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Abstract

Exploring typical and atypical brain developmental trajectories is very important

for understanding the normal pace of brain development and the mechanisms by

which mental disorders deviate from normal development. A precise and sex-

specific brain age prediction model is desirable for investigating the systematic

deviation and individual heterogeneity of disorders associated with atypical brain

development, such as autism spectrum disorders. In this study, we used partial

least squares regression and the stacking algorithm to establish a sex-specific brain

age prediction model based on T1-weighted structural magnetic resonance imag-

ing and resting-state functional magnetic resonance imaging. The model showed

good generalization and high robustness on four independent datasets with differ-

ent ethnic information and age ranges. A predictor weights analysis showed the

differences and similarities in changes in structure and function during brain devel-

opment. At the group level, the brain age gap estimation for autistic patients was

significantly smaller than that for healthy controls in both the ABIDE dataset and

the healthy brain network dataset, which suggested that autistic patients as a

whole exhibited the characteristics of delayed development. However, within the

ABIDE dataset, the premature development group had significantly higher Autism

Diagnostic Observation Schedule (ADOS) scores than those of the delayed devel-

opment group, implying that individuals with premature development had greater

severity. Using these findings, we built an accurate typical brain development tra-

jectory and developed a method of atypical trajectory analysis that considers sex

differences and individual heterogeneity. This strategy may provide valuable clues

for understanding the relationship between brain development and mental

disorders.
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1 | INTRODUCTION

Brain development is a dynamic and complex process lasting through-

out childhood, adolescence, and early young adulthood (Zhang

et al., 2020). The results of this process are determined by both genet-

ics and postnatal experiences (Niu, Zhang, Kounios, & Liang, 2020)

and cause profound changes in brain structure and function to occur

(Truelove-Hill et al., 2020). During this period, the brain is prone to

atypical development (Truelove-Hill et al., 2020), and the resulting

disrupted brain structures or connectivity can directly lead to neu-

rodevelopmental or neuropsychiatric disorders (Dennis &

Thompson, 2013). In addition, epidemiological studies have shown

that about 75% of diagnosable mental disorders begin before the age

of 24 (Kessler et al., 2005), suggesting that studying typical and atypi-

cal brain developmental trajectories is important for evaluating and

intervening in mental disorders (Di Martino, Fair, et al., 2014).

In this context, neuroimaging techniques, such as magnetic reso-

nance imaging, provide a powerful tool for investigating brain devel-

opment (Cherubini et al., 2016). Many studies have also used these

techniques to develop biomarkers to reliably establish the typical

brain development trajectory (Cole, Marioni, Harris, & Deary, 2019);

of these “predicted brain age” is the most promising (Franke &

Gaser, 2019). Also, the difference between the predicted brain age

and chronological age, the brain age gap estimation (BrainAGE),

reflects premature development (PRD; brain age >chronological age)

or delayed development (brain age <chronological age) (Franke &

Gaser, 2019). Dosenbach et al. (2010) successfully predicted brain age

using resting functional magnetic resonance imaging (rs-fMRI), and

Franke, Ziegler, Klöppel, Gaser, and Initiative (2010) analyzed the

characteristics of brain aging and the influence of different parameters

on the prediction model through T1-weighted structural magnetic res-

onance imaging (sMRI). These early representative works analyzed

brain age using the single-modal prediction model. Furthermore, the

fusion of multimodal neuroimaging data addresses the disadvantages

of poor accuracy by combining different types of features (Liem

et al., 2017), and many studies have conducted in-depth analyses

based on this (Liang, Zhang, & Niu, 2019; Niu et al., 2020). However,

evidence has shown that there are significant sex differences in brain

structure, function, and transcriptome (Liu, Seidlitz, Blumenthal,

Clasen, & Raznahan, 2020), and many major psychiatric and neurologi-

cal disorders show sex-related differences (Jahanshad &

Thompson, 2017). Therefore, establishing a sex-specific brain age pre-

diction model based on multimodal neuroimaging is essential for

understanding typical and atypical brain development.

At the same time, studies have revealed that BrainAGE shows dif-

ferent deviations from the normal developmental trajectory for a vari-

ety of mental disorders (Borgwardt et al., 2013). Therefore, brain age

prediction models are widely used in the analysis of mental disorders,

such as schizophrenia (Truelove-Hill et al., 2020), epilepsy (Zhang

et al., 2021), and anxiety disorder (Niu et al., 2020). Moreover, autism

spectrum disorder (ASD), one of the most devastating neu-

rodevelopmental disorders (Di Cicco-Bloom et al., 2006), has also

been analyzed using the same method. He et al. (2020) used diffusion

tensor imaging and rs-fMRI to analyze the relationship between the

predicted brain age and chronological age of ASD individuals at differ-

ent stages. Tunc et al. (2019) used sMRI and diffusion weighted imag-

ing to predict the brain age and the BrainAGE in autistic patients and

analyzed the relationship between BrainAGE and the severity of ASD.

