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Background. The tumor stroma plays pivotal roles in influencing tumor growth, invasion, and metastasis. Transcriptional
signatures of colon tumor stroma (CTS) are significantly associated with prognosis of colon cancer. Thus, identification of
the CTS transcriptional features could be useful for colon cancer diagnosis and therapy. Methods. By a meta-analysis of three
CTS gene expression profiles datasets, we identified differentially expressed genes (DEGs) between CTS and colon normal
stroma. Furthermore, we identified the pathways, upstream regulators, and protein-protein interaction (PPI) network that were
significantly associated with the DEGs. Moreover, we analyzed the enrichment levels of immune signatures in CTS. Finally, we
identified CTS-associated gene signatures whose expression was significantly associated with prognosis in colon cancer. Results. We
identified numerous significantly upregulated genes (such asCTHRC1,NFE2L3, SULF1, SOX9, ENC1, andCCND1) and significantly
downregulated genes (such as MYOT, ASPA, KIAA2022, ARHGEF37, BCL-2, and PPARGC1A) in CTS versus colon normal
stroma. Furthermore, we identified significantly upregulated pathways in CTS that were mainly involved in cellular development,
immune regulation, andmetabolism, as well as significantly downregulated pathways in CTS that were mostly metabolism-related.
Moreover, we identified upstream TFs (such as SUZ12, NFE2L2, RUNX1, STAT3, and SOX2), kinases (such as MAPK14, CSNK2A1,
CDK1, CDK2, and CDK4), and master metabolic transcriptional regulators (MMTRs) (such as HNF1A, NFKB1, ZBTB7A, GATA2,
and GATA5) regulating the DEGs. We found that CD8+ T cells were more enriched in CTS than in colon normal stroma.
Interestingly, we found that many of the DEGs and their regulators were prognostic markers for colon cancer, including CEBPB,
PPARGC1, STAT3,MTOR, BCL2, JAK2, and CDK1. Conclusions. The identification of CTS-specific transcriptional signatures may
provide insights into the tumor microenvironment that mediates the development of colon cancer and has potential clinical
implications for colon cancer diagnosis and treatment.

1. Background

The tumor stroma is an important component of the tumor
microenvironment (TME) and plays key roles in the tumor
development [1]. Stromal cells are composed of many dif-
ferent types of cells, including vascular endothelial cells,
pericytes, adipocytes, fibroblasts, osteoblasts, chondrocytes,
extracellular matrix (ECM), and bone-marrowmesenchymal
stromal cells [2]. The tumor stroma can promote ECM
remodeling, cellular migration, neoangiogenesis, invasion,

immunosurveillance evasion, and drug resistance of tumors
[3]. Colorectal cancer (CRC) is the fourth most common
cancer and a leading cause of cancer mortality world-
wide [4]. Transcriptional signatures of CRC stromal cells
have been associated with poor prognosis in CRC [5].
Isella et al. demonstrated that the gene signatures of CRC
stromal cells (cancer-associated fibroblasts, leukocytes, and
endothelial cells) were significantly upregulated in the
stem/serrated/mesenchymal transcriptional subtype of CRC
which had a poor prognosis [6]. Calon et al. showed that
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the CRC stromal transcriptional signatures correlated with
disease relapse [5]. These prior studies exhibited the signif-
icant roles of tumor stroma in CRC growth, invasion, and
metastasis.

In this study, we performed a meta-analysis of three
colon tumor stromal transcriptome datasets using the bioin-
formatics approach. We identified differentially expressed
genes (DEGs) between colon tumor stroma (CTS) and
normal stroma. On the basis of these DEGs, we identified
their associated pathways, upstream regulators, and protein-
protein interaction (PPI) network and certain prognostic
markers that were associated with survival of colon cancer
patients. We also analyzed the enrichment levels of immune
signatures in CTS. This study provides insights into CTS
molecular features that could have clinical implications for
colon cancer diagnosis and treatment.

