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ABSTRACT

Stm1p is a Saccharomyces cerevisiae protein that
is primarily associated with cytosolic 80S ribosomes
and polysomes. Several lines of evidence suggest
that Stm1p plays a role in translation under nutrient
stress conditions, although its mechanism of action
is not yet known. In this study, we show that yeast
lacking Stm1p (stm1") are hypersensitive to the
translation inhibitor anisomycin, which affects
the peptidyl transferase reaction in translation
elongation, but show little hypersensitivity to other
translation inhibitors such as paromomycin and
hygromycin B, which affect translation fidelity.
Ribosomes isolated from stm1" yeast have intrin-
sically elevated levels of eukaryotic elongation
factor 3 (eEF3) associated with them. Over-
expression of eEF3 in cells lacking Stm1p results
in a growth defect phenotype and increased
anisomycin sensitivity. In addition, ribosomes with
increased levels of Stm1p exhibit decreased associ-
ation with eEF3. Taken together, our data indicate
that Stm1p plays a complementary role to eEF3
in translation.

INTRODUCTION

The Saccharomyces cerevisiae gene STM1 and its encoded
protein Stm1p have been implicated in myriad biological
processes, including apoptosis, cell-cycle regulation,
telomere biosynthesis, cell-life span regulation, messenger
RNA (mRNA) degradation and nutritional stress
responses (1–11). However, it is not inherently obvious
how a single protein is able to influence so many different
biological processes. One possible explanation is that
Stm1p is involved in a general process, such as protein
synthesis, that, in turn, has an impact upon a whole
host of cellular functions. While Stm1p was originally
identified as a G�G multiplex nucleic-acid-binding protein

(12,13), we showed that Stm1p is primarily a cyto-
plasmic protein that preferentially associates with 80S
ribosomes and polysomes, which are the ‘engines’ of pro-
tein synthesis (8). We also found that Stm1p significantly
affected rates of protein synthesis under nutrient stress
conditions (9). Thus, a role of Stm1p in protein synthesis
could help explain the variety of biological processes
affected by it.

Translation consists of three steps: initiation, elongation
and termination (14). Each step is facilitated by a variety
of auxiliary proteins known as initiation, elongation and
termination factors, many of which are functionally
conserved among all organisms. Two elongation factors
are key for the peptide chain elongation reaction, and
both are highly conserved between prokaryotes and
eukaryotes. Elongation factor 1 (eEF1A in eukaryotes
and EF-Tu in prokaryotes) is responsible for binding
cognate aminoacyl-tRNAs to the ribosomal A-site; elong-
ation factor 2 (eEF2 in eukaryotes and EF-G in
prokaryotes) is involved in translocating both mRNA
and tRNA from the A-site to the P-site following peptidyl
transfer. However, yeast and certain other fungi possess
an additional elongation factor, eukaryotic elongation
factor 3 (eEF3), which is indispensable for translation
elongation (15–17). In S. cerevisiae, the YEF3 gene
encodes eEF3, which is essential for viability (18,19).
Yeast eEF3 is a 116 000-kDa protein that possesses
ribosome-stimulated adenosine triphosphate (ATP)ase
activity (19–21). eEF3 interacts with both ribosomal sub-
units and facilitates eEF1A-mediated cognate aminoacyl-
tRNA binding to the ribosomal A-site (22–27). While a
great deal is known about the role of eEF3 in translation
elongation, details about its regulatory role in this process
remain unknown.

Although we have previously shown that Stm1p
affected protein synthesis under nutrient deprivation
conditions and polysome profiles in the presence of
rapamycin, we do not yet know the exact role that
Stm1p plays in translation. Using Stm1p mutants and
both in vivo and in vitro methods, we found that Stm1p
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perturbs the normal association of eEF3 with ribosomes
and affects translation elongation.