However, sex differences are widespread in ASD disorder (Striegel-

Moore et al., 2009; Werling & Geschwind, 2013), so it is very neces-

sary to build an accurate brain age prediction model based on the dif-

ferent sexes for further analysis.

Here, we used the PNC dataset of children, adolescents, and

young adults (age = 8–23 years) to establish a sex-specific prediction

model to describe typical brain development. The fusion of rs-fMRI

with sMRI allowed the model to have a good generalization perfor-

mance on four different independent test datasets. Furthermore, the

predictor weights analysis of the brain structure and function revealed

the similarities and differences between the male and female brain

developmental process. We then calculated the BrainAGE of the

healthy controls (NCs) and autistic patients (ASDs) in the ABIDE and

the healthy brain network (HBN) datasets to find the atypical brain

development characteristics of ASDs at the group level. Finally, we

further refined and grouped individuals within the ASDs according to

their developmental characteristics and researched the relationship

between different developmental characteristics of the brain and clini-

cal manifestations. The results revealed a high degree of individual

heterogeneity of ASD.

2 | MATERIALS AND METHODS

2.1 | Subjects and datasets

2.1.1 | Training dataset

Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale pro-

ject funded by NIMH to understand how the brain development pro-

cess affects cognitive development and why it is prone to mental

disorders (Satterthwaite et al., 2014). This cohort supplied rich neuro-

imaging data during brain development. In this article, we selected

649 healthy male subjects and 740 healthy female subjects with both

rs-fMRI and sMRI data from 1,629 original subjects to train the sex-

specific prediction model, and excluded two individuals with unquali-

fied preprocessing quality. These data had passed the quality check

and those with missing phenotypic information had been eliminated.

All MRI data were collected on a 3T Siemen's instrument in the Uni-

versity of Pennsylvania Hospital. See Table 1 for specific information.

2.1.2 | Independent test datasets

To evaluate the performance of the prediction model appreciably and

accurately, we used multiple independent test datasets from different

countries and experimental centers that had studied different races to

verify the prediction accuracy. The Beijing dataset and the London

5944 WANG ET AL.



dataset are both from the FCP project (http://fcon_1000.projects.

nitrc.org/). MRI Imaging data were collected on a 3T instrument in

Beijing, China and London, England, respectively, and all subjects were

healthy. The age range of these two datasets was slightly larger than

the training dataset, and these datasets were composed of individuals

from Asia and Europe (Table 1), which can be a good test of the model

generalization. All subjects in the two datasets meet the requirements,

so no data is excluded.

The HBN is committed to creating a shared biological database

(Alexander et al., 2017) that contains a large amount of multimodal

imaging data from children and adolescents in New York City. These

data were collected from three medical laboratory centers: (a) Staten

Island (SI) center (1.5T scanning instrument), (b) Rutgers University

(RU) laboratory (3T scanning instrument), and (c) Citigroup Biomedical

Imaging Center (CBIC) (3T scanning instrument). From 264 individuals

without any diagnostic labels, 165 healthy subjects with sMRI, rs-

fMRI, complete phenotypic information and qualified preprocessing

quality were selected for the model performance test. Similarly,

241 subjects that meet the requirements from 449 subjects with the

ASD label were used for a subsequent atypical brain development

analysis. And the age range of the HBN dataset is included in the

training dataset. The details about these datasets are given in Table 1.

2.1.3 | ABIDE dataset

The Autism Brain Imaging Data Exchange (ABIDE) project has

established a database containing a large number of resting functional

and structural images of ASDs and NCs. This program has carried out

two rounds of data collection, and thousands of pieces of data from

many different experimental centers were collected together

(Di Martino et al., 2017; Di Martino, Yan, et al., 2014). In this article,

we used 741 healthy participants and 628 ASD patients that match

the age range of the training dataset to analyze ASD (Table 1). Com-

pared with the original data, we excluded 21 healthy subjects and

48 ASD patients, who lacked the corresponding neuroimaging data or

failed the quality test in the preprocessing process. In addition, the

Autism Diagnostic Observation Schedule (ADOS) scores in the ABIDE

dataset was used in our research to discover the potential relationship

between ASD and MRI images. The scores can be downloaded from

the official website (http://fcon_1000.projects.nitrc.org/indi/abide/).

2.2 | MRI preprocessing and feature extraction

The preprocessing and feature extraction steps for all the neuroimag-

ing data were completed in the MATLAB environment. The BN246

atlas was used to extract the structural and functional features of

each brain region. BN246 atlas is a human brain network map con-

taining 210 cerebral cortical regions and 36 subcortical regions,

including detailed anatomical structure and accurate functional con-

nection information (Fan et al., 2016). For detailed anatomical position

division, refer to Table S2.