2. Methods

2.1. Datasets. We searched the NCBI Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/) using the keywords “colon cancer,” “stroma,” and
“tumor stroma” and identified three CTS gene expression
profiles datasets (GSE31279, GSE35602, and GSE46824)
[7–9]. In survival analyses, we used the TCGA colon cancer
dataset (https://portal.gdc.cancer.gov/) and a SurvExpress
(http://bioinformatica.mty.itesm.mx/SurvExpress) built-in
dataset (colon metabase) [10]. A summary of these datasets
is shown in Supplementary Table S1.

2.2. Identification of DEGs between CTS and Normal Stroma.
We used the web tool Network Analyst [11] to identify the
DEGs betweenCTS andnormal stroma.TheComBatmethod
[12] in the tool was utilized to remove batch effects from
the three CTS datasets (Supplementary Figure S1). Each indi-
vidual dataset was normalized by base-2 log transformation
and quantile normalization, and the R package “limma”
was utilized to identify the DEGs between CTS and normal
stroma. A meta-analysis of the three datasets was performed
using Cochran's combination test [13]. The false discovery
rate (FDR), calculated by the Benjamini–Hochberg method
[14], was used to adjust for multiple tests. We determined the
DEGs with a threshold of absolute combined effect size (ES)
>0.82 and FDR<0.05.

2.3. Gene-Set Enrichment Analysis. We performed gene-set
enrichment analysis of the DEGs by GSEA [15]. The KEGG
pathways significantly associated with the upregulated and
the downregulated DEGs were identified (FDR < 0.05),
respectively.

2.4. Identification of Transcription Factors (TFs), Kinases, and
Master Metabolic Transcriptional Regulators (MMTRs) �at
Are Significantly Associated with the DEGs. To link gene
expression signatures to upstream cell signaling networks, we
used eXpression2Kinases [16] to identify the upstream TFs
and kinases that regulate the DEGs and utilized iRegulon [17]
to identify the MMTRs of the DEGs.

2.5. Identification of PPI Network of the DEGs. We employed
Network Analyst [11] to construct a PPI network of the
DEGs [11]. Two types of modules (function-first modules and
connection-first modules) of the PPI network were extracted.
The function-firstmodules (FFMs)were constructed by path-
way enrichment analysis and the connection-first modules
(CFMs) were identified by the randomwalk-based algorithm
[18].

2.6. Comparison of the Enrichment Levels of CD8+ T Cells
between Two Classes of Samples. The enrichment level of
CD8+T cells in a samplewas evaluated by the expression level
ofCD8A.We compared the enrichment levels of CD8+T cells
between two groups of samples using Student's t-test.

2.7. Identification of DEGs between High-Stroma-Content and
Low-Stroma-Content TCGA Colon Cancer Samples. We used
ESTIMATE [19] to quantify the intratumoral stromal content
(stroma score) of TCGA colon cancer samples. We identified
the DEGs between high-stroma-content (stroma score >
median) and low-stroma-content (stroma score < median)
tumors using Student's t-test.

2.8. Survival Analyses. We compared the overall survival
(OS) and the disease-free survival (DFS) of colon cancer
patients classified based on gene expression levels (expression
levels > median versus expression levels < median). Kaplan-
Meier survival curves were used to show the survival dif-
ferences, and the log-rank test was utilized to evaluate the
significance of survival differences.The individual prognostic
genes were identified and were fitted in a multivariate Cox
regression model. SurvExpress [10] was used for the multi-
variate survival analysis.

