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1 The BHL-model revisited

A mathematical model to describe the loading of IAA from the donor well,
the transport inside the stem segment and the unloading of IAA onto the
receiver well has been developed and experimentally validated in Boot et al.
[1]. There it was called ‘Model III’. It has been summarized in the Main
Text (MT), Box 1 in particular, where we preferred to name it ‘BHL-model’.

The BHL-model as exhibited in Boot et al. [1] will be derived again in this
section – using a different approach – showing how various assumptions and
anatomical structure have been incorporated into the model. This will aid
later on in assessing and interpreting changes in values of parameters in the
model. Moreover, the BHL-model will be extended by relating parameters
to physical and physiological parameters at the microscopic scale of various
parts of membranes of PAT cells and carriers contained in them. This exten-
sion is called the Long-distance Polar axin Transport Framework (LPTF).
It will be discussed in depth in Section 4. The way in which microscopic key
parameters can be related to those obtained in a fit of the BHL-model is dis-
cussed in Section 5. The established theoretiocal relationships are essential
for the interpretation of the various pin1 mutants that have been subjected
to PAT and extended PAT experiments.

Concerning the BHL-model, we want to stress here the point that the de-
tailed anatomy of the cross section of an inflorescence stem segment is taken
into account in the BHL-model implicitly, i.e. not by employing a three-
dimensional spatial model. The influence of anatomical differences is re-
flected in anatomical parameters that capture the key characteristics of the
anatomy, as they appear in the BHL-model derivation below.

Let us elaborate further on this point. Although we start from a three-
dimensional spatial model for an inflorescence stem segment (ISS) with local
concentration of indole-3-acetic acid (IAA, auxin) at every point in this
segment at any time, we reduce this three-dimensional model to a model
that describes the average concentration of IAA in a cross-section of the
stem segment at position x from the end of the segment that is positioned in
the donor well (at x = 0). More precisely, in Boot et al. [1] we distinguished
between four parts of the segment because of their different role and location
in long-distance PAT:

(1) The total of PAT cell files, in which auxin is transported polarly, lo-
cated within the vascular bundles (the ‘U-compartment’),
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(2) The total environment of these cell files within the vascular bun-
dles, with transport by diffusion, but no polar transport (the ‘W -
compartment’),

(3) Immobilized IAA (the ‘Z-compartment’), assumed in the model to
be located within the PAT cell files, and finally,

(4) The remaining totality of tissue of the stem segment outside the vascu-
lar bundles, that accumulates auxin through the contact of this tissue
with the medium in the donor well (the ‘Y -compartment’).

The Y -compartment may be considered an ‘experimental artefact’, because
the experimental set-up places one end of an inflorescence stem segment
in full contact with tritium-labelled IAA in the donor well, over the full
cross section of the stem. Fluorescence microscopy with DR5 markers for
the presence of auxin did not show substantial amounts of auxin outside
the vascular bundles in the main part of the stem segment however [1].
Therefore, accumulation of IAA in the Y -compartment seems to occur due
to this direct contact of the tissue with the labelled IAA in the donor well.

The average concentrations within these compartments in a cross section
at position x and time t are denoted by [U ](x, t), [W ](x, t), [Z](x, t) and
[Y ](x, t). The cross-sectional areas of these four compartment are rep-
resented by anatomical parameters Su, Sw, Sz and Sy. By assumption,
Sz = Su, so Sz will not be used in the equations. It is by these parame-
ters and the additional anatomical parameter S0, which represents the total
length of the interface between the U -and W -compartment in a cross sec-
tion, that the anatomy of the stem segment is taken into account in the
BHL-model. See Section 1.3 for further discussion and typical values for the
anatomical parameters. We assume these areas and lengths to be constant
with position x of the cross section (in first approximation).

1.1 Underpinning of compartmental modelling

The above described approach to modelling by means of compartmentation
is a specific instance of a general ‘top-down’ approach to modelling that
we shall now briefly present. By doing so, it can be assessed what (mathe-
matical) conditions ensure that a reasonably well approximation results. To
that end, we consider our stem segment as a fixed set Ω of three-dimensional
space. We pick, as in the model, an orthogonal coordinate system (x, y, z)
such that the x-axis coincides with the central axis of the stem segment,
with x = 0 located at the end that is in the donor well and x = L at the end
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in the receiver well (Figure 1). Thus, at every 0 ≤ x ≤ L one has a cross
section Ω(x) := {(y, z) ∈ R2 : (x, y, z) ∈ Ω} of the stem segment.

x-axis

y-axis

z-axis

Cross section at x
z-axis

y-axis

Figure 1: Schematic overview of the various spatial domains in the master

transport model. x-axis has been aligned with the centre line of the inflorescence

stem segment, such that x = 0 corresponds with the end that resides in the donor

well. Ω represents the entire stem segment in three dimensions. Ωu, Ωw, Ωy and

Ωz are the spatial regions within Ω of the U -compartment (PAT cell files), W -

compartment (remainder of vascular bundles), and Y - and Z-compartents. Ω(x)

and Ωu(x), etc., represent the cross-section of these sets perpendicular to the x-axis,

at position x. The total interface between the U - and W -compartments in this cross

section, ∂Ωu(x), is indicated in red.

Its area, S = |Ω(x)|, is assumed fixed. Within this cross section, we identify
the part Ωvb(x) that constitutes the vascular bundles, of area Svb = |Ωvb(x),
also assumed constant. The Y -compartment at x is then the complement of
Ωvb(x) in Ω(x). Similarly, one identifies Ωu(x) and Ωw(x) as complementing
subsets of Ωvb(x) that overlap only by the interface between the U -and W -
compartment, ∂Ωu(x). S

0 is the length of this interface in the cross-section.
Thus:

Ωvb(x) = Ωu(x) ∪ Ωw(x), ∂Ωu(x) = Ωu(x) ∩ Ωw(x),

Su = |Ωu(x)|, Sw = |Ωw(x)|, Su + Sw = Svb, S0 = |∂Ωu(x)|.

The distribution of ‘free’ IAA throughout the stem segment at time t is
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given by the concentration function C(x, y, z, t), with (x, y, z) ∈ Ω. The dis-
tribution of immobilized IAA is given by Cim(x, y, z, t). Then, the variables
in the BHL-model are precisely

[U ](x, t) :=
1

Su

∫
Ωu(x)

C(x, y, z, t) dydz,

[W ](x, t) :=
1

Sw

∫
Ωw(x)

C(x, y, z, t) dydz,

[Y ](x, t) :=
1

Sy

∫
Ωy(x)

C(x, y, z, t) dydz,

[Z](x, t) :=
1

Su

∫
Ωu(x)

Cim(x, y, z, t) dydz.

That is, they represent the average concentration of IAA in the four com-
partments. These give a good representation of C (and Cim) if fluctuations
of this concentration within each of their spatial domains are small com-
pared to the average. It is very hard – if not impossible – with the current
state of techniques to measure concentration differences within the stem seg-
ment. Therefore, we simply start from embracing this assumption, resulting
in a model with the least complexity. If experimental evidence suggests
that this assumption is violated, then the model can be adapted in a future
modification, with increased complexity.

Write x = (x, y, z). Seeing that transport of IAA takes place within the
stem segment, one can formulate very general ‘master equations’ for the
change in time of C(x, t) and Cim(x, t) by (inhomogeneous) diffusion and
advection:

∂tC = ∇ ·
(
D(x)∇C

)
−∇ ·

(
V (x)C

)
− k+im(x)C + k−im(x)Cim, (1)

∂tCim = k+im(x)C − k−im(x)Cim, (2)

where k+im(x) and k−im(x) are (local) immobilisation and remobilisation rates
of auxin at position x, D(x) is the local diffusivity and V (x) the local
advective velocity field. It should be clearly realized that equations (1)–(2)
are still highly generic. It is by making further assumptions on these local
rates, diffusivity and velocity field that our model reduces to the BHL-model.

For example, we assume that V (x) vanishes, except in the U -compartment

Ωu =
⋃

0≤x≤L

{x} × Ωu(x).
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Moreover, assuming that D(x) is essentially constant within Ωu, equal to
Du, with small fluctations that will be neglected, and that k+im(x) = κ1 and
k−im(x) = κ2 can also be considered constant for similar reasons on Ωu and
zero elsewhere, we arrive at

∂tC = Du∆C −∇ ·
(
V (x)C

)
− κ1C + κ2Cim on Ωu. (3)

Similarly, one obtains

∂tC = Dw∆C on Ωw, (4)

∂tC = Dy∆C on Ωy, (5)

with Ωw and Ωy defined analogously to Ωu.