An automated pipeline was applied to preprocess the sMRI scans

using the CAT12 toolbox (http://www.neuro.uni-jena.de/cat/) in

SPM12. This pipeline includes bias correction, spatial normalization,

global intensity correction, affine registration, and segmentation. Then

the preprocessed data were registered to MNI152 standard space

using DARTEL registration, and 246 anatomical cortical regions were

identified using the BN246 atlas. Finally, the gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF) volumes of each brain

region were averaged, so that each subject had a total of 738 struc-

tural features.

Rs-fMRI data were preprocessed using the BRANT toolkit (Xu,

Liu, Zhan, Ren, & Jiang, 2018). The main steps included slice timing,

realignment, co-registration with the T1-weighted MRI, normalization,

motion correction, global signal regression, 0.01–0.08 Hz filtering, and

smoothing with a 6 mm Gaussian kernel. Then, functional connectivi-

ties were obtained between 246 brain regions by calculating correla-

tion coefficients and using Fisher's z-transformation. Finally, a total of

30,135 functional connectivities were extracted as functional features

for the brain age prediction model.

2.3 | Brain age prediction

2.3.1 | Sex-specific brain age prediction model

To reflect the different developmental characteristics of males and

females, we established sex-specific brain age prediction models. The

prediction model was constructed by integrating the partial least

square regression (PLSR) with the stacking algorithm (Figure 1).

The PLSR method was used to establish a single-modal brain age

prediction model based separately on structural or functional brain

features. PLSR projects the independent and dependent variables into

a new space, minimizes the sum of squares of errors, and finally

TABLE 1 Dataset description

Study Sex N Age range Mean age (SD)

PNC Male 649 8.17–23.00 15.10 (3.51)

Female 740 8.17–23.08 15.52 (3.58)

Beijing Male 75 18–26 21.17 (1.81)

Female 122 18–26 21.17 (1.83)

Cambridge Male 75 18–30 20.99 (2.13)

Female 121 18–30 21.07 (2.42)

HBN NC Male 83 5.02–21.19 10.44 (3.60)

Female 81 5.42–19.49 10.49 (3.26)

ASD Male 196 5.23–20.37 10.89 (3.64)

Female 44 5.58–21.48 11.25 (3.53)

ABIDE NC Male 560 8.01–23.00 13.68 (4.15)

Female 181 8.04–23.00 12.41 (4.07)

ASD Male 541 8.00–23.00 14.07 (4.03)

Female 87 8.06–23.00 12.75 (3.90)
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provides a linear regression model that meets the requirements

(Geladi & Kowalski, 1986). In our model, 738 structural features or

30,135 functional features were projected into a new space as the

independent variables. We defined the dimension of this new space

as a priori, that is, the number of components after dimensionality

reduction. The dimension of the space was also used as a hyper-

parameter and was determined through 10 times 10-fold cross-

validation during the model training process. Specially, the male and

female prediction models had different numbers of components in

terms of functional and structural features, so the final multimodal

brain age prediction model contained four different projection param-

eters. In addition, because predicted brain age as the dependent vari-

able of the model had only one dimension, it did not need to be

projected. In the new space, the problems resulting from a strong cor-

relation between variables and from having far fewer samples than

the number of characteristic variables were solved. Also, through

inverse transformation, the importance of the features to the model

could be quantified, which made the prediction model very

interpretable.

Stacking algorithm is a kind of ensemble learning that can be used

to integrate heterogeneous learners to obtain higher performance

(Graczyk, Lasota, Trawi�nski, & Trawi�nski, 2010). After establishing the

first-level learners (single-modal prediction model based on sMRI or

rs-fMRI), the outputs can be viewed as the input of the second-level

learner (stacking algorithm). To avoid over-fitting, we used 10-fold

cross-validation to improve the model. First, two first-level learners

trained with nine subsets of the training dataset and obtained the test

results on the tenth subset. Second, the above step was implemented

on 10 different subsets, and the average result was used as the input

of the second-level learner. Then, the stacking algorithm utilized the

output of the two first-level learners to construct a second-level

learner and finally obtained a multimodal brain age prediction model.

The whole process was trained on the PNC dataset, and the parame-

ters of the second-level learner were directly used for testing on a dif-

ferent independent dataset.

2.3.2 | Bias correction

In brain age prediction studies, the correlation between BrainAGE and

chronological age causes the brain age of young individuals to be

overestimated while causing the brain age of older individuals to be

underestimated. This problem has been mentioned in many studies

(Beheshti, Nugent, Potvin, & Duchesne, 2019; Tunc et al., 2019), but

the specific reason is not yet clear (Liang et al., 2019). To establish an

accurate typical brain development trajectory, bias correction was car-

ried out simultaneously with the stacking algorithm by regressing out

the chronological age from the BrainAGE for each level of the two-

level learner.

2.3.3 | Model test

Male and female sex-specific prediction models trained on the PNC

dataset were tested on Beijing, Cambridge, HBN (NCs), and ABIDE

(NCs) datasets. These four datasets came from different countries and

medical centers and contained data from people with different ethnic

origins (Table 1). The mean absolute error (MAE) and Pearson's corre-

lation coefficient (R) between predicted brain age and chronological

age were used to evaluate the performance of the prediction model

on different test datasets.