MATERIALS AND METHODS

Yeast strains, media and microbiological methods

Yeast strains investigated include K699 (MATa ade2-1
can1-100 his3-11,-15 leu2-3,-112 ssd1-D trp1-1 ura3)
BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0) and
their respective stm1D mutants, D28 and 4107. Gene
replacements in K699 were performed with a HIS3 select-
able marker, while those in BY4741 were done using a
kanMX selection module. Strains BY4741 and its isogenic
stm1� counterpart transformed with the high-copy-
number plasmid YLR249W, a pBG1805 derivative
(ampR, ura3) containing the YEF3 gene, were used in
experiments requiring galactose-inducible overexpression
of eEF3. In addition, yeast strain AVL78 (MATa leu2 trp1
ura3-52 prb prc pep4-3), possessing defective proteasome
activity (28), and transformed with the high-copy-number
plasmid YLR150W, a pBG1805 derivative (ampR, ura3)
containing the STM1 gene, was used in experiments
requiring galactose-inducible overexpression of Stm1p.
Yeast were routinely propagated in YPD medium
(1% yeast extract, 2% peptone and 1% dextrose) at
308C. For particular experiments, yeast were propagated
in either synthetic minimal (SD) or synthetic complete
(SC) medium supplemented with or lacking the appropri-
ate amino acids and nucleic acid bases for the strains
under investigation (29). For example, strain K669 and
its stm1� derivative were propagated in SD medium
supplemented with adenine sulfate (20mg/l), L-histidine-
HCl (20mg/l), L-isoleucine (30mg/l), L-leucine (30mg/l),
L-tryptophan (20mg/l) and uracil (20mg/l), while strain
BY4741 and its derivatives and strain AVL78 were
propagated in SC medium without uracil for the selection
of transforming pBG1805-derived plasmids. The primary
carbon source in SD and SC medium was glucose (2%) by
default unless substituted with galactose (2%), where
indicated, for protein induction experiments.

Protein synthesis inhibitor sensitivity assays

Yeast cultures were diluted in YPD to an optical density
at 600 nm (OD600) of 0.4. Ten microliters of these cultures
and 10-fold serial dilutions were spotted onto agar plates
containing either YPD or synthetic defined (SD�) medium
supplemented with essential amino acids and nucleic
acid bases and inhibitory concentrations of the protein
synthesis inhibitors anisomycin (20 mg/ml), cycloheximide
(50 mg/ml), hygromycin B (0.1 mg/ml) or paromomycin
(200 mg/ml), as indicated. Plates were incubated at 308C
for 3–7 days, and colony growth was determined by visual
inspection.

Yeast extract preparation and ribosome fractionation

Yeast cells were grown to mid-logarithmic phase
(OD600=0.5) in 200ml of YPD medium at 308C and
then chilled on ice immediately before harvesting by cen-
trifugation (3000g for 5min at 48C). Pelleted yeast cells

were washed with ice-cold lysis buffer [50mM Tris–HCl
(pH 7.5), 100mM NaCl, 7mM MgCl2, 1mM DTT, 1mM
PMSF, 1 mM leupeptin, 1 mM pepstatin and 2.5 mg/ml
antipain] and then resuspended in 0.5ml of lysis buffer
together with a quarter-volume of acid-washed 0.5-mm
Glasperlen glass beads (B. Braun Biotech, Allentown,
PA, USA). Cells were disrupted by vortexing for 20 s
and then cooling on ice for 30 s, for a total of 10 cycles.
Unbroken cells and large debris were removed by low-
speed centrifugation (800g for 10min at 48C), thereby
yielding yeast whole-cell extract.
For polyribosome analysis, five OD260 units (�150 ml)

of whole-cell extracts were layered onto a 12-ml linear
sucrose gradient (10–50%) containing 50mM Tris-acetate
(pH 7.0), 50mM NH4Cl, 3mM MgCl2 and 1mM DTT.
These gradients were centrifuged in an SW-40 rotor
(Beckman Coulter) at 100 000g for 18 h, and 0.4-ml
fractions of the gradients were recovered using an Auto
Densi-Flow IIC gradient fractionator (Labconco, Kansas
City, MO, USA). During fraction collection, the OD254

was recorded using a UA-5 absorbance/fluorescence
detector (Isco, Lincoln, NE, USA). Polysome to 80S
ratios were calculated by comparing the area under
the 80S peak and the combined area under the
polysome peaks.

Immunoblotting

Protein samples isolated by differential centrifugation
or sucrose gradient fractionation were resuspended in
Laemmli sample buffer, denatured by heating to 958C
for 5min and loaded onto SDS-12% polyacrylamide gels
using standard methods. After electrophoretic separation,
the proteins were electroblotted onto Hybond-C Extra
nitrocellulose membranes (Amersham Biosciences,
Piscataway, NJ, USA). Membranes were blocked with
5% nonfat dry milk in phosphate-buffered saline
containing 0.2% Triton X-100 and then probed with
anti-Stm1p (1 : 5000 dilution) (8) or anti-EF3 (1 : 5000
dilution) (25) rabbit polyclonal antibodies or with an
anti-L3 mouse monoclonal antibody (1 : 5000 dilution)
(30), followed by 1 : 6000 dilutions of sheep antirabbit or
antimouse IgG horseradish peroxidase-conjugated sec-
ondary antibodies (Amersham Biosciences). Antibodies
were visualized using a SuperSignal West Pico chemilu-
minescent substrate (Pierce Biotechnology, Rockford,
IL, USA) following the manufacturer’s instructions.