Subsequent averaging of C over the domains Ω•(x), (• = u,w, y), yields
equations for [U ], [W ] and [Y ], provided the regions Ω•(x) do not change
too much with x. For example, then – using the Divergence Theorem from
vector calculus:

∂t[W ](x, t) =
1

Sw

∫
Ωw(x)

∂tC(x, y, z, t) dydz

=
1

Sw

∫
Ωw(x)

Dw∆C(x, y, z, t) dydz

≈ Dw∂
2
x

(
1

Sw

∫
Ωw(x)

C(x, y, z, t) dydz

)

+
Dw

Sw

∫
Ωw(x)

∇y,z · ∇y,zC(x, y, z, t) dydz

= Dw∂
2
x[W ](x, t) +

Dw

Sw

∫
∂Ωu(x)

∇y,zC(x, η, t) · nx(η) dσ(η),

in which nx(η) is the normal vector to the interface ∂Ωu(x), pointing out of
Ωw(x), at the point η of this interface. dσ(η) denotes integration over this
interface. The Fickian diffusive flux density at this interface (in the cross
section Ω(x)) at the inside of the W -compartment in the direction of the
U -compartment is precisely(

−Dw∇y,zC(x, y, z, t)
)
· nx(η), η = (y, z). (6)

The flux density of IAA through the interface from U - to W -compartment
is modelled as being governed by linear dynamics of the form

J = k+[U ]− k−[W ],
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with [U ] and [W ] the concentration in the two compartments at the interface.
By assumption of (approximate) homogeneity within the compartments, one
has [U ] ≈ [U ](x, t) and [W ] = [W ](x, t). Hence, we obtain the condition(

−Dw∇y,zC(x, y, z, t)
)
· nx(η) = k−[W ](x, t)− k+[U ](x, t). (7)

Finally, we arrive at an (approximate) equation for [W ](x, t):

∂t[W ](x, t) = Dw∂
2
x[W ](x, t)− k−

S0

Sw
[W ](x, t) + k+

S0

Sw
[U ](x, t). (8)

For [U ] we can make a similar derivation. Here, we make the assumption
that the velocity field is to first approximation entirely in the direction of
increasing x, i.e. V (x) = V ex, with ex the standard basis vector in the
direction of increasing x. We then arrive – after some computations – at the
equation

∂t[U ] = Du∂
2
x[U ]− V ∂x[U ]− k+

S0

Su
[U ] + k−

S0

Su
[W ]− κ1[U ] + κ2[Z]. (9)

Essentially we used that V (x) must be tangential to the boundary of the
U,W -interface at any of its boundary points, since the flow cannot leave the
U -compartment, while there is not much deviation in the velocity field V (x)
from the constant V ex in the interior of the compartment.

Note the difference in the rates in the reaction terms of [W ] in the [U ] and
[W ] equations. We define

a := k+
S0

Su
, b := k−

S0

Sw
. (10)

The rates k+ and k− that characterise the rate of transport through the
U,W -interface have be related to plasma membrane properties. In the LPTF
this will be made specific (see Section 4 and MT, Box 2).

The BHL-model equations for t > 0 and 0 < x < L then become:

∂t[U ] = Du∂
2
x[U ]− V ∂x[U ]− a[U ] + b

Sw

Su
[W ]− κ1[U ] + κ2[Z], (11)

∂t[W ] = Dw∂
2
x[W ] + a

Su

Sw
[U ]− b[W ], (12)

∂t[Y ] = Dy∂
2
x[Y ], (13)

∂t[Z] = κ1[U ]− κ2[Z]. (14)
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These need to be complemented by boundary conditions and initial values.
The latter are

[U ](x, 0) = 0, [W ](x, 0) = 0, [Y ](x, 0) = 0 and [Z](x, 0) = 0,

for all 0 < x < L, because there is no tritium-labelled IAA in the ISS at
the start of the experiment. The former are formulated in terms of the net
number fluxes of IAA over the boundary separating the interior of the ISS
from the donor and receiver well for each of the U -, W - and Y -compartment.
For the transport from donor well into these compartments we define the
fluxes at any time t ≥ 0 by

Jdu = P+
duSuCd(t) − P−

duSu[U ](0, t), (15)

Jdw = P+
dwSwCd(t) − P−

dwSw[W ](0, t), (16)

Jdy = P+
dySyCd(t) − P−

duSy[Y ](0, t), (17)

where Sy := S − Svb. The P±
du, P±

dw and P±
dy are effective permeability

constants for these boundary layers. (Superscript ‘+’ refers to uptake into
the ISS, while ‘−’ indicates release from the ISS). Cd is the concentration
of IAA in the donor well. It changes due to the exchange with the ISS
according to the ordinary differential equation (ODE):

Vd
dCd

dt
= −

(
Jdu + Jdw + Jdy

)
, Cd(0) = Cd,0. (18)

in which Vd is the volume of the donor well. The boundary conditions
at x = 0 for equations (11)-(13) are then the following – stating that the
amount of IAA that passes from donor well into the respective compartment
is matching the flux in the interior at the boundary, as prescribed in the
equation:

−Du∂x[U ](0, t) + V [U ](0, t) = Jdu/Su, (19)

−Dw∂x[W ](0, t) = Jdw/Sw, (20)

−Dy∂x[Y ](0, t) = Jdy/Sy. (21)

Note that the number fluxes Jdu, Jdw and Jdy that appear on the right
hand side in (19)-(21), are divided by the respective cross-sectional areas of
the compartments, because the indicated fluxes defined by the differential
equations are flux densities. Consequently, these anatomical parameters do
not play a role in the simplified mathematical expressions of the boundary
conditions at x = 0, as they cancel out in the expressions. They matter for
the rate of change of Cd defined by (18).
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The number fluxes from each compartment in the ISS into the receiver well
are given by

Jru = P−
ruSu[U ](L, t), (22)

Jrw = P−
rwSw[W ](L, t), (23)

Jry = P−
rySy[Y ](L, t). (24)

In these expressions we ignore uptake of IAA from the receiver well. This
is done, because in the experimental protocol the receiver well is regularly
emptied for measurement of its IAA contents. It is then replaced by fresh
medium, without IAA. The uptake of IAA is hence assumed to be negligible.
The boundary conditions at x = L then become

−Du∂x[U ](L, t) + V [U ](L, t) = Jru/Su, (25)

−Dw∂x[W ](L, t) = Jrw/Sw, (26)

−Dy∂x[Y ](L, t) = Jry/Sy. (27)

The (cumulative) total amount of IAA that has been transported into the
receiver well up to time t, Nr, i.e. the sum of all sampled amounts up that
time, then satisfies the ODE:

dNr

dt
= Jru + Jrw + Jry. (28)

To conclude, we like to point out, that the benefit of using a master equation
approach as exhibited above is, that it makes explicit what are consequences
of particular modelling assumptions like for example the assumed homogene-
ity of diffusivity throughout U - and W -compartments. If assumptions turn
out to be violated, this approach however provides indications what correc-
tions could be made, by making close inspection of the original expressions
and seeing how they can be better approximated.

1.2 Overview of BHL-model parameters and values

In Table 1 we provide an overview of all the parameters in the BHL-model
with a brief defining description. Some have a specific value indicated. These
are parameters that have been fixed to that value in all simulations, including
those in the data fitting procedures. These values are the same as those
taken in Boot et al. [1] Only those parameters without a prescribed value in
Table 1 are varied when fitting. For the reader’s convenience, we included
already the additional auxiliary parameters that occur in the LPTF that
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will be defined later. These are mentioned as ‘Mesoscopic parameters’ and
‘Microscopic parameters’.

Key parameters of interest in all of this study are the ‘free parameters’ V , a
and b. The auxin transport velocity V is the attribute that is compared in
the statistical analysis of wild type and mutant plants in Section 2.1 of MT
(and detailed in Section 2 below). Hence, when fitting the auxin transport
data of an individual ISS in a specific batch, these key parameters and –
additionally – Du, κ1, P

+
du, P

+
dw and P−

ru have been varied.

The anatomical parameters S and Svb have been determined for each ISS
separately based upon measurements of the stem segment. An example of
typical values for a batch of ISS from a wild type plant and those of a pin1
mutant plant are given in Section 1.3. The fraction of the cross-sectional
area of the vascular bundles that is part of the U -compartment, described
by the parameter α = Su/Svb, is kept fixed to α = 0.32 in all simulations.

In a fitting procedure, the start values values for a and b were taken as
a = 2× 10−4 s−1 and b = 7× 10−4 s−1. These are viewed as reference wild
type values.

In the BHL-model we used for the diffusion constant Du a value which
was slightly lower than the measured diffusivity of IAA in agar: D = 7 ×
10−10 ms−1 (see Boot et al. [1]). Since we found that the parameters Du

and P−
ru can compensate each other’s effect to some extent (Boot et al.) [1],

page 662) we fixed Du to 2× 10−10 ms−1 in the simulations.
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Table 1: Overview of BHL-model parameters and those values that are fixed
throughout simulations for determining auxin transport velocity. Meso- and
microscopic (auxiliary) parameters have been added, for completeness.
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1.3 Anatomical parameters

For each stem segment that was subjected to PAT assay experimentation
a microscopy image of the cross section was photographed and printed on
paper. Anatomical structures were identified and the corresponding parts
were cut out from the print. The weight of each was determined using a
micro-scale. These were compared to the total weight of the excised cross-
section of the ISS in the print. The total area of S was determined by means
of the weight per unit area of the print paper that was used.

