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Abstract

The oral microbiota contains billions of microbial cells, which could contribute to diseases in many body sites.
Challenged by eating, drinking, and dental hygiene on a daily basis, the oral microbiota is regarded as highly dynamic.
Here, we report significant human genomic associations with the oral metagenome from more than 1915 individuals,
for both the tongue dorsum (n =2017) and saliva (n =1915). We identified five genetic loci associated with oral
microbiota at study-wide significance (p < 3.16 x 10~ ""). Four of the five associations were well replicated in an
independent cohort of 1439 individuals: rs1196764 at APPL2 with Prevotella jejuni, Oribacterium uSGB 3339 and
Solobacterium uSGB 315; rs3775944 at the serum uric acid transporter SLC2A9 with Oribacterium uSGB 1215,
Oribacterium uSGB 489 and Lachnoanaerobaculum umeaense; rs4911713 near OR11HT with species F0422 uSGB 392; and
rs36186689 at LOC105371703 with Eggerthia. Further analyses confirmed 84% (386/455 for tongue dorsum) and 85%
(3917466 for saliva) of host genome-microbiome associations including six genome-wide significant associations
mutually validated between the two niches. As many of the oral microbiome-associated genetic variants lie near
miRNA genes, we tentatively validated the potential of host miRNAs to modulate the growth of specific oral bacteria.
Human genetics accounted for at least 109% of oral microbiome compositions between individuals. Machine learning
models showed that polygenetic risk scores dominated over oral microbiome in predicting risk of dental diseases such
as dental calculus and gingival bleeding. These findings indicate that human genetic differences are one explanation
for a stable or recurrent oral microbiome in each individual.

Introduction

A healthy individual swallows 1-1.5L of saliva every
day’, and its residing microbes could colonize the gut of
susceptible individuals>*. Oral metagenomic shotgun
sequencing data has been available from the Human
Microbiome Project (HMP)®, for rheumatoid arthritis®
and colorectal cancer’. Other diseases such as liver
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cirrhosis, atherosclerotic cardiovascular diseases, type 2
diabetes and colorectal cancer studied by metagenome-
wide association studies (MWAS) using gut microbiome
data also indicated potential contribution of the oral
microbiome to disease etiology™’~*°.

Controversy over whether human genetics or environ-
ments dominate the fecal microbiome is being clarified by
an increasing number of studies' ~'°. The strongest signal
in cohorts of European ancestry is the association
between LCTI and Bifidobacterium, explained by the
metabolism of lactose by the commensal bacterium.
These large-scale genome-wide association studies have
mainly focused on the fecal microbiome; however, the
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influence of host genetics on the composition and stability
of the oral microbiome is still poorly understood. Several
studies based on 16 S rRNA amplicon sequencing and
microarrays have reported that human oral microbiota are
influenced by both host genetics and environmental fac-
tors'’7>°. Only two studies have identified limited human
genes that affected oral microbial communities. One
study identified that IMMPL2 on chromosome 7 and
INHBA-AS1 on chromosome 12 could influence micro-
biome phenotypes'®. The other study reported a gene
copy number (CN) of the AMY1I locus correlated with the
oral and gut microbiome composition and function®’.
These two studies used 16 S rRNA amplicon sequencing
for a small number of samples. Therefore, the influence of
human genes on the composition of the oral microbiome
and genetic stability between different oral niches are still
poorly understood.

Here, we presented the first large-scale metagenome-
genome-wide association studies (mgGWAS) for 2017
tongue dorsum samples and 1915 salivary samples from a
cohort of 2984 healthy Chinese individuals with high-
depth whole-genome sequencing data. We further vali-
dated the identified associations in an independent
replication cohort of 1494 individuals with also metage-
nomic sequencing data and relatively low-depth whole-
genome sequencing data. A large number of concordant
associations were identified between genetic loci and the
tongue dorsum and salivary microbiomes. The effects of
environmental factors and host genes on oral microbiome
composition were investigated. Host genetics explained
more variances of microbiome composition than envir-
onmental factors. The findings underscore the value of
mgGWAS for in situ microbial samples, instead of
focusing on feces.

Results
The oral microbiome according to metagenomically
assembled microbial genomes

The 4D-SZ cohort (multi-omics, with more data to
come, from Shenzhen, China) at present have high-depth
whole-genome sequencing data from 2984 individuals
(mean depth of 33x, ranging from 15x to 78x, Supple-
mentary Table S1 and Fig. S1). Among these, 2017 indi-
viduals had matched tongue dorsum and 1915 individuals
had matched salivary samples for mgGWAS analyses,
with no population stratification (Supplementary Fig. S2).

Shotgun metagenome sequencing was performed for
the 3,932 oral samples, with an average sequencing data of
19.18 £+ 7.90 Gb for 2017 tongue dorsum and 13.64 *
2.91 Gb for 1915 salivary samples (Supplementary Table
S1 and Fig. S1). The microbiome composition was
determined according to alignment to a total of 56,213
metagenome-assembled genomes (MAGs) that have been
organized into 3589 species-level clusters (SGBs) together
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with existing genomes, of which 40% (1441/3589) was
specific in this cohort*”, Both the tongue dorsum and the
salivary samples contained the phyla Bacteroidetes (rela-
tive abundance of 37.2% + 11.3% for tongue dorsum and
40.1% + 10.2% for saliva, respectively), Proteobacteria
(30.1% £ 16.5% and 30.6% * 13.1%, respectively), Firmi-
cutes (20.5% + 8.2% and 17.7% + 6.7%, respectively), Acti-
nobacteria (4.3% +3.4% and 2.6% +2.0%, respectively),
Fusobacteria (4.0% +1.9% and 3.3% + 1.4%, respectively),
Patescibacteria (in Candidate Phyla Radiation, CPR, 2.5%
+1.6% and 3.1%+ 1.6%, respectively), and Campylo-
bacterota (1.1% +0.9% and 1.3% +0.8%, respectively)
(Supplementary Fig. S3a, b). These seven phyla cover
between 99.7% (tongue dorsum) and 98.7% (saliva) of the
whole community, indicating that the two oral sites share
a common core microbiota. Consistent with HMP results
using 16 S rRNA gene amplicon sequencing®?, the salivary
samples presented a higher alpha diversity than tongue
dorsum samples (mean Shannon index of 6.476 vs 6.228;
Wilcoxon rank-sum test p < 2.2 x 10~ '¢; Supplementary
Fig. S3c). The microbiome compositions calculated by
beta-diversity based on genus-level Bray—Curtis dissim-
ilarity slightly differed (explained variance R* = 0.055, p <
0.001 in permutational multivariate analysis of variance
(PERMANOVA) test; Supplementary Fig. S3d).