Immunoprecipitation

Whole-cell lysates were incubated with anti-Stm1p rabbit
polyclonal antibodies at 48C for 12 h with continuous
rotation in a high-salt buffer [50mM Tris–HCl (pH 7.5),
500mM NaCl, 30mM MgCl2, 1mM DTT, 1mM PMSF,
1 mM leupeptin, 1 mM pepstatin and 2.5mg/ml antipain] to
disrupt the interaction of Stm1p with ribosomes. The
resulting antigen–antibody complexes were bound to pro-
tein G-agarose, washed thrice with high-salt buffer plus
0.1% Triton X-100, extracted with 2� Laemmli sample
buffer, resolved by SDS–PAGE and western blotted
using anti-ubiquitin or anti-HA epitope tag antibodies.
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Protein synthesis efficiency determination

Total protein synthesis efficiency was determined by
[35S]methionine incorporation, essentially as described pre-
viously (31). Briefly, yeast were grown in the appropriate
liquid culture, as indicated, at 308C until the OD600 reached
0.1. At that point, 10 mCi [35S]methionine in a final con-
centration of 130 mMmethionine was added to the cultures.
Aliquots (0.3ml) were removed periodically and methio-
nine incorporation determined by cold trichloroacetic
acid precipitation and scintillation counting.

RESULTS

Yeast lacking Stm1p are more sensitive to inhibitors
of translation elongation

To determine how Stm1p might affect translation, we grew
wild-type or stm1� mutant yeast on medium containing
inhibitors that affect different steps in protein synthesis
and are known to be effective in vivo. For example,
anisomycin competes with the binding of the 30 end of
aminoacyl-tRNA to the peptidyltransferase center, thereby
inhibiting translation elongation (32). Cycloheximide,
in addition to its inhibition of translation initiation
at low concentrations, can also inhibit polypeptide
chain translocation when present at high concentrations
(33). The aminoglycoside antibiotics hygromycin B
and paromomycin affect translation through dual
mechanisms, both by distorting the ribosomal A site,
which causes the misreading of aminoacyl-tRNAs, and
by inhibiting ribosomal translocation. (34,35). We
observed no differences in colony size or number of
yeast cultures grown on rich medium containing inhibi-
tory concentrations of cycloheximide (0.1 mg/ml), paro-
momycin (200mg/ml) or hygromycin B (50 mg/ml) (data
not shown). We found that only anisomycin (20mg/ml)
had an appreciable but small inhibitory effect on stm1�
yeast growth (Figure 1A). Because we had previously
observed that the greatest phenotypic differences with
stm1� occurred under nutrient deprivation conditions
(9), we investigated the antibiotic sensitivity of stm1�
yeast grown on SD medium supplemented with a minimal
set of required amino acids and nucleic acid bases. Under
these conditions, we found that anisomycin strongly
inhibited the growth of stm1� yeast, whereas cyclo-
heximide only slightly reduced growth (Figure 1B).
Moreover, we found that neither hygromycin B nor
paromomycin had any appreciable effect on the growth
of either wild-type or stm1� yeast. Taken together, these
data indicate that certain protein synthesis inhibitors that
affect translation elongation have an inhibitory effect on
yeast growth in the absence of Stm1p, especially under
supplemented minimal medium conditions.

Ribosomes lacking Stm1p exhibit increased eEF3
association

Translation elongation is a multistep process involving
multiple factors (14). To better understand whether
Stm1p affects any translation elongation factors, we
purified 80S ribosomes from wild-type and stm1� yeast

by sucrose gradient ultracentrifugation and analyzed
the proteins present in these samples by SDS–PAGE
(Figure 2A). Although most proteins associated with 80S
ribosomes were found in similar amounts in either