Table 2 shows the result for a batch of wild type plants from which nine
individual stem segments were examined. Table 3 shows similar results for
a batch of pin1 mutant plants. The difference in anatomy between wild type
plants and pin1 mutants is illustrated by two typical examples of microscopy
images for these (Figure 2).

Sample No. VBs Weight of excised parts (g) Area (×10−6 m2)
Cortex Pith Total VBs Total S Svb Svb/S (%)

1. 8 0.213 0.761 0.153 1.127 1.42 0.19 13.9
2. 8 0.129 0.655 0.156 0.94 1.18 0.20 16.6
3. 8 0.205 0.837 0.164 1.206 1.52 0.21 13.6
4. 8 0.275 0.906 0.200 1.381 1.74 0.25 14.5
5. 6 0.177 0.721 0.146 1.044 1.31 0.18 14.0
6. 6 0.218 0.752 0.138 1.108 1.39 0.17 12.5
7. 6 0.285 0.888 0.164 1.337 1.68 0.21 12.3
8. 6 0.202 0.657 0.122 0.971 1.22 0.14 11.5
9. 7 0.219 0.707 0.140 1.066 1.34 0.18 13.1

Average: 1.42 0.19 13.5

Table 2: Measured anatomical characteristics for samples of individual
stem segments of inflorescence stems from a batch of wild type Arabidop-
sis thaliana plants. VB = Vascular Bundle.

The value of α, i.e. the fraction of thr area in the cross section of the vascular
bundles that constitute the PAT cell files – the so-called ‘U -compartment’ in
the BHL-model, has been based on an analysis of a selection of microscopic
images of cross sections of stem segments, together with the experience of
giving a proper fit of the experimental data, as found in [1]. The precise
anatomical location of the PAT cell files, as postulated in the Michison model
for PAT, has not been completely identified. See [1] for a more detailed
discussion of this topic.
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Sample No. VBs Weight of excised parts (g) Area (×10−6 m2)
Cortex Pith Total VBs Total S Svb Svb/S (%)

1. 6 0.184 0.478 0.188 0.850 1.07 0.24 22.1
2. 5 0.184 0.382 0.136 0.702 0.883 0.17 19.4
3. 7 0.149 0.388 0.153 0.690 0.868 0.19 22.2
4. 5 0.185 0.403 0.122 0.710 0.893 0.15 17.2
5. 7 0.125 0.424 0.198 0.747 0.940 0.25 26.5
6. 6 0.171 0.348 0.169 0.688 0.866 0.21 24.6
7. 5 0.128 0.332 0.130 0.590 0.742 0.16 22.0
8. 5 0.144 0.401 0.120 0.665 0.837 0.15 18.0
9. 5 0.165 0.376 0.142 0.683 0.859 0.18 20.8

Average: 0.884 0.19 21.4

Table 3: Measured anatomical characteristics for samples of individual stem
segments of inflorescence stems from a batch of pin1 mutant Arabidopsis
thaliana plants. VB = Vascular Bundle.

Figure 2: Example of a microscopy image of a stem segment of an inflores-
ence stem of Arabidopsis thaliana, used for measuring anatomical charac-
teristics. Left: a wild type plant; right: a pin1 mutant.
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2 Comparison of transport velocity

In one instance of a transport experiment a batch of N (at most nine) ISSs
is measured simultaneously, with joint donor well, but individually – each
ISS having a separate receiver well. The resulting data set for each ISS is
called its transport profile. It consists of an efflux profile that presents the
total amount of IAA that has been transported into the receiver well up to
a given time, and a tissue profile that shows the accumulation in each of the
4mm sections of the ISS, at the of the experiment. In later experiments,
also an immobilisation ratio has been determined. See MT for a description
of the specific measurement procedure through a TLC analysis.

Two versions of efflux profile have been made: a standard PAT experiment
and an extended PAT experiment. In the former, the transport through the
ISS is measured for 5 hours, after which the the experiment is stopped and
the tissue profile is determined. In the latter, the contents of the donor well
has been replaced by fresh medium after 5 hours, after which the measure-
ments continued for another 5 hours. At the end of the efflux measurements,
the ISSs are cut into four 4 mm sections. For each of the sections the ra-
dioactive content is measured.

In Boot et al. [1], SM, we argued that the concept of auxin transport
velocity can be properly quantified only within the context of a particular
mathematical model (see discussion of this in [1], SM). Here we shall use the
BHL-model to quantify auxin transport velocity as the value of the advective
velocity V in this model after a fit of the model to the transport profile.

2.1 Model-based estimates for PAT velocity

We examined the PAT velocity of wild-type Arabidopsis thaliana plants and
eight different mutants, focussing primarily on proteins from the PIN-family:

1.) pML1::PIN1:GFP/pin1 , where in pin1 background plants the PIN1-
GFP protein is expressed under the pML promotor. In these plants
there is no PIN1 expression in the vacular bundles;

2.) pin3 mutant;

3.) pPIN::PIN1:GFP/pin1 , where the PIN1-GFP protein is expressed
under the PIN1 promotor in pin1 mutant background plants, resulting
in wild-type plants

4.) pin3/pin4/pin7 triple mutant;
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5.) pin1 mutant; this mutant has an aberrant needle-like inflorescence.

6.) pML::PIN1:GFP/pin1,pin4 double mutant;

7.) pgp1/pgp19 double mutant; Both PGP1 and PGP19 can be pu-
tative auxin transport proteins. This mutant has strongly reduced
inflorescences;

8.) pin5/pin6/pin8 triple mutant.

All examined mutants have a wild-type appearance of the inflorescence,
except for the pin1 mutant (No. 5). For each class of mutant an experiment
according to the standard auxin transport protocol was performed (PAT) or
an extended PAT protocol (Ext. PAT) in which after 5 hours the medium
in the donor well, containing radioactively labelled IAA, is replaced with
medium without IAA. Accordingly, one measures the ‘wash-out’ of IAA
from the stem segment in the remaining ca. 5 hours of the experiment. In
each experiment PAT in N stem segments from inflorescences from plants
from the same batch was measured individually.

The fitting procedure that resulted in the values for the PAT transport
velocity was the following. We started from a standard parameter setting
for wild-type plants as exhibited in [1]. Some of the parameter values were
kept fixed, similarly to the fitting procedure in Boot et al. [1]. These have
been listed in Table 1. The anatomical parameters, i.e. the cross sectional
area of the stem segment S and the total area Svb of the vascular bundles
within this section, were measured based on microscopy images. Thus, these
vary per individual stem segment (see Table 2 and Table 3 for examples).

The boundary conditions in the BHL-model represent all processes that
happen at these ends of the stem segment. Anatomically, they constitute
a wound layer, caused by the cutting procedure. The details of processes
inside this wound layer are not our main interest. However, they must be
incorporated phenomenologically in order that loading of IAA into the stem
segment is represented well.

The initial conditions were set to [U ](x, 0) = 0, [W ](x, 0) = 0, [Y ](x, 0) = 0
and [Z](x, 0) = 0 for all 0 < x < L, since no radioactively labelled auxin is
present in the system at the start of the experiment. Cd(0) = Cd0, the initial
concentration of tritium-labelled IAA in the medium in the donor well. This
concentration may vary between experiments. Its value has been determined
for each experiment. Roughly, Cd0 ∼ 1 × 10−4 mol/m−3 = 0.1 µM. The
total amount of accumulated IAA in the donor well satisfies Nr(0) = 0.
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For simulating an extended PAT essay, at t = 300 min, Cd is changed
instantaneously to 0.

The remaining parameter values were first manually tuned from the initial
values to get a fit close to the data. This to prevent the computer-assisted
fitting procedure, implemented in COMSOL-MATLAB, to get stuck in a
local minimum of the function that measures the deviation of the simulation
output from the observed data, the cost function.

Since transport profile and tissue profile are different type of
characteristics of PAT, a quantifier for the total deviation of
simulation from data can be constructed only from relative er-
rors for each profile separately.

We denote by Ndat
r,i the measured cumulative amounts of IAA in the receiver

well at times t = ti, i = 1, . . .m, in the transport profile, and by Ndat
j , j =

1, . . . , 4, the total amount of IAA in the j-th 4mm-slice of the stem segment,
counting from the apical side. The time of the end of the experiment is
Tend. We have Ndat

r,m amount of IAA in the receiver at this end time. The
relative deviation of the efflux profile is then defined by the root total squared
deviation over the data points, relative to the total amount that has been
transported:

Deffl :=
1

Ndat
r,m

(
m∑
i=1

(
Ndat

r,i −Nr(ti)
)2)1/2

. (29)

Similarly, the relative deviation of the tissue profile is defined as

Dtiss :=

(∑4
j=2

(
Ndat

j − Ij
)2)1/2∑4

j=2N
dat
j

, (30)

where Ij is the total IAA content of the j-th 4mm-section in the simulation.
That is,

Ij :=

∫ 1
4
jL

1
4
(j−1)L

(
[U ] + [W ] + [Y ] + [Z])(x, Tend) dx, j = 1, 2, 3, 4. (31)

Note that the first 4mm section is excluded from the relative deviation of
the tissue profile in (30). This has been done deliberately, since the amount
of IAA in the the first 4mm section turned out to be well-adjustable by
means of tuning the parameters Dy and P+

dy, independently from the others.
Therefore, deviation of the first segment does not provide a good indication
of the quality of fit provided by the parameters of interest, V in particular.
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Table 4 provides an overview of the experiments that have been performed,
providing a statistical summary of the V -values found by fitting the model
to the data for each individual stem segment. Unit for the average and
standard deviation is 10−6 m/s.