Host genetic variants strongly associated with the tongue
dorsum microbiome

With this so far, the largest cohort of the whole genome
and whole metagenome data, we first performed
mgGWAS on the tongue dorsum microbiome. With the
1583 independent tongue dorsum microbial taxa (* < 0.8
from 3177 taxa total using a greedy algorithm, Materials
and methods), and 10 million human genetic variants
(minor allele frequency (MAF) = 0.5%), 455 independent
associations involving 340 independent loci (distance <
1Mb and *<0.2) and 385 independent taxa reached
genome-wide significance (p<5x10®). With a more
conservative Bonferroni-corrected study-wide significant
p value of 3.16 x 107! (=5 x10®/1583), we identified
three genomic loci, namely APPL2, SLC2A9, and MGST1I,
associated with five tongue dorsum microbial features
involving 112 SNP-taxon associations (Fig. la). These
associations showed remarkable evidence of polygenicity
and pleiotropy (Fig. 1b). There was no evidence of any
excess false positive rate in the GWAS analyses (genomic
inflation factors Agc ranged from 0.981 to 1.023 with a
median of 1.005; Supplementary Fig. S4a). All genome-
wide significant associations were listed in Supplementary
Table S2.

We also used a replication cohort to validate these
associations. The replication cohort was comprised of
1494 individuals from multiple cities in China (also
shotgun metagenomic sequencing for 1333 tongue
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Fig. 1 Host genetic signals associated with the tongue dorsum microbiome. a Manhattan plot shows the genetic variants associated with the
tongue dorsum microbial taxa. The horizontal gray and black lines represent the genome-wide (p =5 x 107%) and study-wide (p =3.16 x 10" for
1583 independent mgGWAS tests) significance levels, respectively. Three loci that were associated with the tongue dorsum microbiome and reached
study-wide significance were marked in red. Their located genes and associated microbial taxa with p values of < 3.16x 10" were also listed.

b Network representation of the 455 gene-microbiome associations identified in the tongue dorsum mgGWAS at the genome-wide significance.

association between one gene and one microbial taxon. The bold edge represented study-wide significant associations as shown in a. The genes
that linked to at least two different microbial taxa from different phyla were also listed.

CCL26-CCL24
o/

LINC00648-RPS29

\ EYS

(circles with different colors according to phylum). Each edge is an

dorsum samples to an average of 19.90+7.73 Gb and
1299 salivary samples to an average of 13.66 + 2.80 Gb,
but about 9x whole-genome sequencing for the human
genome; Supplementary Table S1 and Fig. S1). Among the
455 independent associations identified in the discovery

cohort with p <5 x 10™%, 33 were not available in the low-
depth replication dataset. We were able to replicate 37 of
the remaining 422 associations (replication rate: 8.77%) in
the same effect direction of the minor allele (p <0.05;
Supplementary Table S2), which is much higher than



Liu et al. Cell Discovery (2021)7:117

Page 4 of 16

APPL2: 151196764

Prevotella jejuni
—

Al

Fkkk

-

hd

4>

log,(relative abundance)
(.AJ

- Prevotella jejuni Oribacterium uSGB 3339
3 ns o
g _2 - ,3 -

: 0 i

2 =

27 -4

g? ' ' ' ' ' '
= AA AG GG AA AG GG

p values thresholds are shown: ns, p > 0.05; *p < 0.05; **p < 0.01

.

27 5. P
-4 - * -

I %
-5- B,

a Prevotella jejuni Oribacterium uSGB 3339
§ discovery replication discovery replication
5 p=6.89 x 10 p=1.00 x 104 p=9.99 x 102 p=1.77x 10
B -2- A -3- ]
27 B i
@ -
278" I -4- ]
5 i
gt s -
®  AA AGGG AA AGGG  AA AG GG AA AG GG

Oribacterfum uSGB 3339

Fig. 2 The links among human APPL2 locus (rs1196764), three tongue dorsum bacteria, and diet as well as the status of dental calculus.
a The three panels presented the associations of APPL2 variation with the three most significantly associated taxa: Prevotella jejuni, Oribacterium uSGB
3339 and Solobacterium uSGB 315, which reached study-wide significance in both the discovery (n=2017) and replication (n = 1333) cohorts.

b Relative abundance of the three taxa across stratified groups of individuals according to APPL2: 151196764 variation and self-reported high sugar/fat
dietary frequency (colored by no intake, 1/day; 2/day; 3+/day, respectively). ¢ Relative abundance of the three taxa across stratified groups of
individuals according to APPL2: 151196764 variation and whether having dental calculus (yellow: no and blue: yes). All statistical comparisons in b and
c denote the p values of the Wilcoxon rank test on the total 3350 individuals with log-transformed relative abundances. The significant code of
; ¥*¥%p < 0.001; ****p < 0.0001.
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expected by chance (average replication rate: 2.95%; y* =
12.74, df = 1, p = 3.6 x 10~ *). Two of the three study-wide
signals from the discovery cohort were well replicated:
rs1196764 at APPL2 with Prevotella jejuni, Oribacterium
uSGB 3339, and Solobacterium uSGB 315; and rs3775944
at SLC2A9 with Oribacterium uSGB 1215, Oribacterium
uSGB 489, and Lachnoanaerobaculum umeaense.

The strongest association identified by tongue dorsum
mgGWAS was on rs1196764 located in the APPL2 locus,
with minor allele A (MAF = 0.06) positively associated
with abundances of three species, namely Prevotella jejuni
(Flg 2a; Pdiscovery = 6.89 x 10714; Preplication = 1.00 x
10~*), Oribacterium unclassified SGB (uSGB) 3339
(pdiscovery =9.99 x 10712; Preplication = 1.77 x 10727)1 and
Solobacterium uSGB 315 (an anaerobic gram-positive
bacterium associated with colorectal cancer®; Pdiscovery =
2.12 x 10"} Preplication = 144 x 10>"). APPL2 encoded a
multifunctional adapter protein that binds to various
membrane receptors, nuclear factors and signaling pro-
teins to regulate many processes, such as cell prolifera-
tion, immune response, endosomal trafficking and cell
metabolism. APPL2-associated three taxa all positively
correlated with high sugar/fat dietary frequency (Fig. 2b;
Spearman p = 3.18 x 10 for Prevotella jejuni, p = 1.33 x
10~ for Oribacterium uSGB 3339 and p = 6.43 x 10 ° for

Solobacterium uSGB 315) when checking the correlation
between oral taxa and phenotypic traits in this cohort, in
line with the role of APPL2 in controlling glucose-
stimulated insulin secretion®. Appl2 protein had been
reported to play a negative regulatory role in inflamma-
tion®®. Its associated three taxa also correlated with
decreasing risk of dental calculus and gingival bleeding
(Fig. 2¢; Spearman p < 0.001), thereby supporting a link
between genetic variation in the APPL2 gene, immune
response, and the abundance of these taxa.