Figure 1. Yeast lacking Stm1p are more sensitive to certain protein
synthesis inhibitors. (A) Ten-fold serial dilutions of wild-type yeast
strain K699 (wt) or its isogenic counterpart lacking Stm1p (stm1�)
were plated on rich medium (YPD) containing 20 mg/ml anisomycin,
as indicated. Colony growth after 3 days of incubation at 308C is
shown. (B) Same as in (A), except that yeast were plated on minimal
synthetic defined medium supplemented with essential amino acids and
nucleic acid bases (SD�) and containing 20 mg/ml anisomycin, 0.1 mg/ml
cycloheximide, 50 mg/ml hygromycin B or 200mg/ml paromomycin, as
indicated.
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wild-type or stm1� yeast strains, there were a few
candidates that were present in greater amounts in
ribosomes isolated from one or the other yeast strain.
One protein, with an apparent molecular mass of
35 kDa, was identified as Stm1p and was present in wild
type but not stm1� yeast extracts. Another differentially
observed protein was a 115-kDa species that was substan-
tially more abundant in 80S ribosomes from stm1� yeast
than in those from wild-type yeast. This protein was
identified as yeast eEF3 (Yef3p) by peptide fingerprinting
(data not shown). Thus, these biochemical data indicate
that Stm1p affects the equilibrium binding of eEF3 to
ribosomes.

To further understand the interplay between Stm1p and
eEF3 and their association with ribosomes, we used
sucrose gradient ultracentrifugation to separate the differ-
ent ribosomal species present in wild-type and stm1�
yeast whole-cell extracts followed by western blotting to

determine the distribution of Stm1p and eEF3 in these
species. Note that these ribosomal species were prepared
in the absence of cycloheximide, which is usually added to
prevent continued translation elongation and loss of
ribosomes associating with mRNA. The ribosomal protein
L3, which is normally present in the 60S large ribosomal
subunit, 80S monosomes and polysomes, was used as an
internal control. As we previously observed, there were no
appreciable differences in the distribution or sedimenta-
tion properties of the different ribosomal species obtained
from wild-type and stm1� yeast strains (Figure 2B and C)
(9). This result was further confirmed by the similar L3
protein distribution in both gradients. Stm1p was predom-
inantly distributed in 80S monosomes and to a lesser
extent in polysomes, which is also consistent with our pre-
vious findings (9). However, we noted a striking difference
in the eEF3 protein distribution in ribosomes either
possessing or lacking Stm1p. When Stm1p was present,
eEF3 was approximately equally distributed between a
low-sedimentation species, thought to be ‘free’ eEF3
protein, and eEF3 that co-sedimented with 80S
monosomes (Figure 2B). Very little eEF3 was detected
in the polysome fractions. However, when Stm1p was
absent (Figure 2C), the levels of eEF3 associated with
80S monosomes and lighter polysomes were substantially
higher than eEF3 levels when Stm1p was present.
Taken together, these data suggest that Stm1p nega-
tively influences the equilibrium binding of eEF3 to
ribosomes, which is consistent with our observation that
increased amounts of eEF3 associate with ribosomes
lacking Stm1p.

Overexpression of eEF3 exacerbates the reduced cell
growth phenotype, decreased protein synthesis, increased
polysomes and increased eEF3 : ribosome association
observed in stm1" yeast strains

Based on the above results linking the function of eEF3
to Stm1p, we used a genetic approach to test the effects
of eEF3 overexpression on cell viability in the presence or
absence of Stm1p. Yeast strain BY4741 or its isogenic
counterpart stm1� was transformed with plasmid
YLR249W, which allowed galactose-inducible over-
expression of the yeast eEF3 protein, or the control
vector pBG1805. Overexpression of eEF3 in cells
possessing Stm1p conferred a reduced cell growth pheno-
type compared to that observed with cells possessing
endogenous levels of eEF3 (Figure 3A). Reduced cell
growth was also observed with an isogenic stm1� strain
possessing endogenous levels of eEF3 when propagated in
a galactose-containing medium. Notably, when eEF3 was
overexpressed in a strain lacking Stm1p, a dramatic
growth inhibition was observed. Addition of anisomycin
exacerbated the reduced growth phenotypes observed
when eEF3 was overexpressed or when Stm1p was
absent and caused increased anisomycin sensitivity in
stm1� yeast overexpressing eEF3. Thus, under growth
conditions with minimal medium, the absence of Stm1p
can exacerbate the slow growth phenotypes resulting from
eEF3 overexpression and anisomycin treatment.