2.4 | Predictor weights analysis

To evaluate the importance of brain structural or functional features

on the brain age prediction model, we performed a predictor weights

analysis by taking advantage of the good interpretability of the PLSR

prediction model. Analyzing the high-weight predictors in the models

established based on sMRI and fMRI could help to quantify the contri-

bution of specific brain regions on brain age prediction and to under-

stand the developmental trajectory of brain structure and function.

The weight analysis of brain structural features, including the GM,

WM, and CSF volume of each brain region, helped us to explore the

characteristics of and differences between male and female brain

structural development. Specifically, we calculated the structural fea-

ture weights of each brain subregion according to the anatomical

position in the BN246 atlas (Table S2), and analyzed the brain subre-

gions that play an important role in the development process. The

Yeo 7 network atlas (Yeo et al., 2011) was used in the weight analysis

of the brain functional features. Two hundred ten cortical subregions

F IGURE 1 Overall flow chart. Blue means input; red means
output. First, the Brant and Cat12 toolboxes were used for fMRI and
sMRI preprocessing, respectively, and the BN246 atlas was used to
extract the structural and functional features. Then, PLSR and a
stacking algorithm were used to establish a multimodal sex-specific
brain age prediction model. Next, the predictor weights within the
functional network and anatomical location in BN246 atlas were
analyzed. Finally, we explored the relationship between patients with
different developmental characteristics and ADOS scores based on
the BrainAGE of the ASDs
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in the BN246 atlas corresponded to seven different neural networks

in the Yeo atlas, and thirty-six subcortical subregions were classified

as the subcortical nucleus networks (SNs; Figure 1 and Table S2).

Using this, we could study the functional changes during brain devel-

opment from the perspective of these neural networks.

2.5 | BrainAGE analysis for the ASD subjects

After the sex-specific brain age prediction models were established

and validated using the data from typical developmental subjects, we

applied these models to investigate atypical development in two inde-

pendent ASD datasets, the ABIDE and HBN datasets. Brain age was

predicted for each ASD and NC individual based on the well-trained

models. The BrainAGE, which denotes the difference between

predicted brain age and chronological age, was obtained for each indi-

vidual. For the group-level analysis, two-sample t tests were used to

explore the significant differences in BrainAGE between ASDs

and NCs.

To investigate the heterogeneity within the ASD group, we fur-

ther divided the ASDs into a delayed developmental (DED) group and

a PRD group according to the sign of BrainAGE difference between

the ASDs and NCs. Because the ABIDE dataset and the training

dataset are completely independent, image acquisition error, model

generalization error, random error, and other reasons may cause the

BrainAGE of healthy people to be non-zero. Therefore, the deviation

results were obtained by subtracting the average BrainAGE of the

NCs from the ASDs by sex. These two groups represented the differ-

ent atypical brain development characteristics of the ASDs compared

to healthy children or adolescents. Using two-sample t tests, we com-

pared the group differences between the DED and PRD groups within

the ASD group in terms of their ADOS scores, including the total

score and three subscores, in the ABIDE dataset.

3 | RESULTS

3.1 | Brain age prediction model

In our model, the 738 structural features and 30,135 functional fea-

tures of the male prediction model were projected to 7 components

and 9 components, respectively, through PLSR. The structural and

functional features of the female prediction model were reduced to

7 and 10, respectively. After bias correction, two sex-specific multi-

modal brain age prediction models were established based on the

above configurations and tested on four independent test datasets

(Table 2 and Figure 2).

The testing results implied that the sex-specific multimodal brain

age prediction model had a good predictive performance for MRI data

from the United States (HBN dataset ABIDE dataset), China (Beijing

dataset), and the United Kingdom (Cambridge dataset). The significant

correlation and the low MAE between predicted brain age and chro-

nological age indicated that the model could overcome the influence

of sample size and age distribution to a certain extent; it also had a

good generalization performance on unknown data completely inde-

pendent of the training data, which laid a solid foundation for the fur-

ther analysis of ASD.

In addition, to validate the superiority of establishing a sex-

specific prediction model, we retested the results on the same

datasets using the prediction model without considering sex differ-

ences (Table S1). Although the model was tested on the same four

independent test datasets mentioned above, the prediction model

that did not consider sex differences showed a larger MAE than the

sex-specific model, that is, a higher prediction error. This further

showed that there were differences in brain development between

men and women and that they should be investigated separately.