The second strongest association was on rs3775944,
which is a perfect proxy for the exonic variant rs10939650
(** =0.99) in SLC2A9. Minor allele G of rs3775944 (MAF
=0.49) in SLC2A9 locus negatively correlated with Ori-
bacterium uSGB 1215 (Fig. 38 Pdiscovery = 5.09 x 107
Preplication = 1.92 x 10™°), Oribacterium uSGB 489 (Fig. 3b;
pdiscovery =8.55x 10711; Preplication = 1.62 x 1074)1 and L.
umeaense (Fig. 3G Paiscovery =469 x 10™% Preplication =
0.04). SLC2A9 is a urate transporter and SLC2A9 poly-
morphisms have been reported associated with serum uric
acid and urine uric acid concentration in multiple stu-
dies*°. We also looked at these top loci in Biobank
Japan (BBJ)*®*!, and SLC249 was correlated with lower
serum uric acid concentration (Supplementary Fig. S5;
p=556x10""%%), ischemic stroke (p=1.73x10"%),
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Fig. 3 Interaction of human SLC2A9 locus (rs3775944), serum uric acid, and three tongue dorsum bacteria. a-c The three panels present the
associations of SLC2A9 variation with microbial abundances of the three most significantly associated taxa: Oribacterium uSGB 1215, Oribacterium uSGB
489, and L. umeaense), which reached study-wide significance in the discovery (n = 2017) cohort and were well replicated in the replication

(n = 1333) cohort. d-f Correlations between three tongue dorsum bacteria and serum uric acid. Spearman’s correlation coefficient (rho) and p value
were shown. g Schematic representation of the interaction among SLC2A9 locus (rs3775944), serum uric acid, and three tongue dorsum bacteria:
SLC2A9 as a uric acid transporter, its minor allele T of SNP rs3775944 associated with lower serum uric acid, and genetic predisposition to lower serum
uric acid level is associated with lower abundance of Oribacterium uSGB 1215, Oribacterium uSGB 489, and Lachnoanaerobaculum umeaense.

urolithiasis (p =2.02x10™%), and pulse pressure (p=
6.86 x 10~ *). The negative associations of SLC249 with
serum uric acid concentration (p = 6.74 x 10°) and urine
pH (»p=875x10""* were confirmed in this cohort
(Supplementary Fig. S5). Interestingly, serum uric acid
level highly correlated with Oribacterium uSGB 1215
(Fig. 3d; Spearman rho=0.27, p<22x 10719),

Oribacterium uSGB 489 (Fig. 3e; rho=0.24, p<2.2x
107%), and L. umeaense (Fig. 3f; rho=0.18, p=3.8x
10 ). These results presented a potential explanation for
SLC2A9 acting on three oral taxa through serum uric
acid as intermedium (Fig. 3g). Likewise, the lipoprotein
lipase (LPL) gene was a determinant of triglyceride con-
centration (Supplementary Fig. S5 p=5.93x10 ),
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triglyceride concentration correlated with abundance of
Haemophilus D parainfluenzae A (p =7.70 x 10 '°), and
consistently LPL exhibited significant association with
Haemophilus D parainfluenzae A (p = 1.59 x 10~®). These
findings suggested that host genes may regulate oral
microbiota by mediating their relevant metabolites.

Variants in MGSTI (leading SNP rs7294985) were
identified as the third strongest signal, with minor allele
negatively associated with Streptococcus uSGB 2460
(Pdiscovery = 1.50 x 1074, Preplication = 0.92), followed by
family Streptococcaceae and other eight Streptococcus
SGBs, such as S. infantis and S. pseudopneumoniae,
although not confirmed in the replication cohort. These
variants were also positively associated with red blood cell
count (p=2.51x10"") and asthma (p =5.03 x10"°) in
Biobank Japan. Consistently, 84% (237/282) of the Strep-
tococcus spp. were observed correlated with red blood cell
count (p < 0.05), such as S. mitis (p =1.99 x 10"'?) and S.
pseudopneumoniae (p =451 x 10~ '2). These results sug-
gested that commensal Streptococcus species might utilize
red blood cells as camouflage to avoid being engulfed by
phagocytic immune cells in addition to the well-known
group A Streptococcus (S. pyogenes)*>. Our results also
supported previous findings that Streptococcus spp. are
often involved in diseases of the respiratory tracts
such as asthma®.

In addition to the above three study-wide significant
loci, other well replicated genome-wide significant asso-
ciations included rs17070896 in ADAMTS9 with Simon-
siella muelleri, rs59134851 near MSTIL-MIR3675 with
Streptococcus anginosus (playing important roles in
respiratory infections®"), chr22:41198300 in EP300-ASI
with Parvimonas micra (potential pathogen of colorectal
cancer’®), rs34555647 near MIR3622B-CCDC25 with
Selenomonas sputigena (potential pathogen of periodontal
diseases®). These replicated associations invited further
investigation of the impacts of host—microbial interac-
tions on disease.

mgGWAS of the salivary microbiome confirm and extend
human genetic contribution to the oral microbiome

The saliva may appear more dynamic than the tongue
dorsum, and the microbiome composition involves
multiple niches in the oral cavity’®. We next tried
mgGWAS analysis for the saliva microbiome. With the
1685 independent salivary microbial taxa (r*< 0.8 from
3677 taxa total), and 10 million human genetic variants
(MAF = 0.5%) in discovery cohort, 466 independent
associations involving 374 independent loci (*<0.2)
reached genome-wide significance (p <5 x 10~%). With a
more conservative Bonferroni-corrected study-wide sig-
nificant p value of 2.97 x 10! (=5 x 1078/1685), two
study-wide significant independent loci were identified
(Fig. 4a). Similar to tongue dorsum mgGWAS analyses,
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the genomic inflation factors of these salivary mgGWAS
tests showed no inflation (\gc ranged from 0.978 to 1.022
with a median of 1.002; Supplementary Fig. S4b). All
genome-wide significant associations were listed in Sup-
plementary Table S3.