In the part of the Main Text in which we investigate the pin1 and aux1/lax1-
3 mutant plants and the pML1::PIN1:GFP/pin1 plants with wild type, the
experimental procedure has been expanded by including also the measure-
ment of the immobilisation ratio by means of TLC analysis (see Main Text,
M&M). If we denote the thus measured immobilisation ratio in the middle-
two 4mm sections of the stem segment by ρdatimm and the simulated value by
ρimm, then

ρimm :=
1

I2 + I3

∫ 3
4
L

1
4
L

[Z](x, Tend) dx (32)

and the relative deviation of measured and simuated immobilisation ratio is
then computed as

Dimm :=

∣∣ρdatimm − ρimm

∣∣
ρdatimm

. (33)

The total deviation, or cost function, that is minimized in the fitting proce-
dure is then the sum of the relative deviations of transport and tissue profile,
with that of the immobilisation ratio added when immobilisation data is
available. Fitting is considered good when the total deviation droped below
6%. The procedure is then stopped.
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Batch No. Exp. type N Average St. dev. p-value p-value (log)

Wild type:
1. Exp. PAT 9 4.08 0.761 0.184 0.102
2. PAT 7 3.47 0.541 0.513 0.461
3. PAT 9 3.38 0.543 0.431 0.497
4. Exp. PAT 8 3.09 0.610 0.677 0.688

pML1::PIN1:GFP/pin1 mutant:
5. PAT 7 1.84 0.360 0.772 0.636
6. PAT 6 1.92 0.319 0.667 0.6592
7. Ext. PAT 8 2.86 0.826 0.309 0.473
8. Ext. PAT 8 2.89 0.566 0.860 0.933

pin3 mutant:
9. PAT 9 3.63 0.714 0.164 0.265
10. PAT 9 3.94 0.700 0.151 0.175
11. Ext. PAT 9 3.36 0.566 0.383 0.354

pPIN::PIN1:GFP/pin1 mutant:
12. PAT 8 4.49 0.969 0.203 0.195

pin3/pin4/pin7 triple mutant:
13. PAT 8 3.40 0.267 0.185 0.173
14. PAT 8 4.88 1.025 0.309 0.321

pin1 mutant:
15. PAT 9 2.56 0.260 0.110 0.082

pML::PIN1:GFP/pin1,pin4 double mutant:
16. PAT 8 2.51 0.503 0.595 0.719

pgp1/pgp19 double mutant:
17. PAT 9 2.49 0.289 0.229 0.258
18. Ext. PAT 9 2.66 0.410 0.063 0.120

pin5/pin6/pin8 triple mutant:
19. Ext. PAT 9 4.63 0.287 0.0006* 0.0005*

Table 4: Statistical summary of the V -values for the batches, organized by
mutant type. Average V and standard deviation (st. dev.) are stated in units
of 10−6 m/s. The indicated p-value is the result of the Shapiro-Wilk test for
normality for the velocity values for the batch. The last column (‘p-value
(log)’) gives this value for the log-transformed V -values. ‘PAT’ indicates
the use of the standard polar auxin transport protocol in the experiments,
while ‘Exp. PAT’ indicates the use of the extended PAT protocol. N is the
number of stem segments (samples) in the batch.
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2.2 Statistical tests

The statistical test reported on in this section have been performed in R, ver-
sion 4.04 - 64 bit, combined with R Studio v1.41106. A standard confidence
level of 5% was taken in all tests.

Our objective is to test the hypothesis that the mean auxin transport veloc-
ity V in all experimental batches is the same among the batches. To that
end we performed a one-way ANOVA (see eg. [10], Chapter 12). This test
assumes the following:

(A1) All observations are independent;

(A2) There are no significant outliers in any group;

(A3) The values are normally distributed within each group;

(A4) The variances in every group are equal.

Independence of observations (Assumption (A1)) is acceptable, since every
batch has been treated separately from others, in time or space – using dif-
ferent petri dishes. Though within a batch, the stem segments in a petri dish
have a common donor well, they all have an individual receiver well. The
volume of the donor well is very large compared to the total amount of auxin
transported. Therefore, direct influencing of stem segments is implausible
or negligible.

Concerning Assumption (A3) we performed the Shapiro-Wilk test for nor-
mality on each of the batches. The resulting p-values are reported in the
column ‘p-value’ of Table 4. The hypothesis of normality of the data had to
be rejected only for Batch 19. Ignoring this for the moment, we performed
Levene’s Median Test (following Hines & Hines [4], see also [3]) to test for
equal variance among the 19 batches (Assumption (A4)). This hypthesis
had to be rejected (F (18, 138) = 2.29, p = 0.0037).

Considering the results of these tests and realising that the velocities, as
positive quantities, may be considered log-normally distributed rather than
normal, we log-transformed the V -data. On each batch we performed again
the Shapiro-Wilk test. The corresponding p-values are reported in the last
column of Table 4. The hypothesis that the ln(V )-values are normally dis-
tributed for each batch is statistically confirmed for all batches, except –
again – for Batch 19. In Figure 3 we provide a QQ-normality plot for the
log-transformed V -data. By visual inspection we deem the deviation from
normality acceptable for all batches.
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Figure 3: QQ-normality plot for all log-transformed V -data of the 19 experimental

batches.

We then applied Levene’s Median Test to the log-transformed data. This
indicated that there is now no reason to reject the hypothesis of equal vari-
ance between the batches (F (18, 138) = 1.32, p = 0.185). A box plot for all
batches of the ln(V )-values did not show any significant outliers (Figure 4).

These results support conducting a One-way ANOVA on the log-transformed
V -parameter values to evaluate if the the mean transport velocity is the
same among the experimental batches, consisting of wild-type plants and
mutants. Mean PAT velocity was significantly different between the batches
(F (18, 138) = 19.18, p = 4.12 × 10−29, generalized eta squared = 0.71). A
visual inspection of the box plot in Figure 4 confirms this finding.

2.3 Clustering

We further examined how the experimental batches may be clustered such
that the log-transformed V -values within a cluster can be considered as
having the same mean. We therefore performed a Tukey post-hoc analysis.
Inspection of its output indicated four potential clusters of batches on each
of which we performed separately a one-way ANOVA to test the hypothesis
that within the potential cluster the batches may be considered having the
same mean (log-) transport velocity. There was no reason to reject this hy-
pothesis for each cluster. Figure 5 shows the identified clustering in colours.

21



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

−
13

.5
−

13
.0

−
12

.5
−

12
.0

Batch No.

ln
 V

 (
m

s−1
)

Figure 4: Box plot of all log-transformed V -data for each of the 19 experimental

batches. Batch No. refers to the batch numbers listed in Table 4. V values were

expressed in units of ms−1 before natural logarithm was applied.

The potential cluster composition and one-way ANOVA results were:

� Cluster ‘High’: batches 1, 12, 14 and 19.
ANOVA: F (3, 30) = 1.49, p = 0.24, ges = 0.13.

� Cluster ‘Middle-top’: batches 2,3,4,9,10,11 and 13.
ANOVA: F (6, 52) = 1.77, p = 0.12, ges = 0.17.

� Cluster ‘Middle-low’: batches 7,8,15,16,17 and 18.
ANOVA: F (5, 45) = 1.06, p = 0.39, ges = 0.11.

� Cluster ‘Low’: batches 5 and 6.
ANOVA: F (1, 11) = 0.18, p = 0.68, ges = 0.016.

In order to see whether any of the potential clusters could be enlarged with-
out the need to reject the hypothesis of having equal mean (log-) transport
velocity, we started with the batches in a cluster and one-by-one added one
of the remaining batches and tested the hypothesis of equal mean by per-
forming a one-way ANOVA. Adding any of the High-cluster batches (red)
to the Middle-top cluster (blue) resulted in a rejection of the hypothesis
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Figure 5: Box plot of all log-transformed V -data for each of the 19 experimental

batches, coloured to indicate the identified clustering. V values were expressed in

ms−1 before 10-base logarithm was applied. Base-10 logarithm has been used here

for ease of interpretation by the reader.