3. Results

3.1. Identification of DEGs between CTS and Normal Stroma.
We identified 694 DEGs between CTS and normal stroma by
the meta-analysis. These DEGs included 295 downregulated
and 399 upregulated genes in CTS (Supplementary Tables
S2 and S3). Figure 1 shows the top 25 upregulated and
top 25 downregulated genes in CTS ranked on the basis of
the combined ES (the detailed results of statistical analysis
for the top 10 upregulated and top 10 downregulated genes
in CTS are shown in Supplementary Tables S4). CTHRC1,
a gene involved in vascular remodeling, bone formation,
and developmental morphogenesis, was upregulated in CTS
with the highest ES. It has been shown that CTHRC1 could
promote human CRC cell proliferation and invasion by
activating Wnt/PCP signaling [20]. This gene also plays an
important role in promoting ovarian cancer cell adhesion,
migration, and metastasis through the activation of integrin
𝛽3/FAK signaling [21]. NFE2L3, a gene regulating the cell
cycle progression in colon cancer [22], was upregulated in
CTS with the second highest ES. Interestingly, both CTHRC1
and NFE2L3 have been indicated as useful biomarker candi-
dates for CRC diagnosis because of their overexpression in
adenomas and CRC relative to normal tissue [23]. SULF1,
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Figure 1: Gene expression pattern of the top 25 upregulated and top 25 downregulated genes in colon tumor stroma (CTS) relative to colon
normal stroma ranked on the basis of the combined effect size (ES) identified by Network Analyst [11].

whose expression in tumor stroma is a prognostic marker
in advanced pancreatic cancer [24], was upregulated in CTS
with the third highest ES. The overexpression of this gene
has been associated with a poor prognosis in urothelial
carcinoma [25]. SOX9, the gene upregulated in CTS with
the fourth highest ES, has been shown to be overexpressed
in CRC and its overexpression was an independent adverse
prognosticator in CRC [26]. Some other genes upregulated
in CTS have been demonstrated to be overexpressed in CRC
and their expression was negatively associated with CRC
prognosis, such as ENC1, CCND1, VCAN, SEMA5A, and
NOS3 [27–31]. Interestingly, both PCDH17 and BCL6B were
upregulated in CTS, while they had reduced expression in
CRC [32, 33]. It indicates that PCDH17 and BCL6B could be
specifically expressed in CTS cells but not in colon cancer
cells.

Many of the significantly downregulated genes in CTS
have been associatedwith CRC [34–37]. For example,MYOT,
ASPA, and KIAA2022 were downregulated in CRC [34], the
downregulation of ARHGEF37 was associated with a poor
prognosis inCRC [35], higher expression levels ofBCL-2were
correlated with a better survival prognosis in CRC [36], and
PPARGC1A was a negative predictor for CRC prognosis [37].

Altogether, a number of the abnormally expressed genes
in CTS compared to colon normal stroma identified by the
meta-analysis have been associated with CRC pathology and
prognosis.

3.2. Identification of Pathways Significantly Associated with the
DEGs. GSEA [15] identified 44 KEGG pathways that were
significantly associated with the upregulated genes in CTS.
These pathwaysweremainly involved in cellular development
(p53 signaling, Wnt signaling, apoptosis, Notch signaling,
focal adhesion, endocytosis, ECM-receptor interaction, cell
adhesion molecules, adherens junction, tight junction, gap
junction, and regulation of actin cytoskeleton), immune
regulation (leukocyte transendothelial migration, comple-
ment and coagulation cascades, natural killer cell medi-
ated cytotoxicity, Toll-like receptor, chemokine signaling,
and cytokine-cytokine receptor interaction), andmetabolism
(purine metabolism and pyrimidine metabolism) (Figure 2,
Supplementary Table S5). Previous studies have shown that
some of these pathways were significantly associated with
colon cancer [38–41]. For example, the Wnt and Notch
pathways were associated with colon cancer development
[38, 39]. The cytokine-cytokine receptor interaction pathway
was significantly enriched in CRC [34]. The ECM and ECM-
associated proteins [39], the glycosaminoglycan metabolism,
and chondroitin sulfate/dermatan sulfate metabolism path-
ways played key roles in mediating tumormicroenvironment
[40, 41].