3.2 | Similarities and differences between males
and females during typical brain development

For both models, the weight coefficients for the GM volume in most

brain subregions were negative, which meant that the GM volume

gradually decreased during the process of brain development. Subre-

gions such as the thalamus, basal ganglia, precuneus, postcentral

gyrus, and middle frontal gyrus showed very larger predictor weights

in the model. In addition, the male prediction model also had high pre-

dictor weights for the precentral lobule, parahippocampal gyrus, lat-

eral occipital cortex, amygdala, and hippocampus brain subregions,

but the female prediction model did not have high weights in these

regions. The females had higher predictor weights for the cingulate

gyrus, inferior parietal lobule, posterior superior temporal sulcus, infe-

rior frontal gyrus, and precentral gyrus (Figure 3a).

The predictor weights for the WM volume had the opposite pat-

tern to that of the GM. That is, the weight coefficients for most of the

brain subregions were positive, indicating that the WM volume

increased with age during brain development from 8 to 23 years old.

Many brain subregions, such as the middle frontal gyrus, precentral

lobule, superior parietal lobule, postcentral gyrus, insular gyrus, basal

ganglia, and thalamus, especially the precentral gyrus, showed very

high predictor weights. The male prediction model also showed high

predictor weights in the amygdala, inferior parietal lobule, superior

temporal gyrus, and inferior temporal gyrus, whereas the female pre-

diction model showed high weights in the superior frontal gyrus,

TABLE 2 Prediction performance on four independent datasets

Dataset

Male Female

MAE R MAE R

HBN_NC 1.34 .90 1.47 .88

Beijing 1.04 .84 1.32 .74

Cambridge 1.20 .83 1.10 .83

ABIDE_NC 1.24 .94 1.43 .92

Note: All Pearson correlation coefficients R in the table are statistically

significant (p <.0001).
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orbital gyrus, parahippocampal gyrus, precuneus, and cingulate gyrus

(Figure 3b).

Besides, the CSF volume was characterized by both positive and

negative weight subregions, and the number of each was relatively

balanced (Figure 3c).

Overall, brain subregions such as the basal ganglia, thalamus, and

middle frontal gyrus played a very important role in the sMRI-based

brain age prediction model. Different structural features corresponded

to different weight coefficient values, but these parts had a similar

pattern in male and female brain development. However, some subre-

gions such as the inferior parietal lobule, parahippocampal gyrus, and

amygdala often showed different weights in the male and female

models. This might be due to the sex differences during brain

development.

As for the functional network, it was obvious that the functional

connections between the DM and the SN networks as well as the

connections within the two networks had high predictor weights. Net-

works such as the VS, LM, DA, and FP networks, that were connected

to the DM and SN networks also had high weights, which implies that

the development of the DM and the SN networks are important parts

of typical brain development. In addition, notice that the weight

coefficients on the main diagonal of the heat map matrix were not

very high and that most of the high weight coefficients appeared in

other positions. This indicated that connections between networks

were much more important than connections within networks during

brain development (Figure 4). Note that, what was drawn in the figure

is the importance of the functional network, that is, the functional

weights, rather than the original functional connectivities. From

Figure 4, we observed that there was a generally similar pattern of

functional network weights for males and females according to their

brain age prediction models. Only specific differences in details

existed in the two models, such as that the connection within the SN

network for females had the highest weight coefficient whereas the

connection between the SN network and the DM network was the

highest for males.

3.3 | BrainAGE for HCs and ASDs

BrainAGE showed significant differences between the NCs and ASDs

(Figure 5). At the group level, the BrainAGE for the ASDs was �0.01,

whereas that for the NCs was 0.19, and the ASDs had a deviation of

F IGURE 2 The prediction results of the sex-specific models on the four independent datasets with different countries, centers, and races.
Red dots represent female individuals and blue dots represent male individuals. The shading indicates the 95% confidence interval. (a) NCs of the
ABIDE dataset. (b) NCs of the HBN dataset. (c) Beijing dataset. (d) Cambridge dataset
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�0.20 (p = .0157, Cohen's d = 0.13) compared to the latter for

BrainAGE. Similar results were found for the HBN dataset (Figure 5b).

The BrainAGE of the ASDs was �0.16 and that of the NCs was 0.50;

the former had a deviation of �0.34 (p = .0287, d = 0.19) relative to

the latter. In general, the BrainAGE of the ASDs was lower than that

of the NCs, which implies that ASD subjects have delayed brain devel-

opment at the group level.

We found that the BrainAGE of the ASDs had a negative devia-

tion compared with NCs at the group level. However, not all devia-

tions for the ASDs were negative; in fact, a large portion of them

were positive (Figure 5). Therefore, we divided all the ASDs in the

ABIDE dataset into a PRD group (deviation >0, n = 308) and a del-

ayed (DED) group (deviation <0, n = 320) based on the sign of the

deviation values. Classical ADOS scores (communication subscore

+ social interaction subscore) were used to analyze the differences in

clinical manifestations between the two groups with different

patterns, and the p values were all corrected by the FDR method to

PFDR values (Table S3). The PRD group and the DED group had signifi-

cant differences in the ADOS total score (PFDR= .0003, d = 0.38),

communication score (PFDR= .0299, d = 0.21), social score

(PFDR= .0006, d = 0.35), and stereotyped behavior score

(PFDR= .0089, d = 0.28; Figure 5c). In addition, the total score and the

three subscores of the PRD group were significantly higher than those

of the DED group. Based on the PFDR value and Cohen's d value, the

principal difference between the two groups was in social and stereo-

typed behaviors, which are also the behaviors in which ASDs usually

differ from healthy people. The PRD group had higher ADOS scores,

indicating that the PRD subjects had more severe ASD clinical symp-

toms than the DED group. This finding suggests that there is hetero-

geneity in the brain development of ASD subjects.