(p = 0.032, p = 0.0003, p = 0.00016, p = 6.7× 10−5 and p = 3.8× 10−5 for
batch no. 1, 12, 14, 15 and 19 respectively). Similarly, adding any of the
batches of the Middle-low cluster (green) to the Middle-top cluster resulted
in a group for which the hypothesis of equal mean velocity had to be re-
jected too (p = 0.021, p = 0.014, p = 6.7×10−5, p = 0.00014, p = 1.9×10−5

and p = 00050 for the batches no. 7, 8, 15, 16, 17 and 18 respectively). In
a similar fashion, adding any Low-cluster batch to the Middle-low cluster
yields a subgroup with significantly unequal mean velocity (p = 0.00022 and
p = 0.0020 for adding batch no. 5 and 6 respectively).
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3 Derivation of effective rate of a co-transporter

An expression for the rate of transport of a transmembrane transporter as
a function of concentrations of the compounds involved on either side of the
membrane may be computed using the King-Altman diagrammatic method,
see [6, 2]. It models the transporter (or enzyme) in a finite number of states,
numbered by i = 1, . . . , n, and assigns transition rates kij to the transition
from state i to state j. That is, an individual transporter is modelled as
a finite state Markov process in continuous time transition probabilities kij
per unit time from state i to j. Thus, the waiting time Tij for the transition
from state i to j has (cumulative) probability distribution

Prob
(
Tij ≤ t

)
= 1− e−kijt, t ≥ 0.

Figure 6, Panel A, shows the transition diagram of a six-state (n = 6) trans-
membrane co-transporter that binds its cargo (C) and a compound (S) that
is transported together with the cargo on one side and then, through confor-
mational changes driven by thermodynamic fluctuations, releases them on
the other side of the membrane. It is the simplest model of such kind. See
[11] for more complicated state diagrams for co-transporters and a discus-
sion that those can essentially be reduced to the scheme shown in Panel A.
The precise order of binding of cargo C and co-transport S is not relevant
to the form of the effective transport rate that will be computed, as will be
explained below.

The effective transport rate is computed under the assumption that the frac-
tion xi(t) of all N transporters in a given state i at time t on the membrane
enclosing the ‘inside’ compartment of volume V has settled to a steady state
distribution. This steady state fraction is denoted x∗i . The total change in
concentration of cargo C in the inside compartment, caused by all N trans-
porters, i.e. the overall net transport rate, is then given by

R∗ =
N

V

[
k56x

∗
5 − k65x

∗
6

]
. (34)

Here, N · k56x∗5 is the total average number of transitions from state 5 to
6 per unit time in the whole population of transporters, resulting into an
influx of C into the inside compartment, while N ·k65x∗6 represents the total
average number of transitions from state 6 to 5 per unit time, which each
picks up 1 cargo molecule from the inside compartment. The transition rate
k65 depends on the concentration of cargo on the inside, like other transition
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rates that correspond to binding of compound in the diagram. We use mass-
action kinetics for the description of these transition rates:

k12 = k∗12[C]out, k23 = k∗23[S]out, k65 = k∗65[C]in, k54 = k∗54[S]in.

C C

SS

outside inside
1

4

5

6

3

2

A.) B.) 1. Full 
diagram:

2. Partial 
diagrams:

5-directed 
diagrams:

6-directed 
diagrams:

Figure 6: Panel A. Six-state diagram for a transmembrane transporter hat carries

its main cargo C and the compound S that is transported in the same direction

together with C (i.e. the symported compound) from ‘outside’ to ‘inside’. All state

transitions are assumed reversible. kij is the rate of transition from state i to j.

x∗
i denotes the fraction of transporters in state i at steady state. R∗ is the net

steady state rate of transport of C to the inside (change of concentration), when N

transporters are present on the membrane and the inner compartment has volume

V . Panel B. Computation of R∗ by means of the King-Altman diagrammatic

method. Σ denotes the sum of all directed diagrams. A directed diagram represent

the product of rate constants kij for those pairs (i, j) for which there is an arrow

from state i to j in the diagram.

The King-Altman diagramatic method amounts to computing the steady
state fractions of transporters in state i, x∗i , or – put differently – the steady
state probability that a single transporter will be in state i according to the
Markov model, by solving the corresponding linear steady state equation
essentially through Cramer’s Rule, but employing a diagrammatic calculus.
Our exposition is based on [6, 2]. The calculus works as follows.

First one determines all partial diagrams from the full state diagram, by
removing a minimal number of transitions (edges) such that the resulting
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diagram no longer contains cycles. In this case, only one transition needs to
be removed, what can be done in six different ways (see Figure 6, Panel B).
Then one determines for each i = 1, . . . , n all i-directed diagrams: one gives
each transition a direction, indicated by an arrow, such that the resulting
path flows towards state i. We have shown all 5- and 6-directed diagrams.

In the diagrammatic calculus, a directed diagram corresponds to
a product of precisely those transition rates kij for which there
is an arrow pointing from state i to state j in the diagram.

Accordingly, one gets

x∗i =
‘sum of all i-directed diagrams’

‘sum of all directed diagrams’
. (35)

The sum of all diagrams is a complicated expression, which is commonly
denoted by

Σ = ‘sum of all directed diagrams’,

which involves in its expression the concentrations of C and S on inside and
outside. By inspection partial diagrams, it can be reasoned that Σ must be
of the form

Σ = k̂0 + k̂1[C]in + k̂2[S]in + k̂3[C]out + k̂4[S]out

+ k̂5[C]in[S]in + k̂6[C]out[S]out

+ k̂7[C]in[S]in[S]out + k̂8[C]out[S]out[S]in

+ k̂9[C]in[S]in[C]out + k̂10[C]out[S]out[C]in

+ k̂11[C]out[S]out[C]in[S]in

For example, the triple factor of concentrations in the term with constant
k̂7 occurs e.g. as the 4-directed diagram in which transition 1-2 has been
removed. That corresponding to k10 occurs e.g in the 2-directed diagram
that fails transition 1-2. The last term, with constant k̂11 occurs as the
the 4-directed diagram with 1-6 removed. If one whishes, one may express
explicitly the parameters k̂0, . . . , k̂11 as a function of the transition rates that
are ‘concentration-free’, which we call the elementary transition rates, i.e.
the kij or k∗ij if the corresponding kij depends on the concentration of C or
S.

Combining expression (34) for the net transport rate R∗, i.e. the change of
concentration of the cargo C in the inside compartment, and the expression
for the steady state fraction of transporters in a particular state (35) yields
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through diagrammatic calculus the diagrammatic expression for R∗ as shown
in Figure 6, Panel B.

Next, the elementary transition rates cannot be arbitrary. They must satisfy
the so-called thermodynamic constraints. That is, for any cycle in the full
diagram, the product of all elementary transition rates corresponding to a
walk along the cycle in one direction must equal the product along a walk
in the opposite direction. For our diagram there is one cylce only, the full
diagram, and the thermodynamic constraint amounts to the condition

k∗12k
∗
23k34k45k56k61 = k16k

∗
65k

∗
54k43k32k21. (36)

If we indicate this common value by k, then we finally obtain from the
diagrammatic expression for R∗ in Figure 6, Panel B:

R∗ =
N

V

k
(
[C]out[S]out − [C]in[S]in

)
Σ

(37)

Note that a different order of binding of C and S will not change the overall
shape of the steady state transport rate R∗ as presented in (37).

Working with the full expression for Σ as function of the concentrations of
cargo C an co-transported compound S is cumbersome. The various param-
eters k0, . . . , k12 are very hard to determine. We shall ignore the dependence
of Σ on these concentrations. Thus, we assume that concentrations remain
in a range that the value of Σ may be considered aproximately constant in
comparison to the other terms in the expression for R∗:

R∗ ≈ kco
(
[C]out[S]out − [C]in[S]in

)
. (38)

In our model for PAT we incorporate the effect of auxin anion/H+ co-
transporters, in particular those of the AUX1/LAX1-LAX3 family. Then
the cargo is the auxin anion A− and S is a proton. Moreover, auxin is a
weak acid, so there is an equilibrium attained between anion and protonated
form,

A− + H+ ⇄ AH,

with equilibrium constant – the acidity constant:

Ka =
[A−][H+]

[AH]
= 1.58× 10−5 M (39)

(see Mitchison [8]). Therefore, in (38)

[C][S] = [A−][H+] = Ka[AH].
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That is, the transport rate of the auxin anion through the AUX1/LAX1-
LAX3 symporters may be represented in the model by

R∗ = kcoKa

(
[AH]out − [AH]in

)
. (40)

That is, by an apparent transport of the protonated form.
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4 Derivation of equations of the LPTF

The Long-range Polar auxin Transport Framework (LPTF) connects the
macroscopic BHL-model, through the intermediary mesoscopic Mitchison-
Kramer (MK) model to microscopic physiological and auxiliary physical
parameters that can be interpreted in view of the chemi-osmotic theory and
changes due to mutations.

In the BHL-model there appear four main effective parameters of which the
first three are key in the LPTF: the effective auxin transport velocity V , the
exchange rates a and b from the U -compartment to the W -compartment and
vice versa. The fourth parameter is the apparent diffusivity of auxin in the
U -compartment, Du. Its value is less relevant in the argumentation, because
changes in its value can be compensated, to a large extent, by appropriate
modifications of the parameter P−

ru that controls the efflux from the stem
segment, from the U -compartment, at the receiver well, as was found already
in Boot et al. [1].