In addition, GSEA identified six KEGG pathways that
were significantly associated with the downregulated genes in
CTS (Supplementary Figure S2).Most of these pathways were
metabolism-related, including purine metabolism, histidine
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Figure 2: Significantly upregulated KEGG pathways in CTS relative
to colon normal stroma identified by GSEA [15]. FDR: false discovery
rate.

metabolism, glycine, serine, and threonine metabolism, and
drug metabolism-cytochrome p450. These pathways have
been associated with colon and other cancers [42–44]. For
example, impaired purine metabolism was associated with
the progression of cancer [42]. Histidine metabolism could
boost cancer therapy [43]. Cytochrome P450 enzymes were
associated with the metabolism of anticancer drugs and their
expression was associated with a poor prognosis in CRC
patents [44].

3.3. Identification of Upstream TFs, Kinases, and MMTRs
Significantly Associated with the DEGs. We identified 11 sig-
nificant upstreamTFs regulating the DEGs, including SUZ12,
NFE2L2, RUNX1, ESR1, STAT3, TCF3, FOSL2, SALL4, AR,
SMC3, and SOX2, of which the genes encoding RUNX1
and SALL4 were upregulated in CTS (Figure 3(a)). Most
of these TFs have been associated with colon cancer [45–
49]. For example, SUZ12 was the most significant upstream
TF which could contribute to the CRC development [45].
RUNX1 mutations were associated with the CRC risk [46].
TCF3 and FOSL2 were associated with the tumorigenesis of
CRC [47, 48]. The overexpression of SOX2 was associated
with the progression and a poor prognosis in colon cancer
[49].

Moreover, we identified 124 significant protein kinases
that regulate the DEGs (Figure 3(b), Supplementary Table
S6). These kinases mainly included cell cycle regula-
tion kinases (CDKs), signaling MAP kinases (MAPKs,
MAP2Ks, and MAP3Ks), and ribosomal kinases (RPS6KA1,
RPS6KA3, and RPS6KA5). MAPK14 was the most sig-
nificant upstream kinase negatively regulating the forma-
tion of colitis-associated colon tumors [50]. Furthermore,
we constructed a TF-kinase interaction network of these
TFs and kinases (Figure 3(c)). In the network, the most
connected TFs included SUZ12, NFE2L2, RUNX1, STAT3,
FOSL2, AR, SMC3, ESR1, and TCF3, and the most con-
nected kinases included MAPK14, CDK1, CSNK2A1, CDK2,
MAPK3, HIPK2, ERK1, and CDK4. It indicates that the cell
cycle regulation may play a pivotal role in CTS.

MMTRs are interesting biomarkers and targets for
metabolism-targeted cancer therapy [51]. We identified 9
(HNF1A, NFKB1, ZBTB7A, ATF6, TEAD4, TFAP2B, JAZF1,

FNTB, and EP300) and 12 (PKNOX2, GATA2, MAPK10,
TEAD1, TOX, MEF2A, GATA5, ELK1, MAZ, NHLH1, ATF1,
and RAD21) MMTRs for the upregulated and the down-
regulated genes in CTS, respectively (Supplementary Table
S7), and built the regulatory networks associated with these
MMTRs (Figure 4). In the networks, ATF6 (activating
transcription factor 6), a TF regulating unfolded protein
response during endoplasmic reticulum (ER) stress, targeted
163 upregulated genes, and PKNOX2 (PBX/knotted 1 home-
obox 2), which plays key roles in regulating cell proliferation,
differentiation, and death, targeted 131 downregulated genes.
Interestingly, two members of the GATA family of TFs
(GATA2 and GATA5) were the MMTRs that regulated the
downregulated genes in CTS (Figure 4(b)).

Altogether, the identification of upstream TFs, kinases,
and MMTRs significantly associated with the DEGs may
provide insights into the TME thatmediates the development
of colon cancer.