To sum up, there was a definite connection between the brain

development pattern and the clinical manifestations of ASDs: ASD

individuals with premature brain development had a higher severity

than individuals with delayed brain development. From another

F IGURE 3 Distribution map
of the top 10% (25 regions)
structural predictor weights of
the male and female brain age
prediction models. The weights
are sorted based on their
absolute values, but the original
weight values are drawn in the
graph. The predictor weights of

each sex and each type of
feature had been normalized
within the class. For example, for
the GM volume weights of the
738 subregions in the male
prediction model, we regard
them as one class and normalize
them. The color bar at the
bottom represents the
normalized weight result of each
type of structural feature of each
gender. Cool colors represent
negative weights, and warm
colors represent positive weights.
(a) GM predictor weight
distribution. Most of the weights
were negative. (b) WM predictor
weight distribution. Most of the
weights were positive. (c) CSF
predictor weights distribution.
Positive and negative weights
were relatively balanced
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perspective, the BrainAGE of ASDs at the group level was lower than

that of NCs, but there obviously were two distinct developmental pat-

terns within the ASD group. A high degree of heterogeneity within

the ASDs was not easily observed in the analysis at the group level.

4 | DISCUSSION

In this article, we have established a high precision, sex-specific brain

age prediction model, which showed good performance on different

independent test datasets with different countries, races, and age

ranges. A further predictor weights analysis showed that there was

consistency in the changes in function and structure and sex differ-

ences during typical brain development. Based on this model, we

found that the BrainAGE of the ASDs had a significant negative devia-

tion compared with that of the NCs at the group level. More interest-

ingly, the findings of the subgroup analysis indicated there are

different clinical manifestations in ASD individuals with different

developmental paces, which suggests that it may be pivotal to empha-

size individual differences in atypical brain development and brain

disorders.

According to epidemiological studies, most mental disorders begin

at the developmental stage of the brain (Kessler et al., 2005), so focus-

ing research on this stage can provide support for the early diagnosis

and intervention of most mental disorders (Di Martino, Fair,

et al., 2014). The brain changes in the whole age range include multi-

ple stages such as development and aging, which are very complex.

The changes in structure and function during the development of the

brain have very unique characteristics, and it is critical for a more

accurate understanding of atypical development (Truelove-Hill

et al., 2020). Therefore, compared with researches in the whole age

range (Bashyam et al., 2020; Cheng et al., 2021), we have established

a more accurate typical brain development trajectory. And paying

attention to the changes in the developmental period of the brain is

more conducive to understand the typical brain development and ana-

lyze neurodevelopmental disorders.

Based on the above analysis, we established a model for

predicting brain age during development. A sex-specific prediction

model based on multimodal neuroimaging can synthesize brain func-

tion and structural features and better explain brain development, and

this model also achieved good prediction accuracy and stability to

new data. Liem et al. (2017) demonstrated that using multimodal neu-

roimaging can better predict brain age. The goal of this type of

research is to make the prediction model have a low MAE, so that the

calculation of BrainAGE will have lower error or uncertainty (Bashyam

et al., 2020; Niu et al., 2020). Here, we took sex differences into con-

sideration, and Table 2, Figure 2, and Table S1 show that the male and

female sex-specific models had lower errors than the model that did

not consider sex differences. This finding further shows that sex dif-

ference is a key factor affecting the performance of prediction

models. Besides, existing brain age prediction work or the method of

fusing multimodal images has a wide variety of methods. Conven-

tional machine learning methods have no significant difference in pre-

diction accuracy (Niu et al., 2020). Therefore, under the premise of

ensuring accuracy, the interpretability and generalization of the model

has become another focus. PLSR has a very good explanatory nature

and the principle is simple and easy to understand. With the stacking

algorithm, our prediction model has a very general performance. This

method is also very suitable for multimodal brain age prediction model

that consider gender differences.