Figure 2. Increased association of eEF3 with ribosomes in the absence
of Stm1p. (A) Whole-cell extracts from wild-type K699 (wt) or its
isogenic counterpart lacking Stm1p (stm1�) were resolved by ultracen-
trifugation through a 10–50% sucrose gradient and fractionated.
Shown is an SDS–PAGE analysis of proteins present in the 80S
fractions stained with Coomassie brilliant blue G-250. (B) UV
absorbance trace from the sucrose gradient fractionation of wild-type
K699 yeast extract (top) and western blots of ribosomal protein L3,
eEF3 and Stm1p present in each fraction (bottom). (C) Same as in (B)
except the cell extract was from stm1� yeast.
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Figure 3. In the absence of Stm1p, eEF3 overexpression exacerbates the cell grow defect, reduces translational efficiency and increases
eEF3 : ribosome association. (A) Ten-fold serial dilutions of wild-type yeast strain BY4741 (wt) or its isogenic counterpart lacking Stm1p
(stm1�), transformed with either a galactose-inducible eEF3 expression plasmid (+eEF3) or a control plasmid (e), were plated on synthetic complete
medium lacking uracil (SC-Ura), with either glucose (Glu) or galactose (Gal) and 20 mg/ml anisomycin (An), as indicated. Colony growth after 3 days
of incubation at 308C is shown. (B) Wt and stm1� BY4741 yeast, transformed with either a galactose-inducible eEF3 expression plasmid (+eEF3) or
a control plasmid, were propagated in synthetic complete medium lacking uracil and containing galactose and 10 mCi [35S]methionine for the
durations indicated. Aliquots were removed and trichloroacetic-acid-precipitable radioactivity determined by scintillation counting. (C) UV absorb-
ance trace from the sucrose gradient fractionation of whole-cell extract from wild-type BY4741 yeast transformed with an eEF3 expression plasmid
(top, orange trace), stm1� BY4741 yeast transformed with a control plasmid (middle, cyan trace) and stm1� BY4741 yeast transformed with an
eEF3 expression plasmid (bottom, red trace), each compared with the UV absorbance trace from the sucrose gradient fractionation of whole-cell
extract from wild-type BY4741 yeast transformed with a control plasmid (blue traces). For each, their polysome to 80S ratio is indicated in brackets.
All yeast strains were propagated for 4 h in SC-Ura medium plus galactose. (D) Proteins from whole-cell extracts from the yeast described in (C) were
separated by SDS–PAGE and analyzed by western blotting using antibodies against Stm1p, eEF3 or actin, as indicated. In this experiment, actin
served as a loading control. (E) Ribosomes from the aforementioned yeast were purified by sucrose gradient ultracentrifugation and proteins from
sucrose gradient fractions corresponding to the 80S peak were separated by SDS–PAGE and analyzed by western blotting using antibodies against
Stm1p, eEF3 or L3, as indicated. In this experiment, L3 protein served as a loading control.
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Yeast eEF3 has a well-established function in
translation, where it is thought to facilitate elongation
(15–19). Likewise, there exists some evidence that the
observed phenotypes resulting from STM1 deletion are
the result of its role in translation (9). To investigate
whether the complementary effects of these two proteins
on cell growth could be the result of changes in translation
efficiency, bulk protein synthesis in wild-type and stm1�
BY4741 yeast strains, either with endogenous eEF3
levels or overexpressing eEF3, was investigated using
a [35S]methionine-incorporation assay (31). Under the
conditions tested, both STM1 deletion and eEF3
overexpression had similar effects on protein synthesis,
with a 36% reduction of [35S]methionine incorporation
into proteins after 60min (Figure 3B). However, when
both STM1 was deleted and eEF3 was overexpressed,
[35S]methionine incorporation was suppressed by 72%.
These data demonstrate that the absence of Stm1p and
overexpression of yeast eEF3 have additive effects on the
process of translation.

An effect of STM1 deletion on translation should be
observed through changes in polysome profiles. For
example, when translation elongation is inhibited one
often observes an increase in polysomes relative to the
80S ribosome peak (36). We found that wild-type
BY4741 yeast overexpressing eEF3 exhibited a slight
increase in polysomes (Figure 3C). Comparing the area
under the polysome peaks to that under the 80S peak,
we measured a polysome to 80S ratio (P/80S) of 0.80,
which was slightly greater than the polysomes : 80S ratio
observed for wild-type BY4741 harboring a control plas-
mid (P/80S=0.51). A more pronounced increase
in polysomes was observed with stm1� BY4741 yeast
(P/80S=1.16), with the greatest increase being found
for stm1� BY4741 yeast overexpressing eEF3
(P/80S=1.23). Taken together, these data support the
contention that STM1 deletion and/or eEF3 over-
expression negatively impact translation elongation.