As for validation, we were able to replicate 28 of the
remaining 443 associations in the same effect direction of
the minor allele (p<0.05), given that 23 of the 466
independent associations identified in the discovery
cohort with p<5x10~% were not available in the low-
depth replication dataset (Supplementary Table S3). The
fraction of replicated associations (6.32%) was much
higher than expected by chance (average replication rate:
2.71%; x> =5.891, df=1, p=0015). Two study-wide
significant signals identified by this saliva mgGWAS were
both well replicated (Fig. 4b). One genetic locus, spanning
three genes LOCI102723769, ORI11H1, and POTEH,
associated with species F0422 uSGB 392 belonging to
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family Veillonellaceae (leading SNP rs4911713; pgiscovery =
211 x 10"% Preplication = 1.86 x 10™°). F0422 uSGB 392
negatively correlated with concentrations of serum amino
acids such as cysteine and glycine and levels of blood
microelements such as magnesium and lead, as well as
serum testosterone levels and mental distress (impatience
or tension) (Supplementary Fig. S6). The locus was con-
sistently associated with mental distress (impatience)
and serum testosterone level (p < 0.05), while searching
GWAS summary statistics from Biobank Japan and this
study. The other locus, MTRNR2LI-LOCI105371703-
MIR4522, is associated with the genus Eggerthia (leading
SNP  rs36186689 Puiscovery = 8-85 X 107 Preplication =
1.48 x 10~ *). Eggerthia was most positively associated with
frequency of gingival bleeding, dental calculus, frequency
of tooth pain, and dental periodontitis, but negatively
linked to serum hormones such as cortisone, aldosterone,
and testosterone (Supplementary Fig. S7). The locus was
most associated with glaucoma and serum creatine level
while searching GWAS summary statistics from Biobank
Japan and this study. Notably, the two loci both regulated
the expression of genes in the testis or brain cerebellar
hemisphere (p <107 °) when searching in the GTEx’
database, and their associated oral taxa both consistently
correlated with serum testosterone levels and mental dis-
tress (impatience)(Supplementary Figs. S6 and S7). In
addition, we found four loci associated with both the
salivary microbiome and metabolic traits or diseases at
genome-wide significance: DPEP2/NFATC3 that asso-
ciated with species Lancefieldella sp000564995 was
linked to high-density lipoprotein cholesterol (HDLC);
PDXDC2P-NPIPB14P associated with species Centipeda
sp000468035 linked to thyroid abnormality; LARPI asso-
ciated with species Aggregatibacter kilianii linked to mean
corpuscular hemoglobin; SMARCAI associated with spe-
cies Veillonella parvula linked to pharyngeal mucosal
congestion (PMC) (Supplementary Fig. S8). These results
again supported the “host genes—blood metabolites—oral
microbiota” interactive axis in the human body.

Among 455 and 466 independent associations identified
for tongue dorsum and salivary microbiome (p<5 x
10°®), respectively, six were shared between them
(Fig. 5): APPL2 associated with Oribacterium uSGB 3339,
LOC105374972-NRSN1 associated with Lancefieldella
uSGB 2019; CCL26-CCL24 associated with Treponema B
uSGB 706; RALGPS?2 associated with Scardovia wiggsiae;
KRT16PI-LGALS9C associated with Patescibacteria
uSGB 2650; and RTTN-SOCS6 associated with Firmicutes
uSGB 1705. More specifically, among the 455 indepen-
dent and genome-wide significant variants-taxa associa-
tions for the tongue dorsum samples, 386 associations
(85%) were replicated with p <0.05 in the same effect
direction of minor allele for the salivary samples (Fig. 5a,
b). For example, SLC2A9, a determinant of low uric acid
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(UA) concentration, showed the strongest association
with SGBs belonging to Oribacterium (p =5.09 x 10~ %)
and Lachnoanaerobaculum (p=4.69 x 10~°) in tongue
dorsum samples, and also a relative low association with
that of Oribacterium (p=0.001) and Lachnoanaer-
obaculum (p = 1.0 x 10~ *) in salivary samples. Among the
466 independent and genome-wide significant variants-
taxa associations for saliva samples, 391 associations
(84%) also were replicated with p < 0.05 in the same effect
direction of minor allele for the tongue dorsum (Fig. 5c,
d), although the top two study-wide significant loci for
saliva did not reach suggestive significance in tongue
dorsum samples (p>1x107°). Our mgGWAS of the
salivary microbiome further confirm and extend human
genetic contribution to the oral microbiome. These
results suggested tongue and salivary microbiome as
niches in one oral cavity shared a high level of host genetic
similarity in the coevolution process.

Gene set enrichment analysis for oral mgGWAS signals

To explore the potential functions of the identified
mgGWAS signals for tongue dorsum and salivary, we
annotated the genetic associations and performed func-
tional mapping and gene sets enrichment analysis with the
DAVID?*® and FUMA®® platform (Materials and methods),
followed by disease enrichment and tissue expression
analysis. These mgGWAS analyses returned 221 and 261
genes (< 20Kb for associated genetic loci) for tongue
dorsum and salivary microbiome, respectively. Functional
mapping of their separately related genes in the DAVID
database suggested that tongue dorsum associated host
genes mainly enriched in phosphatidylinositol-related
pathways including phosphatidylinositol signaling sys-
tem, biosynthesis, dephosphorylation, and phosphatidyli-
nositol-3,4,5-trisphosphate 5-phosphatase activity, and
Ca®" pathway including calcium ion binding, calcium
channel regulator activity, and voltage-gated calcium
channel activity (Supplementary Table S4). The phos-
phatidylinositol signaling system has been reported to be
higher in the gut microbiota of centenarians® and con-
sistently decreased in saliva microbiota of RA patients®'.
Saliva-associated host genes were mainly enriched in
cardiomyopathy including arrhythmogenic right ven-
tricular-, hypertrophic- and dilated cardiomyopathy, gly-
cerophospholipid metabolism, and choline metabolism in
cancer (Supplementary Table S5).

The GAD_Disease (Genetic Association Disease Data-
base) segment analysis in DAVID showed that both ton-
gue dorsum and saliva mgGWAS signals were enriched in
cardiometabolic diseases and traits such as tobacco
use disorder, myocardial infarction, triglycerides, blood
pressure, lipoproteins, coronary artery disease, and ner-
vous system diseases such as schizophrenia, bipolar dis-
order, psychiatric disorders, and Parkinson’s disease
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Fig. 5 Comparisons of mgGWAS associations between tongue dorsum and saliva samples. a p-values comparisons of the 345 and 374

independent loci associated with tongue dorsum and salivary microbiome (p < 5 x 10~%), respectively. b B-values comparisons of the 345 and 374
independent loci associated with tongue dorsum and salivary microbiome (p < 5x 107%), respectively. In a and b, the six genome-wide significant
loci shared by tongue dorsum and salivary microbiome were listed. The dots marked red and black represented shared associations by both (p < 5 X
1078 in one niche and p < 0.05 in the other niche in the same direction of the minor allele) and specific associations (p < 5x 10~% in one niche but
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(Supplementary Tables S4 and S5). Positional mapping in
the GWAS catalog using the FUMA tool showed similar
diseases enriched results with that of using the GAD
catalog in DAVID. Genotype-Tissue Expression (GTEx)
analysis on saliva microbiome-associated host genes
exhibited enrichment for genes expressed in the brain
(anterior cingulate cortex BA24 and substantia nigra)
and cells of EBV-transformed lymphocytes (Supplemen-
tary Fig. S9).