It is worth noting that in the Beijing and London datasets, there is

a certain deviation between the fitting line of the female samples and

the reference line. The correlation of female samples in the Beijing

dataset was only .74, which was the lowest among eight independent

F IGURE 4 Functional network predictor weight heat map. The values in the heat map represent the normalized values of the predictor
weights of different gender prediction models, respectively. Red means higher weights and blue means lower weights. (a) Weight distribution of
the female functional network predictor. (b) Weight distribution of the male functional network predictor. SN, subcortical nuclei; VS, visual; SM,
somatomotor; DA, dorsal attention; VA, ventral attention; LM, limbic; FP, frontoparietal; DM, default
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tests. This might be caused by many reasons. For example, in the

London and Beijing datasets, the chronological age was in the form of

integers, and our predicted brain age was accurate to a decimal, which

would inevitably cause certain errors. In addition, the age range of the

two was slightly larger than the training dataset, and generalization

errors would inevitably occur in the process of independent testing.

Even so, the existing results still have a good correlation in statistical

significance and there is a better prediction result for predicting

brain age.

On the other hand, the prediction model established by PLSR had

excellent interpretability, and the results of the predictor weights

analysis showed that there are differences and similarities in the

structural and functional changes of males and females during typical

brain development. The predictor weights of GM volume were gener-

ally negative, whereas those of WM volume were the opposite,

mostly positive (Figure 3). Anatomy and neuroscience generally show

that the volume of GM gradually increases from birth to 4 years old,

and then starts to decrease and that the volume of WM increases

steadily until it reaches a plateau around the age of 20 (Pfefferbaum

et al., 1994). This is highly similar to the results of our study. The inter-

nal mechanism for these changes is the genetic manifestation of pro-

gressive (myelination [Benes, Turtle, Khan, & Farol, 1994]) and

degenerative (synaptic pruning [Purves & Lichtman, 1980]) processes

during brain development (Silk & Wood, 2011). In addition, brain

F IGURE 5 BrainAGE between NCs and ASDs and its relationship with the ADOS scores in the ABIDE dataset. (a) Density map for the ABIDE
dataset. The dotted line is the average value of the BrainAGE for the NCs and ASDs, respectively. (b) Density map for the HBN dataset. The
dotted line is the average value of the BrainAGE for the NCs and ASDs, respectively. On both datasets, the BrainAGE for the NCs was higher
than that for the ASDs. (c) Comparison between the PRD group and DED group on ADOS scores. The PRD group is the warm color, and the DED
group is the cool color. In four items, the scores of the PRD group were all significantly higher than the DED group. PRD, premature
development; DED, delayed development; T, Total; C, Comm; SO, Social; ST, stereo_behav
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subregions like the basal ganglia, thalamus, and middle frontal gyrus

play very important roles during development. Apart from these

regions, some previous studies have shown obvious sex differences in

the GM of the cingulate gyrus (Xin, Zhang, Tang, & Yang, 2019), amyg-

dala (Zaidi, 2010), inferior frontal gyrus, and posterior temporal

regions (Wilke, Krageloh-Mann, & Holland, 2007), and areas with

obvious gender differences in the WM are mainly concentrated in the

cingulate and temporal regions (Hsu et al., 2008; Wilke et al., 2007).

These evidences have also been replicated in our work (Figure 3).

Functional characteristics also undergo changes during brain

development (Davis et al., 2009; Dosenbach et al., 2010). In our study,

functional connections related to the SN and DM networks played a

very important role, and a portion of the connections between the

SM and the FP networks also had high weights. The predictor weights

for the functional network of males and females were very similar

overall (Figure 4). Previously, Cui et al. (2020) found that the differ-

ences between males and females in the local functional topography

of the association cortex are the greatest during adolescence and that

these differences can encode the maturity of the brain. Additionally,

the functional network connections that we found with high predictor

weights had a lot of overlap with the association cortex, which shows

that these high-weight functional connections play a major part in the

brain maturation process. Complementarily, the DM network is usu-

ally activated when the brain is not involved in a task and has been

shown to change significantly during brain development (Supekar

et al., 2010), and the SN network involves many important functions,

such as regulation, emotion, and memory, and plays a vital role in ado-

lescence (Goddings et al., 2014). Also, changes in cortico-cortical con-

nectivity and subcortical regions are increasingly recognized as

providing a unique insight into understanding typical brain develop-

ment (Hwang, Bertolero, Liu, & D'esposito, 2017; Müller et al., 2020).

These evidences are consistent with the findings in our work.

In addition, it can be seen from Figure 3 that the top 10% of the

weights of the GM, WM, and CSF volumes were mostly located in the

SN, LM, and DM networks and that they were mostly connected to

the SN and the DM networks, which means the structural and func-

tional changes during brain development have a certain consistency.

In addition, the main sex differences in brain structural predictor

weights are concentrated in subregions such as the amygdala, para-

hippocampal gyrus, and inferior parietal lobule. Zaidi (2010) and Sun

et al. (2015) showed that there was sexual dimorphism in these struc-

tures. The amygdala plays a very important role in modulating the

storage of memory for emotional events (McGaugh, 2004), memory

(Aggleton, 2000), and processing emotion (Kilpatrick & Cahill, 2003).

