-b Levels in BAL Supernatant

After 6 months of ECP therapy, a paired analysis showed that expression levels of
hsa-miR-155-5p increased with respect to the pre-ECP levels (p = 0.02) in BAL supernatant
of BOS patients, mirroring what was observed for the same miRNA in serum samples.
No significant differences were observed in hsa-miR-23b-3p expression levels (p = 0.41),
even though its circulating levels were decreased following the treatment (Figure 5a). After
6 months of treatment we observed a non-significant trend towards an increase in TGF-
beta BAL fluid levels in BAL supernatant the TGF-β1 levels with respect to basal values
(Figure 5b).
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Figure 5. (a) Quantitative expression of miR-155 and miR-23b assessed by qRT-PCR and (b) TGFβ
levels by ELISA in BAL supernatant of BOS patients. * p < 0.05.

4. Discussion

ECP therapy has been reported to reduce the decline of respiratory function and
improve survival in BOS patients in several retrospective monocentric reports [29–31]. The
technique adopted to perform the procedure (inline or off-line) does not seem to influence
the clinical response to the treatment. Nonetheless, some differences exist regarding
the patient’s management and the product collected [32,33]. A paired trial compared
mononuclear cell collection in two machines for the further inactivation through an inline
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or offline extracorporeal photopheresis procedure [34]. The comparison of procedure times
and collection efficiencies using integrated and multistep nonintegrated procedures for
extracorporeal photopheresis [35]. The off-line method can easily be tailored to the patient’s
characteristics and offers the advantage of a low extracorporeal volume of the cell separator
device (140–195 mL) with a positive impact on fluid balance, which can also treat patients
with haemoglobin levels until 7 gr/dL with no transfusion support. Furthermore, there
is an excellent flexibility for managing the patients’ venous accesses, often avoiding the
central venous catether positioning. Furthermore, the mononuclear cell yield and purity
are higher than those obtained with the on-line system, even if no differences in terms
of clinical results and the amount of mononuclear cells infused are reported to date. On
the other hand, an apparent advantage of the on-line system consists of avoiding the cell
product handling in the laboratory and the related risks.

Different studies evaluated the immunomodulatory effect of ECP therapy on patients
after solid organ transplantation [36–39], but few studies have explored the molecular
regulation associated with ECP treatment. Although the exact mechanism how ECP modu-
lates the immune system are not fully understood, previous works on murine model and
on pediatric transplant recipients [40,41] have suggested that ECP induces expansion of
Treg and/or tolerogenic DCs. Moreover, it was demonstrated that ECP might influence
the frequency of circulating Tregs [7]. Treg promotes a state of antigen-specific peripheral
tolerance by suppressing the activation and expansion of reactive effector cells [42]. Like-
wise, Tregs number and function might also be excellent biomarkers of allograft injury and
function, and the balance of Thelper/Treg can offer insights into allograft rejection [43].
The analysis of variations in miRNAs peripheral levels might, therefore, be of help in
clarifying molecular mechanisms of ECP. Furthermore, aside from the mechanistic utility, a
specific miRNA signature could be of help as an easily accessible biomarker to predict ECP
response [44,45].

To date, no studies have addressed the variation in miRNAs expression during ECP
treatment in patients with BOS. Only one previous report was focused on patients with
graft-versus-host disease (GVHD) and showed that GVHD patients initiating ECP had
higher miR-22-5p, miR-34a-5p, miR-148a-3p, miR-505-3p in comparison to healthy controls,
and those patients who responded to treatment normalized the levels of these micro-RNAs
after 6 months of ECP. However, in the same study, the role of the above miRNAs in
response to ECP in BOS patients was not confirmed [46].

In our study, we found a different expression profile of specific circulating immunoreg-
ulatory miRNAs. In fact, in patients with BOS, at time of ECP enrolment miR-155-5p,
miR-146a-5p and miR-31-5p were significantly downregulated with respect to healthy
controls. Of note, miR-155-5p is a key player in the regulation of adaptive immunity and
antibody-related T-cell response [47]. Local inflammation associated with rejection is tightly
regulated by T helper (Th)/Treg balance, and miR-155 controls the differentiation of CD4+T
cells into Th cells and participates in the development of regulatory T (Treg) cells [22,48,49].
It has been proposed that several miRNAs are direct targets of FOXP3, such as miR-155,
and may partly control the function, development and homeostasis of Tregs [50]. Similar
to miR-155, miR-146a expression was elevated in Tregs and it was induced upon activa-
tion [50]. MiR-146a deficiency results in the increased production of pro-inflammatory
interferon-gamma (IFNγ), altering their function and ability to preserve immunological
tolerance. The significant downregulation of miR-155 and mir-146a in patients experiencing
BOS in our cohort is in accordance with the above observations, thus suggesting that the
levels of these miRNAs might mirror the level of immunological tolerance of these subjects.
However, due to the limited sample size of our study, data need to be confirmed in a
larger population of CLAD patients, in order to accurately assess the utility of miR-155 and
mir-146a as disease biomarkers.