Potential modulation of oral bacteria by host miRNA

As many of the human genetic associations identified in
the above mgGWAS analysis lay nearby miRNA genes, we
next investigated the potential of miRNAs to modulate the
growth of specific oral bacteria. Streptococcus spp. were the
common taxa in the oral cavity and our mgGWAS showed
that rs569277522 near MIR4693 and rs2891896 near
MIR3977 associated with abundances of S. oralis (p = 4.33 x
10_8) and S. infantis (p =1.254 x 10_8), respectively. Next,
we investigated whether miR-4693 could regulate S. oralis

and miR-3977 could regulate S. infantis. We blasted the 5p
strand of miR-4693 (miR-4693-5p) sequence against the
whole-genome sequence of S. oralis and found that eleven
genes were predicted to be targeted by miR-4693-5p, of
which four genes (locus tags: EL140_RS07695, EL140_
RS00690, EL140_RS00965, and EL140_RS07695) were 16 S
ribosomal RNA genes and were the most probable targets
with minimum mfe (minimum free energy) of —28.4 kcal/
mol (Supplementary Fig. S10a). We then cultured S. oralis in
the presence of synthetic miR-4693-5p or not and found
that miR-4693-5p inhibited the growth of S. oralis (Sup-
plementary Fig. S10b). Likewise, four genes (locus tags:
HMPREF9423_RS06630, HMPREF9423_RS03895, HMPRE
F9423_RS07625, and HMPREF9423_RS09390) from S.
infantis genome were predicted to be targeted by miR-3977
and miR-3977 inhibited the growth of S. infantis (Supple-
mentary Fig. S10c, d). These gene products were often on
the bacterial ribosome, consistent with the effects on growth
curves. Thus, similar to previous findings that host fecal
miRNA is able to regulate bacterial growth by targeting
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specific bacterial genes*>**, our mgGWAS results here

suggest that human miRNAs may specifically regulate the
abundances of oral bacteria.

Host genetics influence oral microbiome more than
environments

We first investigated the contribution of the host
environmental factors to oral microbiome [-diversity
(based on genus-level Bray—Curtis dissimilarities), by
using host metadata including age, gender, BMI, diets,
lifestyles, drugs use, and health status questions, as well as
blood measurements. We selected 340 independent vari-
ables out of the total 423 environmental factors for
association analysis (correlation 7 < 0.6). A total of 35 and
53 host environmental factors were significantly asso-
ciated with PB-diversity (BH-adjusted FDR <0.05) for
tongue dorsum and salivary samples, respectively, via
PERMANOVA analysis (Supplementary Fig. S11 and
Tables S6, S7). Of these, high sugar and high-fat food
frequency and dental calculus were among the strongest
explanatory factors for both tongue dorsum and salivary
microbial compositions. A high sugar diet increased the
abundance of some specific bacteria such as Streptococcus
mutants that metabolized sugar to acids and caused
dental caries. In this cohort, high sugar and high-fat food
frequency significantly increased the abundances of
Gemella haemolysans (f=021; p=292x10""") and
Streptococcus parasanguinis (f=0.18; p=7.56 x 10 '°)
in salivary samples. In addition, gender, serum metabo-
lites such as glutamic acid, cystine, and testosterone, as
well as geographic location (residing in northern or
southern China), all showed strong effects on the oral
microbiome composition. In total, 35 and 53 host envir-
onmental factors were able to infer 6.36% and 7.78% of
the variance of microbiome B-diversity for tongue dorsum
and salivary samples, respectively. When calculating the
cumulative explained variance of p-diversity by using all
the independent environmental variables, we found that
12.85% and 15.54% of the variance can be explained for
tongue dorsum and salivary samples, respectively.

We next evaluated the effect of host genetics on oral
microbiome compositions. We performed association
analysis for a-diversity and S-diversity using 10 million
genetic variants (MAF > 0.5%). Six genome-wide sig-
nificant loci were identified for a-diversity of the oral
microbiome (Supplementary Table S8). Four loci, NFIB,
LINC02578, LOC105373105, and EIF3E, were associated
with a-diversity of tongue dorsum samples. Two loci,
SLC25A42 and LINC02225, were associated with the a-
diversity of salivary samples. In the association analysis
between genetic variation and microbiome p-diversity, we
found one locus for tongue dorsum samples and one
locus for salivary samples with marginal genome-wide
significance (p<5x10°% Supplementary Fig. S12),
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respectively. One SNP, rs545425011 located in DNAJCI2
was associated with the microbial composition of the
tongue dorsum (p=1.07 x 10~%). When searching its
correlations with microbial taxa, it was mostly negatively
associated with Leptotrichia A sp000469505 and Pre-
votella saccharolytica (Supplementary Table S9), how-
ever, positively associated with Rothia SGBs such as R.
mucilaginosa which was dominant in tongue dorsum and
often observed in large patches toward the exterior of the
consortium. The other SNP, rs73243848 located in G2E3-
AS1 was associated with salivary microbial composition
(p =235 x 10~®). It was mostly positively associated with
Prevotella uSGB 2511 and family Bacteroidaceae (Sup-
plementary Table S10).

The above analysis found that 53 host environmental
factors (BH-adjusted p <0.05) explained 7.78% of the
B-diversity variance for salivary microbiome and 35
explained 6.36% for tongue dorsum microbiome. By
applying the same number of host genetic variants as
environmental factors, we found the top 53 and 35 SNPs
that were most closely associated with B-diversity of the
salivary and tongue dorsum microbiome explained 14.14
and 10.14% of the B-diversity variances for the two niches,
respectively (Supplementary Fig. S13). The findings sug-
gested host genetics is likely to influence the oral micro-
biome more than the environment.

Host genetics and oral microbiome predict dental diseases

The dynamic and polymicrobial oral microbiome is a
direct precursor of dental diseases such as dental caries
and periodontitis**, To understand the aggregate effect of
the host genetic variants and oral microbiome on dental
diseases, we constructed models using genetic polygenic
risk scores (PRS) and oral microbiome separately, as well
as their combination, to predict dental diseases. We found
two of the six dental diseases that occurred in over 5% of
individuals to be significantly associated with the oral
microbiome (Fig. 6a; FDR p < 0.001). Either salivary and
tongue dorsum microbiome explained 20% of the variance
for dental calculus. Salivary and tongue dorsum micro-
biome explained 13% and 15% of the variance for gingival
bleeding, respectively. Compared with the oral micro-
biome, the genetic PRS showed significantly higher pre-
dictive efficiency with a mean R* of 45%, ranging from the
lowest of 25% for gingival bleeding to the highest of 60%
for teeth loss. Furthermore, when incorporating the oral
microbiome into the PRS model, the predictive efficiency
is slightly improved, with a 4% increment of R” for dental
calculus and a 6% increment of R* for gingival bleeding
(Fig. 6b).

The discriminative efficiency for dental diseases was
also evaluated using the area under the curve (AUC;
Fig. 6c). Salivary and tongue dorsum microbiome had
good discrimination for dental calculus (AUC = 0.81 and
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Fig. 6 Oral microbiome and genetic PRS infer a significant fraction of the variance of dental diseases. a R estimates of six dental diseases and
their significance contributed by the oral microbiome, evaluated using a linear model in the lightGBM package. *p < 0.05, **p < 0.01, and ***p < 0.001.
b Predictive efficiency of six dental diseases (measured using the coefficient of determination (R?), evaluated using a linear model under five different
sets of predictive features: (i) relative abundances of salivary microbial taxa; (ii) relative abundances of tongue dorsum microbial taxa; (iii) PRS
calculated as an unweighted sum of risk alleles from independent and significant SNPs (LD <02, p< 107°) for each oral disease; (iv) “PRS + salivary
microbiome”: PRS, relative abundances of salivary microbial taxa, and (v) “PRS + tongue microbiome”: PRS, relative abundances of tongue dorsum
microbial taxa. ¢ The discriminative efficiency for six dental diseases (measured using the area under the curve (AUQ)), evaluated using a
discriminative model under the five different sets of predictive features as described in b.
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0.80, respectively), and median discrimination for gingival
bleeding (AUC = 0.72 and 0.73, respectively). The models
of PRS had an AUC of 0.93-0.94 for five of the six dental
diseases, except for gingival bleeding (AUC=0.78).
Incorporating the oral microbiome into the PRS model
resulted in improved discrimination with AUC increasing
from 0.94 to 0.97 for dental calculus and from 0.78 to
0.83 for gingival bleeding. These results may help explain
why some people are genetically predisposed to major
dental diseases.