In the Main Text (see Box 2), we provided expressions for these key param-
eters in terms of underlying physical and physiological parameters of the
cellular PAT system in terms of the unidirectional permeabilities β1, . . . , β4.
An expression for V was obtained using the intermediate mesoscopic level
description provided by the MK-model of Mitchison [8] and Kramer [7] and
its central parameters p and q as an intermediate step. In this section we
shall provide mathematical details of the derivation of these expressions.

4.1 Derivation of effective transport velocity and diffusivity

In order to substantiate the theoretical foundation of the BHL-model for
interpreting PAT data from pin mutants of Arabidopsis thaliana, we will
here describe how the parameters Du and V are linked to Deff and Veff in
the equations described by Mitchison [8] and Kramer [7] in the MK-model.
We derive afresh Mitchison’s equation for the effective velocity V in terms
of ‘mesoscopic permeability parameters’ p and q (see Main Text, Box 2) and
obtain an expression for the effective diffusivity Du as well, which differs
from that determined by Kramer [7].

Fundamental building block in the MK-model is a single longitudinal cell
array of polarly auxin-transporting cells (MT Box 2, Panel C). Auxin is free
to travel by diffusion through the interior of these cells, with diffusion con-
stant D, while the flux density (molm−2s−1) of auxin between two adjacent
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cells is postulated to have the form:

J = pa1 + q(a1 − a2) (41)

where a1 and a2 are the cytoplasmic auxin concentrations on either side of
the interface between two neighbouring cells. In correspondence with the
observed net flow of auxin from apical to the basal side in inflorescence
stems, a1 refers to the concentration of auxin at the basal side of a cell, and
a2 to the concentration of auxin at the apical side of the neighbouring cell.
Here, p and q are (effective) permeability constants. Equation (41) reflects
the assumption made in the chemi-osmotic theory of PAT that, in addition
to the basic flux through the interfaces of neighbouring PAT cells governed
by a permeability constant denoted q, there is an extra unidirectional polar
orientated compound, governed by a permeability constant denoted by p.
We assume that all cells in an array have equal (average) length l. We shall
compute with a cell length l = 80 µm.

For ease of computation, we consider an infinitely extended cell array with
coordinate x in longitudinal direction, taking all real values. This expresses
mathematically, that the cell array contains so many cells, that effects on
auxin transport at both ends of the array will hardly have an influence in
the middle. In addition, we assume that the whole system is in a steady-
state, such that there is a flux J through each cell and through each barrier
between neighbouring cells. This assumption implies that inside say the i-th
cell in the array, extending from position x = xi−1/2 (the apical end point)
to x = xi+1/2 (the basal end point), the average concentration of auxin in a
cross section of this cell file at x, Ci(x), has a constant gradient. Therefore,

Ci(x) = − J

D
(x− xi) + Ui, xi−1/2 < x < xi+1/2, (42)

where Ui is the average concentration over the whole i-th cell in the array,
which is obtained at the midpoint xi =

1
2(xi−1/2 + xi+1/2). At steady state,

the flux inside the i-th cell, which can be expressed as:

J = 2
D

l

(
Ui − Ci(xi+1/2)

)
(43)

must equal the flux over the barrier between the i-th cell and the (i+ 1)-th
cell, which according to eq. (41) is given by:

J = (p+ q)Ci(xi+1/2)− qCi+1(xi+1/2). (44)
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The flux within the (i+ 1)-th cell must also equal J and can be written as:

J = 2
D

l
(Ci+1(xi+1/2))− Ui+1. (45)

By multiplying eq.(43) with (p + q) and eq.(44) by 2D/l and eq.(45) by q
and then summing the results one obtains:(

p+ 2q + 2
D

l

)
J = 2

D

l

[
(p+ q)Ui − qUi+1

]
. (46)

That is,

J = −Deff
Ui+1 − Ui

ℓ
+ VeffUi, (47)

where

Veff =
p

p+ 2q + 2D
ℓ

· 2D
ℓ

(48)

and
Deff =

q

(1/2p+ q + D
ℓ

·D. (49)

We now want to relate the cell-based model to the steady-state solution
of the macroscopic advection-diffusion equation for [U ](x) as part of the
BHL-model:

Du
d[U ]2

dx2
− V

d[U ]

dx
= 0,

where the flux is J at every point:

−Du
d[U ]

dx
(x) + V [U ](x) = J, for all x. (50)

The connection is made by considering spatial averages of the function C(x),
defined for all positions x as

C(x) := Ci(x), when xi−1/2 < x < xi+1/2.

That is, we define the spatial average over length ℓ:

ūl(x) :=
1

ℓ

∫ x+ 1
2
ℓ

x− 1
2
ℓ
C(ξ)dξ. (51)

It can be readily verified using eq.(42) that ūl(x) is the linear interpolation
between the values Ui and Ui+1 on the interval [xi, xi+1]. In particular,
ūl(xi) = Ui for all i. Rewriting (47) yields:

Ui+1 − Ui

ℓ
=

Veff

Deff
Ui −

J

Deff
. (52)
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Note that eq.(52) can be viewed as a discretization of the differential equa-
tion (50) for [U ](x) at the points xi that are positioned at equal distance
ℓ, where V = Veff and Du = Deff . Thus, ūl(x) ≈ [U ](x) for ℓ sufficiently
small. Mitchison [8] obtained the expression for V = Veff as presented
here in (48) as did Kramer [7], both by different arguments. Kramer also
obtained an expression for Deff , which differs from our eq.(49), namely:

Du,Kramer =
1
2p+ q

1
2p+ q + D

l

·D. (53)

We use D = 2 × 10−10 ms−1 and ℓ = 80 µm in this study, see Section 1.2.
Thus, according to (48),

V ≤ Vmax :=
2D

ℓ
= 5× 10−6 ms−1. (54)

With the introduction of the LPTF with a modified expression for the ef-
fective diffusion constant (49), we obtained a lower Du as computed by
this expression than Du,Kramer. We realized that the double plasma mem-
brane barrier between two neighbouring cells in a PAT cell file, forming the
U -compartment, is a far greater limiting factor for the diffusion of auxin.
Thus, Du,Kramer gives a too high estimate of the effective diffusion constant,
in our opinion.

4.2 Parameters in BHL model expressed in terms of a cell-
to-cell microscopic transport model

We shall now consider how the parameters p and q of the MK-model can be
expressed in terms of characteristics of the basal and apical cell membranes
of PAT cells and the intermediate apoplast. Similarly, we shall determine ex-
pressions for a and b, thus linking the effective parameters of the BHL-model
(i.e. V , Du, a and b) to microscopic parameters that can be interpreted in
terms of changes physical and physiological properties caused by mutations
in the pin genes.

The mesoscopic parameters p and q will turn out to be expressible in terms
of permeabilities β1, . . . , β4 for the plasma membrane at apical and basal side
of PAT-cells in the cell file that are determined by physical and physiological
properties of these membranes, see Main Text, Box 2. For the macroscopic
parameters a and b a similar approach can be taken, essentially using the
parameters β3 and β4.
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Starting point are the expressions for the βi, i = 1, . . . , 4, as exhibited and
explained in the Main Text, Box 2, Panel C, which we repeat here – without
derivation – for the reader’s convenience.

β1 = P̄ b
AH(1− fc) + P b

A−fc
EF

RT

1

1− e−EF/RT
, (55)

β2 = P̄ b
AH(1− fa) + P b

A−fa
EF

RT

e−EF/RT

1− e−EF/RT
, (56)

β3 = P̄ a
AH(1− fa) + P a

A−fa
EF

RT

e−EF/RT

1− e−EF/RT
, (57)

β4 = P̄ a
AH(1− fc) + P a

A−fc
EF

RT

1

1− e−EF/RT
, (58)

Key idea in the derivation of the expressions for β1, . . . , β4 is:

Separate transport of IAA over the membrane into fluxes of an-
ion and protonated form and obtain expressions for each. The
transport of the anion is sensitive – in principle – to the electric
field over the membrane, due to the cross membrane potential.
Electrically neutral co-transport (as in the A−/H+ symporters of
the AUX1/LAX1-LAX3 protein family) will be effectively insen-
sitive to this field. According to the mathematical expressions for
the corresponding flux, this type of transport apparently behaves
like transport of the protonated form.

In the above expressions, E is the difference in electric potential over the
plasma membrane that is felt by the IAA anion, E = zVPM = −VPM, where
VPM is the cell’s membrane potential. We take VPM = −120 mV, see [9]. fc
and fa are the fraction of total IAA in anion form in cytoplasm and apoplast,
respectively, at equilibrium, which are determined by the cytoplasmic and
apoplastic pH. We take the values pH = 7 and pH = 5 for these in our
computations. Using the value Ka = 1.58 × 10−5 M (pKa = 4.8) for the
acidity constant for IAA (cf. [8]), one gets

fc =
Ka

hc +Ka
= 99%, fa =

Ka

ha +Ka
= 61%, (59)

where hc and ha are the proton concentrations in cytoplasm and apoplast.
F is Faraday’s constant, R is the universal gas constant and T the absolute
temperature (see Table 1 for values). At 20◦ C, the various factors occurring
the expressions for the βi then take the value:

EF

RT
= 4.75, e−EF/RT = 8.65× 10−3,

EF/RT

1− e−EF/RT
= 4.79. (60)
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The parameters P̄ a
AH and P̄ b

AH are the apparent permeability constants for
the plasma membrane for IAA in protonated form (‘AH’) at apical and basal
side of the cell, respectively.