We also analyzed the amount of eEF3 protein from cell
lysates by western blot analysis to determine whether
Stm1p influenced cellular levels of the eEF3 protein.
Basal levels of the eEF3 protein were similar in both
wild-type and stm1� yeast strains (Figure 3D). Likewise,
the extent to which eEF3 could be overexpressed was
comparable in both strains. Thus, Stm1p apparently
does not appreciably affect the homeostasis of eEF3.
Similarly, levels of Stm1p were unchanged when eEF3
was overexpressed. Thus, eEF3 does not appreciably
affect the homeostasis of Stm1p. Next, we determined
whether the observed growth defect correlated with
increased levels of eEF3 associated with ribosomes.
Ribosomes from wild-type and stm1� yeast strains, both
with and without eEF3 overexpression, were purified by
centrifugation through sucrose gradients and the proteins
associated with 80S ribosomes were analyzed by western
blotting (Figure 3E). Regardless of whether endogenous
eEF3 levels were present or eEF3 was overexpressed,
the amount of eEF3 associated with 80S ribosomes
was dramatically increased in ribosomal fractions from
stm1� yeast strains as compared with isogenic wild-
type strains. Notably, the amount of Stm1p found

associating with ribosomes was not affected by the
overexpression of eEF3. These data demonstrate a direct
correlation between the observed cell-growth inhibition
and the amount of eEF3 associated with ribosomes,
suggesting a functional relationship between eEF3 and
Stm1p in vivo.

Ribosomes with increased levels of Stm1p exhibit
decreased eEF3 association

Because we found that ribosomes from stm1� yeast
strains exhibited increased eEF3 association, we
hypothesized that Stm1p negatively regulates the amount
of eEF3 associated with ribosomes. We sought reciprocal
support for this model by testing the effects of Stm1p
overexpression on eEF3 association with ribosomes.
Given that Stm1p has been shown to be a target for
proteasomal degradation (5), we chose to pursue these
studies using the proteasome defective strain AVL78
(28). Yeast strain AVL78 was transformed with plasmid
YLR150W, which allows galactose-inducible over-
expression of Stm1p, or the control vector pBG1805.
Overexpression of Stm1p in these cells conferred a sub-
stantially reduced growth phenotype compared to yeast
with endogenous levels of Stm1p (Figure 4A). This
reduced growth was correlated with an initial reduction
in total protein synthesis, although the rate of protein
synthesis was similar at later time points (Figure 4B).
This apparent delay in protein synthesis may be, in part,
a result of the impaired proteasome function in these cells,
which allows accumulation of otherwise relatively labile
proteins. In addition, the observed reduction in protein
synthesis correlated with an increase in heavy polysomes
(Figure 4C, P/80S increased from 0.63 to 1.07), suggesting
that Stm1p overexpression might inhibit translation
elongation.
To verify the overexpression of Stm1p and its effects

on cellular eEF3 levels, cell lysates were prepared from
galactose-induced yeast, soluble proteins resolved by
SDS–PAGE and specific proteins visualized by western
blotting. We found that yeast overexpressing Stm1p
demonstrated an accumulation of a more slowly migrating
species that cross-reacted with anti-Stm1p antibodies
(Figure 4D). Accumulation of this high-molecular-
weight species had no effect on cellular eEF3 or actin
levels. Given that Stm1p overexpression was performed
in a proteasome-deficient yeast strain, we hypothesized
that the high-molecular-weight species corresponded
to ubiquitinated Stm1p. This hypothesis was verified
with an immunoprecipitation experiment (Figure 4E).
Curiously, no apparent increase in levels of normally
migrating Stm1p was observed when Stm1p was
overexpressed. This result suggests that Stm1p levels
may be tightly regulated in cells to ensure that excess
Stm1p does not accumulate.
To test the effects of Stm1p overexpression on the com-

plement of proteins associating with ribosomes, we used
ultracentrifugation of whole-cell extracts to obtain
ribosomes and their constituent proteins from yeast both
with or without overexpression of Stm1p. Proteins were
resolved by SDS–PAGE and analyzed by western blotting.
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We found that overexpression of Stm1p led to an
increased amount of ubiquitinated Stm1p associated
with ribosomes (Figure 4F). Correspondingly, we found
decreased amounts of eEF3 associated with ribosomes
from cells overexpressing Stm1p. This experiment con-
firms our hypothesis that Stm1p negatively regulates the
amount of eEF3 associated with ribosomes.