Discussion

In summary, we performed the first large-scale
mgGWAS for the oral microbiome and report unequi-
vocal human genetic determinants for the oral micro-
biome. Based on the metagenome-assembled profile, we
identified abundant genetic loci to associate with oral
microbiota. Four out of the five study-wide and nearly 1/10
genome-wide significant signals could be replicated in a
low-depth genome cohort also from China, highlighting
the power of adding the independent cohort for genomic
association analyses of the oral microbiome. Our
mgGWAS analysis found 84%—85% concordant association
signals shared by the tongue dorsum and salivary micro-
biome, with all genome-wide significant associations in one
niche (Fig. 5; p<5x10~%) were also at least nominally
significant in the other niche (p < 0.05), consistent with our
and previous findings that tongue dorsum and salivary
microbiome communities exhibited high levels of similar-
ity*>*, especially in the micron-scale structure of oral
niches***”. Not only an independent cohort but also dif-
ferent niches (tongue dorsum and saliva) in the oral cavity

corroborated the robust and replicable host-microbe
association results. The non-replicated associations may
require more high-depth genome cohorts or other niches
microbiome for further confirmation in the future. Con-
sistent with previous studies®®*®, the salivary microbiome
showed higher alpha diversity than tongue dorsum. In
combination with the fact that saliva comes into contact
with all surfaces in the oral cavity and represents a fin-
gerprint of the general composition of the oral micro-
biome, these results suggested that the salivary microbiome
is more diverse and likely more dynamic. Thus, host
genetic associations that are stronger with the salivary than
the tongue dorsum community will further invite other
omics studies, especially the proteome and the nitrogen
cycle that could impact microbial growth.
Host-associated microbial communities are influenced
by both host genetics and environmental factors. The
debate centers on the relative contribution of the host
genetic and environmental factors to the human micro-
biome. Twins’ modeling has demonstrated that some taxa
of the human oral microbiome are heritable!”'%, however,
some studies indicated oral microbiome variances were
shaped primarily by the environment rather than host
genetics'®?°. With this high-depth whole-genome and
metagenomic sequencing and high-quality assembled oral
microbiome samples, we found that significant environ-
mental factors explained 6.36%-7.78% of the [-diversity
variance for the oral microbiome, however, the same
number of significant host SNPs as environmental factors
could infer 10.14%-14.14% of the B-diversity variance for
oral microbiome (Supplementary Figs. S11 and S13).
These findings indicated host genetics is likely to
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influence the oral microbiome more than the environ-
ment. A previous study identified 42 SNPs that together
explained 10% of the variance of gut microbiome
B-diversity'®. The comparable explained variances of host
genetic variants on both gut and oral microbiome con-
sistently confirmed the important role of host genes in
shaping the human microbiota.

There are similarities and overlaps between the oral
and gut microbiome. First, the gut and oral microbial
profiles showed strong observational correlations. Half
(31) of the 62 prevalent salivary microbial genera (present
in over 10% individuals) and 41% of the 75 prevalent
tongue dorsum microbial genera significantly correlated
with corresponding gut genera in abundance (Spearman
p<0.05) in this 4D-SZ cohort. The observed strong
correlations between the two sites were supported by a
metagenome-wide association study of rheumatoid
arthritis®, although the fact that the taxonomic compo-
sitions of the two sites were different®. This was also
consistent with the report from the HMP project revealed
that oral cavity and stool bacteria overlapped in more
than 45% of subjects’. Second, gender®’, age’’, geo-
graphic regions® ™, diets®**°, and serum metabolites
had been reported to affect the gut microbiome compo-
sition substantially. Consistently, all these host factors
also exerted significant effects on oral microbiome
communities (Supplementary Tables S6 and S7). Third,
the oral and gut microbiome shared some host genetic
variants (Supplementary Table S11). Three of the five
study-wide significant genetic loci for oral microbiome
were also significantly associated with the gut micro-
biome. For example, the tongue dorsum microbiota-
associated gene SLC2A9 correlated with the abundance
of Bifidobacterium animalis in the gut. The salivary
microbiota-associated genetic loci ORI1IHI-POTEH and
FLJ36000-MTRNR2L1 linked to abundances of Bacter-
oides fragilis and unclassified Enterobacter_sp._638 in the
gut, respectively. Notably, the ABO blood group locus
associated with the microbial module for lactose/galac-
tose degradation in the gut®® was also correlated with
Solobacterium moorei level in the tongue dorsum and
TM7x uSGB 3373 level in the saliva. Fourth, the serum
uric acid was observed to significantly correlate with
Lachnospiraceae species such as Lachnoanaerobaculum
umeaense, uSGB 1215, and uSGB 489 (Fig. 3) in the
tongue dorsum. Interestingly, not only in the oral cavity,
the serum uric acid showed an observational correlation
even a reciprocal causal relationship with fecal Lach-
nospiraceae species such as unclassified bacterium
9 1 43BFAA in this 4D-SZ cohort. The causal effect of
serum uric acid on increased fecal unclassified bacterium
9_1_43BFAA abundance was also confirmed in the Bio-
bank Japan cohort, as reported in our recent Mendelian
randomization analyses®®. Together, the listed pieces of
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evidence showed the overlaps of the oral and gut
microbiome and supported the “oral-gut axis” that oral
microbe transmission to and subsequent colonization of
the large intestine is common and extensive among
healthy individuals®.

As genetic characters are already there at birth, oral
hygiene would be more important for people who are
more likely to develop dental diseases and beyond.
Despite different aetiologies, dental calculus and gingival
bleeding are both driven by a combined function of the
oral microbiota and host factors. However, dental caries,
teeth defects, and losses were mainly determined by host
genetics and less influenced by the oral microbiome in
this cohort. These results help us to better understand the
pathogenic mechanisms and aided the design of perso-
nalized therapeutic approaches for different oral diseases.
These results also provide a rationale for repeatedly taking
oral samples, to study the most stable human genome,
long-term trends, and short-term dynamics in the oral
microbiome.