3.4. CD8+ T Cells Are More Enriched in CTS than in Normal
Stroma. We compared the enrichment levels of CD8+ T cells
betweenCTS andnormal stroma and found thatCD8+T cells
showed significantly higher enrichment levels in CTS than
in normal stroma (Student's t-test, p=0.016) (Figure 5). This
suggests an antitumor immune response activity in the TME
of colon cancer.

3.5. Identification of Prognostic Factors in Colon Cancer Based
on the DEGs and�eir Upstream Regulators. We investigated
the association between the transcriptional signatures of CTS
and survival prognosis (overall survival (OS) and disease-
free survival (DFS)) in the TCGA colon cancer dataset. The
transcriptional signatures included the top 10 upregulated
and top 10 downregulated genes in CTS on the basis of ES, 45
hub genes (≥3 degrees) from the zero-order PPI network of
the DEGs (Supplementary Table S8), and the genes encoding
11 TFs, 124 kinases, and 21 MMTRs regulating the DEGs. We
found that the expression of many of these transcriptional
signatures was significantly associated with the survival of
colon cancer patients. For example, the expression of CEBPB,
a gene significantly upregulated in CTS and a hub node in the
PPI network, had a significant negative correlationwithOS in
colon cancer (Figure 6(a)). The negative correlation between
CEBPB expression and survival has also been demonstrated
in other cancer types, such as high-grade serous ovarian
cancer [52]. PPARGC1 was significantly downregulated in
CTS and was a hub node in the PPI network, while its
expression had a significant positive correlation with OS in
colon cancer (Figure 6(a)). PPARGC1A was indicated as a
tumor suppressor in colon cancer [53] and ovarian cancer
[54], as well as a negative prognostic biomarker for CRC [37].
Our data indicate that the deregulation of these genes in CTS
is prognostic for colon cancer patients.

Among the upstream regulators (TFs, kinases, and
MMTRs) of the DEGs, the expression of STAT3, RPS6KA5,
IKBKE, ERBB2,MTOR, andNFKB1 had a positive correlation
with OS in colon cancer, while the expression of CDK1,
CDK5, and BRD2 had a negative correlation with OS in colon
cancer (Figure 6(a)).The deregulation of these genes has been
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Figure 3:�e significant upstream transcriptional factors (TFs) and kinases that regulate the differentially expressed genes (DEGs) between CTS
and colon normal stroma identified by eXpression2Kinases [16]. (a) Significant upstream TFs regulating the DEGs. (b) Significant upstream
kinases regulating the DEGs. (c) A TF-kinase interaction network of the significant upstream TFs and kinases regulating the DEGs.
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Figure 4: Regulatory networks of the master metabolic transcriptional regulators (MMTRs) and their targeted differentially expressed genes
(DEGs) between CTS and normal stroma identified by iRegulon [17]. (a) Regulatory network of the MMTRs and their targeted upregulated
genes in CTS. (b) Regulatory network of the MMTRs and their targeted downregulated genes in CTS. The green color octagon indicates
MMTRs and purple color oval indicates DEGs.
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Figure 5: CD8+ T cells have significantly higher enrichment levels in CTS than in colon normal stroma. Student's t-test p value is shown.

associated with tumor progression in a wide variety of cancer
types [55–60].

In addition, we identified 18 transcriptional signatures
of CTS whose expression was significantly associated with
DFS in colon cancer individually (Supplementary Figure
S3). These genes included CEBPB, BCL2, PAN2, NOS3,
FTL, ARHGEF37, SMC3, EP300, JAK2, RPS6KA3, RPS6KA1,
PRKACA,HIPK1,HIPK2,MAPK8,GSK3A,CLK2, andCDK3.
It indicates that these CTS transcriptional signatures could be
biomarkers for colon cancer relapse.