P̄ a
AH = PAH + kacoKa, (61)

where kaco is a parameter of the co-transporter, see Section ??. A similar
expression holds for P̄ b

AH. In the LPTF (61) and the experession for P̄ b
AH

is used only to furnish a reasonable lower bound (PAH) for P̄ a
AH and P̄ b

AH.
The latter are taken as ‘free’ parameters that are determined by fitting.

Similarly, P a
A− and P b

A− represent the permeability constants of these mem-
branes for IAA in anion form (‘A−’) in absense of an electric field over the
membrane.

4.2.1 Derivation of expressions for p and q

We provide here some further details of the derivation of the expression for
p and do the same here for the (cumbersome) expression for q, which is not
shown in the Main Text.

First, we provide some more detail on the derivation of the fundamental
expressions of p and q in terms of the β1, . . . β4, stated in the Main Text,
Box 2, Panel C:

p =
β1β3 − β2β4
β2 + β3

, q =
β2β4

β2 + β3
. (62)

Let Un−1
l , denote the auxin concentration at the basal side of cell n− 1 in a

file of PAT cells and let Un
0 denote the auxin concentration at the apical side

of cell n. We assume that the apoplast has thickness h and the auxin diffuses
through the apoplast with diffusion constant Dapo. We assume that auxin
is neither produced nor degraded in the apoplast. The transport of auxin
through the plasma membranes at basal and apical side can be described
mathematically by:

Jb = β1U
n−1
l − β2C(0), (63)

Ja = β3C(h)− β4U
n
0 , (64)

where Jb is the auxin flux density through the basal plasma membrane
and Ja through the apical plasma membrane. The coefficients β1, . . . β4
are permeability constants, C(x, t) represents the longitudinal auxin density
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distribution inside the apoplast at position x (0 < x < h) at time t. It
satisfies the diffusion equation:

∂C

∂t
= Dapo

∂2C

∂x2
on (0, h) (65)

with boundary conditions:

−Dapo∂xC(0) = Jb, (66)

−Dapo∂xC(h) = Ja. (67)

We assume that the diffusion in the apoplast is much faster than the trans-
port across the plasma membranes, so that (65) is in quasi-steady state.
This implies that the auxin-density profile in the apoplast is linear on (0, h)
and that the fluxes through the plasma membranes satisfy Jb = Ja and are
equal to the flux through the apoplast, J . Then we have:

J = β1U
n−1
l − β2C(0), (68)

J = −Dapo
C(h)− C(0)

h
, (69)

J = β3C(h)− β4U
n
0 . (70)

By successively eliminating the apoplastic concentrations we finally obtain:

J =

[
β1β3

β2 + β3 +
hβ2β3
Dapo

]
Un−1
l −

[
β2β4

β2 + β3 +
hβ2β3

Dapo

]
Un
0 . (71)

Continuing as in the Main Text, we observe that the quasi-steady state
assumption is valid under the conditions

β2h

Dapo
≪ 1 and

β3h

Dapo
≪ 1. (72)

That is, the diffusive transport velocity Dapo/h is large compared to both
permeabilities β2 and β3, which correspond to the fluxes of auxin from the
apoplast into the cytoplasm. Taking Dapo = 2×10−10m2s−1 and h = 2 µm,
we get

Dapo

h
≈ 2× 10−10m2s−1

2 µm
= 1× 10−4 ms−1,

which is indeed about 2 orders of magnitude larger than the ‘usual’ perme-
abilities of a membrane for IAA (anion or protonated form).
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Thus, using these conditions, (71) simplifies to

J =

[
β1β3

β2 + β3

]
Un−1
l −

[
β2β4

β2 + β3

]
Un
0 . (73)

The expression for J in the MK-model is – by definition:

J = pUn−1
l + q

(
Un−1
l − Un

0

)
= (p+ q)Un−1

l − qUn
0 . (74)

Comparing (73) to (74) immediately yields the expressions for p and q stated
in (62).

One may now combine these preliminary expressions for p and q with (55) –
(58) and obtain an expression for p and q in terms of physical and physiolog-
ical quantities. At first sight it seems that equations become cumbersome.
However, we make the physiologically reasonable assumption that apical and
basal side are similar in terms of transport of auxin in protonated form and
apparent transport of the anion form through essentially electrically neutral
symporters:

P̄ a
AH = P̄ b

AH = P̄ rad
AH =: P̄AH. (75)

This results in simpler expressions. In fact, under this assumption,

β2 + β3 = 2P̄AH(1− fa) + (P a
A− + P b

A−)fa
EF

RT

e−EF/RT

1− e−EF/RT

= 2(1− fa)

[
P̄AH +

Ka

2ha
(P a

A− + P b
A−)

EF

RT

e−EF/RT

1− e−EF/RT

]

= 2
ha

ha +Ka
P̄AH

[
1 +

P a
A− + P b

A−

2P̄AH

Ka

ha

EF

RT

e−EF/RT

1− e−EF/RT

]
. (76)
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Under assumption (75) we also obtain

β1β3 − β2β4 = P̄AH(P
b
A− − P a

A−)(1− fa)fc
EF

RT

1

1− e−EF/RT

+ P̄AH(P
a
A− − P b

A−)(1− fc)fa
EF

RT

e−EF/RT

1− e−EF/RT
(77)

= P̄AH
EF

RT

e−EF/RT

1− e−EF/RT
(P b

A− − P a
A−)

×
[
(1− fa)fce

EF/RT − (1− fc)fa

]
(78)

= P̄AH
EF

RT

e−EF/RT

1− e−EF/RT
(P b

A− − P a
A−)

× Ka

(ha +Ka)(hc +Ka)

[
hae

EF/RT − hc

]
. (79)

Finally, we get

p =
(
P b
A− − P a

A−
)
· 1
2

Ka

hc +Ka

[
1 +

Ka

ha

P b
A− + P a

A−

2P̄AH

EF
RT e

−EF/RT

1− e−EF/RT

]−1

×[
eEF/RT − hc

ha

]
·

EF
RT e

−EF/RT

1− e−EF/RT
. (80)

To simplify further, let

ε :=
EF
RT e

−EF/RT

1− e−EF/RT
and M :=

ha
Ka

2P̄AH

P b
A− + P a

A−
.

Then,

p =
(
P b
A− − P a

A−
) [

eEF/RT − hc
ha

]
· 1
2

Ka

hc +Ka
· ε

1 + εM−1

=
(
P b
A− − P a

A−
) [

eEF/RT − hc
ha

]
· ha
hc +Ka

· P̄AH

P b
A− + P a

A−

ε

M + ε

= pmax ·
P b
A− − P a

A−

P b
A− + P a

A−
· ε

M + ε
,

where the maximal value for p,

pmax = P̄AH

[
eEF/RT − hc

ha

]
ha

hc +Ka
, (81)
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is controlled by membrane permeability for IAA in protonated form (PAH),
and combined electrophysiological-acidic properties: the proton motive force
(second factor) and the acidity difference between apoplast and cytoplasm.

The derivation of an expression for q = β2β4/(β2 + β3) is similar. Compu-
tations – again using the assumption that P̄ a

AH = P̄ b
AH = P̄AH – yield

β2β4 =
K2

a

(ha +Ka)(hc +Ka)
P̄ 2
AH ×[

ha
Ka

+
P b
A−

P̄AH

EF

RT

E−EF/RT

1− e−EF/RT

]
× (82)[

hc
Ka

+
P a
A−

P̄AH
eEF/RT EF

RT

E−EF/RT

1− e−EF/RT

]
.

The expression for β2+β3 is provided in (76). Putting the two together, we
obtain

q = P̄AH · 1
2

Ka

hc +Ka

[
1 +

Ka

ha

P b
A− + P a

A−

2P̄AH

EF
RT e−EF/RT

1− e−EF/RT

]−1

× (83)

hc
Ka

[
1 +

Ka

ha

P b
A−

P̄AH

EF
RT e−EF/RT

1− e−EF/RT

]
·

[
1 +

Ka

hc
·
P a
A−

P̄AH
eEF/RT

EF
RT e−EF/RT

1− e−EF/RT

]
.

We shall not try to further simplify this expression for q.

4.2.2 Expressions for a and b

Expressions for the rate parameters a and b for transversal transport of IAA
between the U - and W -compartments have been derived in the Main Text:

a =
S0

Su
β4, b =

S0

Sw
β3. (84)

Here - recall - S0 represents the total circumference of the curve that sep-
arates the U - and W -compartment in a cross section of the stem segment,
Su is the total area of the U -compartment in all vascular bundles together,
and Sw is the area of its complement, that of the W -compartment. If Svb

is the total cross sectional area of all vascular bundles, then Sw = Svb − Su.
Recall the expressions provided for a and b in Section 1.1, equation (10).
Expressions (84) are the consequence of equating permeabilities k+ to β4
and k− to β3.
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The anatomical parameter Svb has been measured from a microscope image
of a cross section of the inflorescence stem segment. The exact location of
the PAT cell files within the vascular bundles is harder to determine. Which
cells constitute these files is not yet fully clear, although in Boot et al. [1]
putative cells have been indicated. Based on these indications the ratio
α := Su/Svb has been estimated in various sample stem segments, resulting
in a value α = 32% that we used in all simulations. Note that

Sw =
1− α

α
· Su.