The inferior parietal lobule allows the brain to process information

and helps in selective attention and perception, such as math ability,

the ability to rotate 3-D figures, and sense relationships between

body parts (Sabbatini, 1997; Zaidi, 2010). The parahippocampal gyrus

is related to the integrative and maintenance functions of the episodic

buffer (Luck et al., 2010) and is the main point of cortical input for the

hippocampus and an important part of the hippocampus function

(Van Hoesen, 1982). Extensive evidence shows that there are signifi-

cant differences in male and female hippocampal function and

anatomy (Madeira & Lieberman, 1995). Therefore, when building a

prediction model based on brain structure and function, sex differ-

ences need to be taken into account.

BrainAGE shows different deviations for different mental dis-

orders (Borgwardt et al., 2013); thus, an accurate typical brain

development prediction model is helpful for clearly distinguishing

the differences in the developmental characteristics of different

mental disorders. We built a brain age prediction model with excel-

lent generalization performance and stability based on the brain

development characteristics of the different sexes (Table 2). In our

study, the BrainAGE of the ASDs was significantly smaller than that

of NCs at the group level, and this was reproducible on two inde-

pendent datasets (Figure 5a,b), which shows that the results have a

certain degree of stability. Tunc et al. (2019) has also showed that

ASD caused a delay in the brain development of patients and that

their BrainAGE had a negative correlation with ADOS scores.

Further, ASD is a heterogeneous syndrome and has obvious sex dif-

ferences (Lin, Ni, Lai, Tseng, & Gau, 2015), so we trained the sex-

specific model in order to analyze ASD disorders objectively and

accurately.

In most studies, the BrainAGE analysis of mental disorders is

based on conclusions drawn at the group level. However, we found

that although the BrainAGE of ASDs is overall lower than that of NCs,

there were still both delayed and PRD characteristics within the ASD

group (Figure 5a,b). Based on this, we divided ASDs into a delayed

development group and a PRD group and analyzed the ADOS scores

between two groups. Figure 5c shows that the PRD group and the

DED group had significant differences in the four AODS items and

that the scores of the PRD group were significantly higher than those

of the DED group. This finding may not be completely consistent with

the results of Tunc et al. (2019). This might have been because we

directly divided the ASDs into two groups based on brain develop-

mental characteristics rather than subjectively choosing to divide

boundaries. Also, we used a larger sample size for training and testing,

which allowed the prediction model to contain the attributes of the

cross-datasets and ensured the stability of the results. The classical

ADOS has four items: total score, communication score, social score,

and stereotyped behavior score, which correspond to the prevalence

characteristics of ASD (Sajdel-Sulkowska, Xu, McGinnis, &

Koibuchi, 2011). Figure 5c and Table S3 indicate that the differences

between the delayed and PRD groups were mainly manifested in

social and stereotyped behaviors, which shows that these two types

of cognitive indicators may be the main factors that cause the differ-

ence between ASD patients and healthy people. In addition, the

higher scores in the PRD group suggest that ASDs with premature

brain development may have a higher severity of disorder. Faster mat-

uration could potentially restrict the plasticity of the brain, and repeti-

tive experiences and negative encouragement could aggravate this

process (Tooley, Bassett, & Mackey, 2021). Furthermore, most of the

existing behavioral and neuroimaging-based studies are carried out at

the group level, which makes it difficult for the research results to be

promoted in clinical. Because of the large heterogeneity of individual

patients in clinic, group-level research is not applicable. Our research
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distinguishes subgroups according to different developmental charac-

teristics of patients, which can alleviate the problem of heterogeneity

to a certain extent. Future research may use this as a basis to explore

more individualized methods to describe ASD patients, so as to pro-

vide new support for related diagnosis and intervention. In short, ASD

is a highly heterogeneous mental disorder, and the discovery of its

potential characteristics requires to be investigated at the individual

level. Therefore, we not only need to observe the overall performance

of the whole dataset, but also to dig into the potential individual dif-

ferences within it.

The present work still has several potential limitations. First, the

label used in the training process for the brain age prediction model

was chronological age, and the true brain age is actually unknown, so

the predicted brain age calculated by the prediction model may have

some problems. Perhaps, what we did could be considered to be an

explanatory method to introduce the cognitive scores used in the

work of Niu et al. (2020) and Kramer et al. (2020) into brain age pre-

diction work. Second, brain development is a complex and dynamic

process, but our weight analysis was limited to cross-sectional data

from the subjects during MRI scans; the use of longitudinal data could

improve the study of the changes in brain function and structure.

Third, in our work, we often used linear models to simplify problems

and obtain good interpretability, but most of the actual issues are very

complicated, and nonlinear models may achieve better results (Niu

et al., 2020). In the future, we will use more types of neuroimaging to

build a better-performing brain age prediction model. Some other

techniques such as genetic analysis can be used in combination with

neuroimaging data to explore the differences between ASDs and NCs

on different scales. Besides, the new individualized research method

will further analyze the difference and relationship between ASDs and

NCs, so that related research can be better transformed into clinical

applications.
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