Furthermore, we observed that ECP was able to induce a significant increase in
circulating levels of miR-155 after 6 months, even if it did not induce restoration to levels
of healthy controls. A previous study, conducted in liver transplant patients, showed
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an association between miR-155 and clinical operational tolerance, with higher miR-155
circulating levels in patients without rejection episodes for at least one year [51]. In our
patients, the upregulation of miR-155 was also present in BAL supernatant after 6 months
of treatment.

Another miRNA that was significantly downregulated in BOS patients at time of ECP
initiation with respect to healthy controls was miR-31. However, in these patients, ECP was
not able to substantially affect its level. Several studies demonstrate that the function of
miR-31 is context-dependent. As part of the immune response, miR-31 regulates Treg cells
through several mechanisms [51]. Furthermore, recent literature points out that miR-31 is
also a negative regulator of fibrogenesis and pulmonary fibrosis [52]. Nevertheless, miR-31
does not seem to be linked to the molecular mechanisms of ECP clinical response.

Unexpectedly, although miR-23b levels did not differ between controls and patients at
baseline (pre-ECP), we observed that this miRNA was significantly downregulated with
ECP treatment. Previous data in the literature showed conflicting results with respect to
immune regulation. On the one hand, miR-23b was defined as a pro-tolerogenic factor,
increasing tolerogenic DC activity and Treg responses in vitro through the inhibition of
the Notch1 and NF-κB signaling pathways [53]. On the other hand, in the context of
autoimmune disorders, specifically rheumatoid arthritis [54], levels of miR-23b expression
were directly correlated to disease activity [55]. In addition, miR-23b was ascribed a
pathogenic role in the context of cardiac fibrosis. Thus, aside from an immune-regulatory
role, a possible pro-fibrogenic role could also be speculated in miR-23b in the context of
obstructive CLAD, and this needs to be fully clarified.

Finally, by the analysis of the different pathways in KEGG database, some common
targets for miR-155-5p and miR-23b-3p were identified. Surprisingly, these pathways and
targets were also involved in fibrogenesis, in particular in TGF-β-driven processes. Thus,
with the aim to analyze whether miR-155 and miR-23-b deregulation might be associated
with an increased expression of some crucial targets in fibrogenic processes, we specifically
analyzed the mRNA expressions of STAT3, SMAD3 and SMAD4 in the PBMCs of a subset
of patients undergoing ECP, and we compared their expression at 6 months post-ECP with
respect to basal time point. Neither STAT3 nor SMAD3 showed a variation related to ECP
treatment, while SMAD4 was significantly downregulated at 6 months with respect to the
basal time point. At same time points, an upregulation of miR-155-5p was also detectable
in PBMCs. This finding was in line with the observation obtained for serum samples, thus
suggesting that SMAD4 expression was regulated by miR-155-5p at the transcriptional
levels, this miRNA a repressor of SMAD4 mRNA. The functional role of SMAD4 in the
pathogenesis of inflammation and fibrosis under pathological condition remain largely
unknown. SMAD4 expression was shown to regulate LPS tolerance through the regulation
of SHIP1 and IL-1R-associated kinase (IRAK)-M, negative regulators of TLR4 signaling [27].
In addition, the central role of SMAD4 in TGFβ signaling pathway is well known [56].
Recent studies in conditional SMAD4 knockout mice have shown that SMAD4 may be a key
regulator for different roles of TGFβ in immunoregulation and fibrogenesis by interacting
with SMAD7 and SMAD3 [57]. In addition, SMAD 4 downregulation is able to inhibit
renal fibrosis [58,59]. Indeed, in BAL samples, we could not detect a significant variation
of TGF-beta levels after ECP treatment, but only a trend towards an increase. Further
mechanistic studies are therefore needed to clarify the regulation of TGF-beta pathway
by ECP.

We acknowledge that our study has some limitations. First, the quantification of
different immune cell subsets is lacking. This depends on the availability of the biological
material of the patients enrolled in the study, including the samples of PBMCs and BAL
supernatants. Second, the number of non-responder patients in our case series was small.
However, our pilot study represents the first study describing different miRNAs expression
in BOS patients treated with ECP and may suggest a possible underlying process.
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5. Conclusions

In conclusion, from our study, a specific miRNA signature associated with a functional
stabilization/improvement after an ECP treatment course of 6 months emerged. The kinetic
of miR-155 in particular, and of miR-23b, might be useful for identifying patients who are
responsive to ECP treatment. These results also suggest that ECP might not only induce
immune tolerance, as previously suggested, but also possibly interfere with lung fibrogenic
pathways by means of miR-155 and miR-23b modulation. These data provide a theoretical
basis for subsequent longitudinal clinical and mechanistic studies, including target gene
determination and function analysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
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