For the same reason, the circumference S0 cannot be estimated well either.
In the simulations we work with the minimal value for S0, which corresponds
to the circumference of a circle with area Su. Thus, the geometrical part of
a and b can be written as:

S0

Su
=

2√
Su/π

and
S0

Sw
=

α

1− α

2√
Su/π

. (85)

This can easily be verified, since S0 = 2πRu and Su = πR2
u, where Ru is the

radius of a circle with area Su: Ru =
√
Su/π. Consequently, the exchange

rates a and b were related to β3 and β4 through

a =
2√
Su/π

· β4 and b =
2√
Su/π

α

1− α
· β3 (86)

Note that the ratio
b

a
=

β3
β4

α

1− α
(87)

is independent of the value S0 that is hard to determine. It is reminiscent
to an accumulation ratio.

4.2.3 Auxiliary parameters values in the LPTF

In the quadrupple AUX1/LAX1-3 mutant the (apparent) permeability for
the protonated form is supposed to have been reduced to its minimal value,
which is that of ‘unmediated’ transport of the protonated form PAH . This
value is – according to fitting of the quadrupple – of the order of magnitude
of 1.5 × 10−7 m/s. The LPTF works with the apparent permeability for
the protonated form:

P̄AH = PAH + kcoKa,

which is varied in the fitting procedure. It varies in the range of roughly
2× 10−7 ms−1 to 5× 10−6 ms−1.
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We take one order of magnitude smaller than PAH as permeability P a
A− for

the transport of the anion through the lipid bilayer of the plasma membrane
– in absence of electric field, i.e.

P a
A− = 1.5× 10−8 ms−1.

This reflects the observation that the charged IAA anion is expected to be
attracted still to the fatty-acid molecules in the plasma membrane.
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5 Determining LPTF key parameters from macro-
scopic fit of data

The microscopic key parameters P̄AH and P b
A− in the LPTF model map

to the macroscopic parameters V , a, b and Du in the BHL model. This
is effected by means of the expressions for the β1, . . . β4 in (55)–(58), the
expressions for p and q, and a and b, in terms of these βi in Equations (62)
and (84), and finally the expression of V and Du in p and q in Equations
(48) and (49).

In Figure 7 we illustrated schematically how this map transforms a rectan-
gular part of the (P̄AH , P b

A−)-parameter space into a the three-dimensional
(V, a, b)-part of BHL parameter space.

*

*

*

*

*
*

LPTF expressions for 

*

Figure 7: Schematic presentation of the map that sends the key parameters P̄AH

and P b
A− of the LPTF model into the three-dimensional (V, a, b)-part of BHL param-

eter space. Corresponding corner points under the mapping are indicated by similar

symbols. The green encircled asterix is a parameter value in BHL parameter space.

It can be projected onto the image of LPTF paramater space (light orange), e.g. by

keeping V and b constant and only varying a. This results in the projection and

corresponding LPTF parameter pair indicated by a green asterix.

Of the LPTF key parameters, β3 and β4 depend on P̄AH only, in an affine lin-
ear fashion, see (57) and (58). Therefore, the image of a part of (P̄AH , P b

A−)-
parameter space lies in plane, parallel to the V -axis (indicated in light grey
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in Figure 7). This plane has a large slope in the (a, b)-coordinate plane:

∆b

∆a
=

Su∆β3
Sw∆β4

=
α

1− α

1− fa
1− fc

≈ 20. (88)

P̄AH is expected to vary in the range 1 × 10−7 – 5 × 10−6 ms−1. With the
selected (fixed) auxiliary microscopic parameters in the LPTF model (see
Table 1), this amounts to a range of variantion for a of about 3.4× 10−4 –
5.8× 10−4 s−1, while b varies in the range 8.7× 10−5 – 4.4× 10−3 s−1. Note
that a varies by roughly a factor 2, while b varies by almost two orders of
magnitude. Since a and b (through β4 and β3) do not depend on P b

A− , only
V will change with increasing P b

A− . It is then increasing as well, for fixed
(a, b)-value (see blue arrows in Figure 7).

A parameter triple (V, a, b) in the BHL-model (green encircled astrix in Fig-
ure 7) can be projected onto the plane (light grey) in which the image under
the parameter map (light orange) lies. This can be done by orthogonal pro-
jection. However, since the plane has a steep slope in the (a, b)-coordinate
plane, this orthogonal projection does not deviate much from a simple pro-
jection in which the (V, b)-coordinates are kept fixed, for points close to the
plane. Since a good fit to the BHL model is expected to be close to a fit with
the LPTF model, we employed the latter, simpler, projection to determine
from a fit to the BHL model appropriate key parameter values in the LPTF
model (indicated by a green asterix).
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6 Expression levels

In this section we present the supporting material for Figure 7 and Figure
8 of the Main Text, presenting the expression levels of the AUX1/LAX1-3
genes and PIN1, PIN3, PIN4, PIN6 and PIN7 genes in wild type and various
mutant plants.

6.1 Overview of primers

Table 5 gives an overview of the primers used.

Primers Amplification
factor

PIN1 FW : TCCTCCTCCATGTTGCCATTATC 2.03
PIN1 RV : TGTAGTAGAGAAGAGTTATGGGCA
PIN3 FW : AAGGCGGAAGATCTGACCAAGG 1.77
PIN3 RV : TGCTGGATGAGCTACAGCTTTG
PIN4 FW : ACAACGTGGCAACGGAACAATC 1.97
PIN4 RV : GCCGATATCATCACCACCACTC
PIN6 FW: TGGGCCGTTTTCTTCAAAGC 2.10
PIN6 RV : GATTGATCCGGCTGCTTGAC
PIN7 FW: CGTGTGGCCATTGTTCAAGCTG 1.96
PIN7 RV : CCCTGTACTCAAGATTGCGGGATG
AUX1 FW: ATGACAACGGAACAGATCAG 2.03
AUX1 RV: GTGCCATAGGAAATTGCTTAG
LAX1 FW: TACTCCGAGACCTTCCAACTACG 2.13
LAX1 RV: TCCACCGCCACCACTTCC
LAX2 FW: GGAGAACGGTGAGAAAGC 2.12
LAX2 RV: TCAGATAGCTTAGATTTGATGTC
LAX3 FW: TCACCATTGCTTCACTCCTTC 2.04
LAX3 RV: AAGCACCATTGTGGTTGGAC
qβ-Tubulin-6 FW: TGGGAACTCTGCTCATATCT 2.05
qβ-Tubulin-6 RV: GAAAGGAATGAGGTTCACTG

Table 5: List of primers used for the RT-qPCR analysis of the PINs 1,3,4,6
and 7 and the AUX1, LAX1,2,3 genes and the control gene β-Tubulin-6.

6.2 Statistical tests

We checked the significance of differences in mean expression level of the
AUX1, LAX1-LAX3 genes and those of PIN1, PIN3, PIN4, PIN6 and PIN7
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in wild type plants and the mutant plants: pin1, pML::PIN1:GFP/pin1 line
A and pML::PIN1:GFP/pin1 line B. We used a standard confidence level
of 5%. The unpaired two-sided Student’s t-test was used to test the null
hypothesis that the mean gene expression of the indicated gene in the mutant
plant experiments is equal to that in wild type plants. Table 6 and Table 7
presents the p-values for the result of the t-test for the AUX1/LAX1-LAX3
genes and PIN genes, respectively.

p-value for gene:
Mutant plant: AUX1 LAX1 LAX2 LAX3

pin1 0.0053∗ 0.0282∗ <0.001∗ 0.1127
pML::PIN1:GFP/pin1 line A 0.0109∗ 0.9271 0.0077∗ 0.0375∗

pML::PIN1:GFP/pin1 line B <0.001∗ 0.0032∗ 0.2475 0.6387

Table 6: p-values of mean expression levels of AUX1 and LAX1-LAX3 in
mutant plants as indicated, compared to the mean expression levels in wild
type plants, according to the unpaired two-sided Student’s t-test.

p-value for gene:
Mutant plant: PIN1 PIN3 PIN4 PIN6 PIN7

pin1 0.0007∗ 0.0775 0.0330∗ 0.0024∗ 0.3779
pML::PIN1:GFP/pin1 line A 0.0214∗ 0.6711 0.0858 0.8030 0.5086
pML::PIN1:GFP/pin1 line B 0.0080∗ 0.0248∗ 0.0151∗ 0.0380∗ 0.3588

Table 7: p-values of mean expression levels of PIN1, PIN3, PIN4, PIN6 and
PIN7 in mutant plants as indicated, compared to the mean expression levels
in wild type plants, according to the unpaired two-sided Student’s t-test.
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