Materials and methods
Study subjects

All the adult Chinese individuals in this cohort were
recruited for a multi-omics study, with some volunteers
providing samples from as early as 2015, which would
constitute the time dimension in “4D”. The cohort
included 2984 individuals with blood samples collected
during a physical examination in 2017 in the city of
Shenzhen, and all these individuals were enlisted for
high-depth whole-genome sequencing (Supplementary
Table S1). About 3932 (2017 tongue dorsum and
1915 saliva) oral samples from this cohort were newly
collected for whole metagenomic sequencing from 2017
to 2018 (Supplementary Table S1). As for replication,
blood samples were collected from 1494 individuals, out
of which 1397 had tongue dorsum samples and 1363 had
salivary samples for metagenomic sequencing. The
replication cohort was designed in the same manner but
organized at smaller scales in multiple cities (Wuhan,
Qingdao, etc.) in China. The protocols for blood and
oral collection, as well as the whole genome and meta-
genomic sequencing, were similar to our previous
works®*?*>”, For the blood sample, DNA was extracted
using MagPure Buffy Coat DNA Midi KF Kit (no.
D3537-02) according to the manufacturer’s protocol.
Tongue dorsum and salivary samples were collected
with an MGIEasy kit. For the salivary sample, a 2x
concentration of stabilizing reagent kit was used and
2-mL saliva was collected. DNA of oral samples was
extracted using MagPure Stool DNA KF Kit B (no.
MD5115-02B). The DNA concentrations from blood
and oral samples were estimated by Qubit (Invitrogen).
About 500ng of input DNA from blood and oral
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samples were used for library preparation and then
processed for paired-end 100 bp sequencing using the
BGISEQ-500 platform®®,

The study was approved by the Institutional Review
Boards (IRB) at BGI-Shenzhen, and all participants pro-
vided written informed consent at enrollment.

High-depth whole-genome sequencing for the discovery
cohort

About 2984 individuals with blood samples were
sequenced to a mean of 33x for the whole genome. The
reads were aligned to the latest reference human genome
GRCh38/hg38 with BWA®® (v0.7.15) with default para-
meters. The reads consisting of base quality < 5 or con-
taining adapter sequences were filtered out. The
alignments were indexed in the BAM format using
Samtools® (v0.1.18) and PCR duplicates were marked
for downstream filtering using Picardtools (v1.62). The
Genome Analysis Toolkit’s (GATK®, v3.8) Base-
Recalibrator created recalibration tables to screen known
SNPs and INDELs in the BAM files from dbSNP (v150).
GATKlite (v2.2.15) was used for subsequent base quality
recalibration and removal of read pairs with improperly
aligned segments as determined by Stampy. GATK'’s
HaplotypeCaller was used for variant discovery. GVCFs
containing SNVs and INDELs from GATK Haplotype-
Caller were combined (CombineGVCFs), genotyped
(GenotypeGVCFs), variant score recalibrated (Varian-
tRecalibrator), and filtered (ApplyRecalibration). During
the GATK VariantRecalibrator process, we took our
variants as inputs and used four standard SNP sets to train
the model: (1) HapMap3.3 SNPs; (2) dbSNP build 150
SNPs; (3) 1000 Genomes Project SNPs from Omni 2.5
chip; and (4) 1000 G phasel high confidence SNPs. The
sensitivity threshold of 99.9% to SNPs and 98% to INDELSs
were applied for variant selection after optimizing for
Transition to Transversion (TiTv) ratios using the GATK
ApplyRecalibration command.

We applied a conservative inclusion threshold for
variants: (i) mean depth > 8x; (ii) Hardy—Weinberg
equilibrium (HWE) p>10"> and (iii) genotype calling
rate > 98%. We demanded samples to meet these criteria:
(i) mean sequencing depth > 20x; (ii) variant calling rate
> 98%; (iii) no population stratification by performing
principal components analysis (PCA) analysis imple-
mented in PLINK®? (v1.9), and (iv) excluding related
individuals by calculating pairwise identity by descent
(IBD, Pi-hat threshold of 0.1875) in PLINK. No samples
were removed in quality control filtering. After variant
and sample quality control, 2984 individuals (out of
which 2017 had matched tongue dorsum and 1915 had
matched salivary samples) with about 10 million com-
mon and low-frequency (MAF = 0.5%) variants were left
for mgGWAS analyses.
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Low-depth whole-genome sequencing for the replication
cohort

About 1494 individuals in the replication cohort were
sequenced to a mean of 9x for the whole genome. We
used BWA to align the whole genome reads to
GRCh38/hg38 and used GATK to perform variants
calling by applying the same pipelines as for the high-
depth WGS data. After completing the joint calling
process with CombineGVCFs and GenotypeGVCFs
options, we obtained 43,402,368 raw variants. A more
stringent process in the GATK VariantRecalibrator
stage compared with the high-depth WGS was then
used, the sensitivity threshold of 98.0% to both SNPs
and INDELs was applied for variant selection after
optimizing for Transition to Transversion (TiTv) ratios
using the GATK ApplyRecalibration command. Fur-
ther, we kept variants with less than 10% missing
genotype frequency and minor allele count more than
5. All these high-quality variants were pre-phased
using Eagle (v2.4.1)®® and then imputed using Mini-
mac3 (v2.0.1)°* with our previous 1992 high-depth
WGS dataset®® as reference panel. We retained only
variants with imputation info. > 0.7, Hardy—Weinberg
equilibrium P> 10> and genotype calling rate > 90%.
Similar to what we have done for the discovery cohort,
samples were demanded to have a mean sequencing
depth > 5x, variant call rate > 95%, no population
stratification, and no kinship. Finally, 1430 individuals
(out of which 1333 had matched tongue dorsum and
1299 had matched salivary samples) with 8.6 million
common and low-frequency variants (MAF >0.5%)
from the replication cohort were left for association
validation analysis.

Oral metagenomic sequencing and quality control

Metagenomic sequencing was done on the BGISEQ-
500 platform, with 100 bp of paired-end reads for all
samples and four libraries were constructed for each
lane. We generated 19.18 + 7.90 Gb (average + standard
deviation) and 19.90 + 7.73 Gb raw bases per sample for
tongue dorsum samples in discovery and replication
cohorts, respectively (Supplementary Table S1). We also
generated 13.64 + 2.91 Gb and 13.66 + 2.80 Gb raw bases
per sample for salivary samples in discovery and repli-
cation cohorts, respectively. After using the quality
control module of metapi pipeline followed by reads
filtering and trimming with strict filtration standards
(not less than mean quality Phred score 20 and not
shorter than 51 bp read length) using fastp v0.19.463,
host sequences contamination removing using Bowtie2
v2.3.564 (hg38 index) and seqtk65 v1.3, we finally got an
average of 13.3 Gb (host rate: 31%) and 3.1 Gb (host rate:
77%) raw bases per sample for tongue dorsum and sali-
vary samples, respectively.
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Oral metagenomic profiling

The high-quality oral genome catalog was constructed
in our previous studyzz. The oral metagenomic sequen-
cing reads were mapped to the oral genome catalog
(http://ftp.cngb.org/pub/SciRAID/Microbiome/human_
oral_genomes/bowtie2_index) using Bowtie2 with para-
meters: “-end-to-end -very-sensitive -seed 0 -time -k 2
-no-unal -no-discordant -X 1200”, and the normalized
contigs depths were obtained by using jgi_summar-
ize_bam_contig_depths, then based on the correspon-
dence of contigs and genome, the normalized contig
depth was converted to the relative abundance of each
species for each sample. Finally, we merged all repre-
sentative species’ relative abundance to generate a taxo-
nomic profile for the human oral population. The
profiling workflow was implemented in the metapi
jgi_profiling module (https://github.com/ohmeta/metapi/
blob/dev/metapi/rules/profiling.smk#L305).