DISCUSSION

In this study, we demonstrated that yeast lacking the
ribosome-associated protein Stm1p exhibited increased
sensitivity to specific protein synthesis inhibitors,

e.g. anisomycin and cycloheximide, especially when pro-
pagated in minimal medium. The effect of STM1 deletion
on the sensitivity of the cells to anisomycin provides good
in vivo evidence of a role for Stm1p in translational
elongation. We also found that ribosomes lacking Stm1p
had elevated levels of the yeast-specific elongation factor
eEF3 associated with them as compared with wild-type
ribosomes. In addition, we found that when ribosomes
had elevated levels of associated Stm1p, they exhibited
decreased levels of eEF3 association. Similarly, over-
expression of eEF3 in cells lacking Stm1p resulted in
an enhanced growth defect, which notably correlated
strongly with elevated levels of eEF3 associated with

Figure 4. Overexpression of Stm1p in a proteasome-deficient strain (AVL78) led to decreased amounts of eEF3 associated with ribosomes. (A) Ten-
fold serial dilutions of wild-type yeast strain AVL78 transformed with either a galactose-inducible Stm1p expression plasmid (+Stm1p) or a control
plasmid (e), were plated on synthetic complete medium lacking uracil (SC-Ura) and containing either glucose (Glu) or galactose (Gal), as indicated.
Colony growth after 3 days of incubation at 308C is shown. (B) AVL78 yeast transformed with either a galactose-inducible Stm1p expression plasmid
(+Stm1p) or a control plasmid were propagated in synthetic complete medium lacking uracil and supplemented with galactose and 10 mCi
[35S]methionine for the durations indicated. Aliquots were removed and trichloroacetic-acid-precipitable radioactivity determined by scintillation
counting. (C) UV absorbance traces from the sucrose gradient fractionation of whole-cell extracts from wild-type AVL78 yeast transformed with
either an Stm1p expression plasmid (red trace) or a control plasmid (black trace). For each, their polysome to 80S ratio is indicated in brackets.
All yeast strains were propagated for 4 h in SC-Ura medium plus galactose. (D) Proteins from whole-cell extracts of AVL78 were separated by SDS–
PAGE and analyzed by western blotting using antibodies against Stm1p, eEF3 or actin, as indicated. (E) Stm1p from the above whole-cell extracts
was immunoprecipitated with an anti-Stm1p antibody in the presence of 500mM NaCl, proteins were resolved by SDS–PAGE and analyzed by
western blotting using anti-ubiquitin antibodies (right). SDS–PAGE-resolved proteins from this experiment western blotted with anti-Stm1p
antibodies are shown on the left. (F) Ribosomes from the above yeast extracts were purified by sucrose gradient ultracentrifugation and proteins
from sucrose gradient fractions corresponding to the 80S peak were separated by SDS–PAGE and analyzed by western blotting using antibodies
against Stm1p, eEF3 or L3, as indicated.
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ribosomes. Taken together, these genetic and biochemical
data suggest that Stm1p is important for eEF3 function,
presumably by affecting the proper association of eEF3
with 80S ribosomes.

One of the best ways of determining how Stm1p affects
translation in vivo is to investigate Stm1p-dependent
changes in ribosome distribution following sucrose gradi-
ent ultracentrifugation. We observed that the absence of
Stm1p caused a notable increase in polysomes, which was
exacerbated by eEF3 overexpression. Similarly, depletion
or inactivation of the yeast translation factor eIF5A was
shown to cause a pronounced increase in polysomes
and inhibit translation elongation (37,38). Given that
our methionine incorporation experiments indicated
decreased protein synthesis in stm1� yeast that was
exacerbated by eEF3 overexpression, these data strongly
support the contention that the absence of Stm1p affects
translation elongation in a cooperative fashion with eEF3.
In addition, overexpression of Stm1p caused both an
increase in heavy polysomes and a decrease in protein
synthesis. Such is reminiscent of human ribosomal S5 pro-
tein expression in yeast, which demonstrated an increase
in heavy polysomes and a decrease in eEF3-ribosome
interactions, thereby affecting translation elongation
(39). Thus, there may be an ideal range of Stm1p and
eEF3 concentrations that permit optimal translation
elongation.