Furthermore, we used themultivariate analysis to validate
the association between the prognostic CTS transcriptional
signatures and survival using the colon metabase data [10].
For OS analysis, a total of 482 patients were split into
two groups: high-risk group (N=241) versus low-risk group
(N=241) based on the prognostic index (Supplementary
Figure S4A). As expected, the high-risk group had worse
OS than the low-risk group (Figure 6(b)). Similarly, for
DFS analysis, we divided patients into the high-risk group
(N=272) and the low-risk group (N=273) based on the
prognostic index (Supplementary Figure S4B) and found that
the high-risk group had worse DFS compared to the low-risk
group (Figure 6(c)).These results proved the prognostic value
of these CTS transcriptional signatures in colon cancer.

4. Discussion

The tumor stroma constitutes an important component of
the TME that mediates tumor growth, immune evasion, and
metastasis [1]. Thus, it is important to identify molecular
features in the tumor stroma. To this end, we performed
a meta-analysis of three CTS transcriptome datasets for
identifying CTS-associated transcriptional signatures. We
identified a number of upregulated and downregulated genes
in CTS compared to colon normal stroma. Furthermore,
we identified upregulated and downregulated pathways sig-
nificantly associated with these deregulated genes in CTS.
The upregulated pathways were mainly involved in cellular
development, immune regulation, and metabolism, and the

downregulated pathways were mostly metabolism-related.
These results revealed the abnormal alterations of cellular
development, immune regulation, and metabolism pathways
in CTS. We found that CD8+ T cells were more enriched in
CTS than in colon normal stroma, suggesting an immune
infiltration microenvironment in CTS. Furthermore, we
identified numerous CTS transcriptional signatures whose
expression was significantly associated with prognosis in
colon cancer, such as CEBPB, PPARGC1, STAT3, MTOR,
BCL2, JAK2, and CDK1. These transcriptional signatures
are mainly involved in immune regulation (CEBPB, STAT3,
and JAK2), metabolism (PPARGC1 and MTOR), cell cycle
(CDK1), and apoptosis (BCL2), suggesting that the deregu-
lation of these pathways in CTSmay contribute to the altered
prognosis in colon cancer.

To verify the association of the identified transcriptional
signatures with CTS, we analyzed the TCGA colon cancer
dataset. We divided these cancers into high-stroma-content
and low-stroma-content groups on the basis of their intra-
tumoral stromal content evaluated by ESTIMATE [19] and
found that 153 upregulated genes in CTS had significantly
higher expression levels in the high-stroma-content group
than in the low-stroma-content group. These genes included
18 hub genes in the PPI network of DEGs and 6 TFs, 40
kinases, and 12 MMTRs encoding genes that regulated the
DEGs (Supplementary Figure S5, Table S9). We also found
27 downregulated genes in CTS which had significantly
lower expression levels in the high-stroma-content group,
including 14 hub genes, and genes encoding 2 TFs, 18
kinases, and 3 MMTRs (Supplementary Figure S5, Table S9).
Interestingly, most of the downregulated hub genes in CTS
were also downregulated in the high-stroma-content colon
cancers (Supplementary Figure S5). These results indicate
that many transcriptional signatures of CTS identified by
the meta-analysis are tumor stroma-specific. In addition, we
found that CD8+ T cells had significantly higher enrichment
levels in CTS versus colon normal stroma (Student's t-test,
p=0.016), as well as in the high-stroma-content colon can-
cers versus the low-stroma-content colon cancers (Student's
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Figure 6: �e CTS gene signatures whose expression is associated with prognosis in colon cancer. (a) Kaplan-Meier survival curves show the
gene signatures whose expression is significantly associated with overall survival (OS) in colon cancer in the TCGA colon cancer dataset (log-
rank test, p<0.05). (b) Multivariate Cox regression analysis shows that the OS-associated CTS gene signatures are prognostic for OS in colon
cancer in a SurvExpress built-in dataset (colon metabase) [10]. (c) Multivariate Cox regression analysis shows that the DFS-associated CTS
gene signatures are prognostic for DFS in colon cancer in a SurvExpress built-in dataset (colon metabase) [10]. DFS: disease-free survival.
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Figure 7:�e higher enrichment levels of CD8+ T cells were associated with better disease-free survival in the low-stroma-content colon cancers,
but not in the high-stroma-content colon cancers. ESTIMATE [19] was used to quantify the intratumoral stromal content (stroma score) of
TCGA colon cancer samples. High-stroma-content: stroma score >median; low-stroma-content: stroma score <median.