Previously, we found that Stm1p exists in a 1:1 complex
with 80S ribosomes and interacts with both the 40S
and 60S ribosomal subunits (9). The interface between
ribosomal subunits is well-known to be very important
for ribosomal function, as it is the interaction site for
aminoacyl-tRNA and the canonical elongation factors
eEF1A and eEF2. As mutations or deletions of genes
directly involved in translation elongation usually lead
to a lethal phenotype or substantial alterations in protein
synthesis (40–45), we postulate that Stm1p most likely
does not have an overlapping interaction site with
eEF1A and eEF2. Cryo-electron microscopy of the
eEF3-80S ribosome complex has indicated that eEF3
interacts with both the large and small ribosomal subunits
but at a different site than those recognized by eEF1A and
eEF2 (27,46,47). The fact that eEF3 has a completely dif-
ferent binding site from the canonical elongation factors
is consistent with the observation that in the absence
of Stm1p more eEF3 associates with ribosomes. It is
of interest to note that sequence alignments between
S. cerevisiae eEF3 (Yef3p) and Stm1p show some degree
of sequence similarity, especially in the C-terminal regions
of each protein (Pickering,B., unpublished data).
However, this sequence similarity is not conserved in
homologs of these proteins found in other yeasts
and lower fungi. In fact, the most significant sequence
homology between these different eEF3 and Stm1p
proteins maps to the C-terminal end of eEF3, which is
rich in arginine and lysine residues, and basic patches
within the C-terminal region of Stm1p. Thus, it is
tempting to speculate that eEF3 and Stm1p share
overlapping ribosome-binding sites recognized by these
basic domains.

Translocation of tRNAs in yeast ribosomes during
translation elongation requires two canonical elongation
factors, eEF1A and eEF2 (14). eEF1A facilitates cognate
aminoacyl-tRNA binding to the A-site in 80S ribosomes.
Following the peptidyl transferase reaction, eEF2
facilitates the translocation of deacylated tRNA from
the P- to the E-site and aminoacyl-tRNA from the A- to
the P-site. Afterwards, eEF3, which is thought to interact
with 80S ribosomes near the E-site, facilitating dissoci-
ation of deacyl-tRNA from the ribosome (23,24,27).
These findings are consistent with the allosteric model of
translation, whereby release of tRNA from the E-site in
turn facilitates occupancy of the A-site with cognate
aminoacyl-tRNA, thereby permitting efficient translation
elongation. Andersen et al. (27) have proposed a detailed
model for the specific role of eEF3 in the translation
elongation cycle (Figure 5). This model involves the
following steps: (i) weak binding of eEF3 to post-
translocation ribosomes with the deacyl-tRNA ‘locked’
in the ribosome E-site by an ‘in’-position L1 stalk and
the 40S head; (ii) a conformational change in eEF3,
which is caused by ATP binding, which results in
higher-affinity ribosome binding and the repositioning
of the L1 stalk to an ‘out’ position; and (iii) eEF3
conformation-promoted ATP hydrolysis, resulting in
eEF3 dissociation from the ribosome, E-site opening and
unlocking of the 40S head. This last step allows the
eEF1A–GTP–aminoacyl-tRNA complex to bind to the
ribosomal A-site and deacyl-tRNA to be released from
the E-site, allowing a subsequent round of elongation to
ensue. Our data are consistent with a model in which
ribosome-bound Stm1p tempers binding of eEF3 to 80S
ribosomes. This could occur through Stm1p directly
competing with eEF3-ribosome binding, promoting
eEF3 ATPase activity and/or facilitating an eEF3 or ribo-
some conformational change that permits efficient dissoci-
ation of eEF3 from ribosomes following ATP hydrolysis.
In the absence of Stm1p, eEF3 may not efficiently dissoci-
ate from ribosomes, potentially leading to an unproduct-
ive cycle of ATP binding, eEF3 conformational change
and ATP hydrolysis. The failure of eEF3 to dissociate
from the ribosome could prevent the release of deacyl-
tRNA from the E-site and binding of eEF1A–GTP–
aminoacyl-tRNA to the A-site, thereby retarding these
final steps in the cycle of translation elongation. In
addition, these effects are likely be exacerbated when
concentrations of deacyl-tRNA are elevated and/or
aminoacyl-tRNAs are depressed, exactly the circum-
stances that occur during nutrient deprivation (14).
Similarly, given that the net effect of anisomycin on pro-
tein synthesis is to block aminoacyl-tRNA access to the
ribosome peptidyltransferase center (32), this provides an
explanation for the observed increased sensitivity of yeast
lacking Stm1p or overexpressing eEF3 to this particular
antibiotic. We believe that Stm1p, when bound to the
ribosome, facilitates the release of the ATP-hydrolyzed
conformation of eEF3, thereby permitting efficient trans-
lation elongation. However, high concentrations of Stm1p
could also inhibit eEF3-80S ribosome binding and thereby
reduce translation elongation, which we observed. The
exact mechanism by which Stm1p binds to the ribosome
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and affects the function of eEF3 awaits further structural
data and is currently under investigation.
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