t-test, p=3.3∗10−8). It indicates that CD8+ T cells tend to have
elevated infiltration in the TME of colon cancer. Interestingly,
we found that the higher enrichment levels of CD8+ T cells
were associated with better DFS in the low-stroma-content
colon cancers, but not in the high-stroma-content colon
cancers (Figure 7). It suggests that the immune cells exert an
antitumor effect only when they have infiltrated into tumor
cells and that the immune cells in the tumor stroma may not
have such a direct antitumor effect.

This study has identified a number of CTS-associated
transcriptional signatures that could be biomarkers for colon
cancer diagnosis and prognosis and may provide therapeutic
targets for colon cancer. However, to translate these findings
into clinical application, further experimental and clinical
validation would be necessary.

5. Conclusions

The identification of CTS-specific transcriptional features
may provide insights into the mechanism that mediates the
development of colon cancer and thus has potential clinical
implications for colon cancer diagnosis and treatment.
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Supplementary Materials

Supplementary Figure S1: illustration of PCA and density
plots as validation tools for batch effect removal. Plot of
principal components: (A) before batch effect removal and
(B) after batch effect removal. Plot of density: (C) before
batch effect removal and (D) after batch effect removal. The
multidimensional scaling of the datasets demonstrates that,
before the batch effect adjustment, each dataset obviously
separated from all the others, whereas, after batch effect
adjustment, samples from all the datasets are incorporated
clearly. Supplementary Figure S2: six KEEG pathways that
are significantly associated with the downregulated genes
in colon tumor stroma relative to normal stroma. Supple-
mentary Figure S3: the genes (DEGs and their upstream
regulators) whose expression is significantly associated with
disease-free survival in colon cancer (log-rank test, p<0.05).
Supplementary Figure S4: patients divided into the high-
risk group and the low-risk group based on the prognostic
gene signatures identified. A.Overall survival. B. Disease-free
survival. Supplementary Figure S5: numbers of overlapping
genes between the DEGs between colon tumor stroma and
normal stroma and their upstream regulators and the DEGs
between high-stroma-content and low-stroma-content colon
cancers. UP TCGA: upregulated differentially expressed
genes between high-stroma-content and low-stroma-content
TCGA colon cancer samples and DOWN TCGA: downreg-
ulated differentially expressed genes between high-stroma-
content and low-stroma-content TCGA colon cancer sam-
ples. Supplementary Table S1: a summary of the datasets
used in this study. Supplementary Table S2: upregulated
genes in colon tumor stroma versus colon normal stroma.
Supplementary Table S3: downregulated genes in colon
tumor stroma versus colon normal stroma. Supplementary
Table S4: the top 10 upregulated and top 10 downregulated
genes in colon tumor stroma. Supplementary Table S5: 44
KEGG pathways that were significantly associated with the
upregulated genes in colon tumor stroma (CTS). Supple-
mentary Table S6: upstream transcription factors and kinases
regulating the differentially expressed genes between colon
tumor stroma and normal stroma. Supplementary Table
S7: master metabolic transcriptional regulators (MMTRs)
(iRegulon normalized enrichment score NES > 3.0) regulat-
ing the differentially expressed genes between colon tumor
stroma and normal stroma. Supplementary Table S8: hub
genes in the protein-protein interaction network of the
differentially expressed genes between colon tumor stroma
and normal stroma. Supplementary Table S9: overlapping
genes between the DEGs between colon tumor stroma and
normal stroma and their upstream regulators and the DEGs
between high-stroma-content and low-stroma-content colon
cancers. (Supplementary Materials)
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