Tongue dorsum and salivary microbiome comparison
The nonparametric Wilcoxon rank-sum test was used
to determine statistically significant differences in species
a-diversity between tongue dorsum and saliva niches. We
analyze the p-diversity (based on genus-level Bray—Curtis
dissimilarity) difference between the two oral niches
using PERMANOVA (adonis) in the ‘vegan’ package and
visualize the two oral niches groups using ordination such
as non-metric multidimensional scaling (NMDS) plots.

Association analysis for oral microbial taxa

After investigating the distributions of occurrence rate
and relative abundance of all microbial taxa, we decided
to filter the microbial taxa to keep those with occurrence
rates over 90% and average relative abundance over
1 x107°. After filtering, the represented genera of these
microbial taxa covered between 99.63% (tongue dorsum)
and 99.76% (saliva) of the whole community in the cohort.
As many oral microbial taxa are highly correlated and aim
to reduce the number of GWAS tests, we then performed
a number of Spearman’s correlation tests to obtain the
independent taxa for mgGWAS analyses. Spearman’s
correlations were calculated pairwise between all taxa, and
the correlations were used to generate an adjacency
matrix where correlations of > 0.8 represented an edge
between taxa. A graphical representation of this matrix
was then used for the greedy selection of representative
taxa. Nodes (microbiota taxa) were sorted by degree and
the one with the highest degree was then chosen as a final
taxon (selecting at random in the case of a tie). The taxon
and its connected nodes were then removed from the
network and the process repeated until a final set of taxa
sets were found such that each of the discarded taxa was
correlated with at least one taxon. These filtering resulted
in a final set of 1583 and 1685 independent microbial taxa
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for tongue dorsum and saliva, respectively, which were
used for association analyses.

We tested the associations between host genetics and
oral bacteria using a linear model based on the relative
abundance of oral bacteria. Specifically, the relative
abundance was transformed by the natural logarithm and
the outlier individual who was located away from the
mean by more than four standard deviations was removed
so that the abundance of bacteria could be treated as a
quantitative trait. Next, for 10 million common and low-
frequency variants (MAF > 0.5%) identified in this cohort,
we used a linear regression model to perform mgGWAS
analysis via PLINK v1.9. Given the effects of environ-
mental factors such as diet and lifestyles on microbial
features, we included all potential cofounders that were
significantly associated with the B-diversity (Benjamini—
Hochberg FDR < 0.05) estimates in the below explained
variance analysis, as well as the top four principal com-
ponents (PCs) as covariates for mgGWAS analysis in both
the salivary and tongue dorsum niches. We next per-
formed the same association analyses in the replication
cohort and further validated the significance of identified
associations by the discovery cohort. To investigate
whether the observed number of nominally significant
concordant associations with effects in the same direction
was more than expected by chance, we randomly selected
455 and 466 independent associations for tongue dorsum
and saliva, respectively, with ten iterations (n=10). We
calculated the average number of concordant replicated
associations in the ten-time random iterations as expected
value and then compared it to the actual replicated
number using a one-sided x> test. The replication was
considered significant if the x> p was less than 0.05.

To investigate the correlations between the identified
oral microbiome-related SNPs and diseases, we down-
loaded the summary statistics data from the Biobank
Japan®®?!, a study of 300,000 Japanese citizens suffering
from cancers, diabetes, rheumatoid arthritis, and other
common diseases. We searched the oral microbiome-
related SNPs in the summary statistics data from Biobank
Japan to examine their associations with diseases.

Functional and pathway enrichment analysis

The significant genetic variants identified in the asso-
ciation analysis were mapped to genes using ANNO-
VAR®. Given that some significant genetic variants were
low-frequency in the mgGWAS results, it’s most suitable
to input gene lists for enrichment analysis. We mapped
variants to genes based on physical distance within a 20 kb
window and got the gene lists for enrichment analysis.
DAVID (https://david.ncifcrf.gov/) was utilized to perform
functional and pathway enrichment analysis. DAVID is a
systematic and integrative functional annotation tool for
the analysis of the relevant biological annotation of gene
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lists and provides a functional interpretation of the GO
enrichment and KEGG pathway analysis®®. The p value <
0.05 was considered statistically significant. In addition,
the mapped genes were further investigated using the
GENE2FUNC procedure in FUMA® (http://fuma.ctglab.
nl/), which provides hypergeometric tests for the list of
enriched mapping genes in 53 GTEx tissue-specific gene
expression sets, 7246 MSigDB gene sets, and 2195 GWAS
catalog gene sets>”. Using the GENE2FUNC procedure, we
examined whether the mapped genes were enriched in
specific diseases or traits in the GWAS catalog as well as
whether showed tissue-specific expression. Significant
results were selected if a false discovery rate (FDR)-cor-
rected p < 0.05 was observed.

miRNA target prediction and bacterial growth experiments

The sequence of miR-4693-5p and miR-3977 down-
loaded from miRbase V22.1 (http://miRBase.org) were
blasted against the genomes of Streptococcus oralis and
Streptococcus infantis, respectively. The potential targets
of two miRNAs were predicted by RNAhybrid**
depending on the minimum free energy (MFE) of sec-
ondary structure binding. The cutoff of MFE < —20 kcal/
mol and p value < 0.05 were used for selecting the final
targeted genes.

The sequence of miR-3977 is 5-GUGCUUCAUCGU
AAUUAACCUUA-3". The sequence of miR-4693-5p is
5-AUACUGUGAAUUUCACUGUCACA-3'. They are
both 23 nucleotides sequences and single-stranded linear
miRNAs. All of them are synthesized by Beijing Liuhe BGI
Technology Co., Ltd. Streptococcus infantis (storage
number: ORS-AMO09-O-22BH, storage date: February 10,
2016) and Streptococcus oralis (storage number: ORT-
AF08-0O-20, storage date: September 22, 2016) were
stored in China National Gene Bank (CNGB). Strepto-
coccus orails and Streptococcus infantis were cultured in
presence of 2 nm/mL miRNA in the Brian Heart Infusion
(BHI) medium or not. They were cultured in an anaerobic
chamber at 37 °C. Strains were monitored as absorbance
at 600 nm (OD600) per 2h. The clone numbers were
calculated at 2, 4, 6, and 10h, respectively. The experi-
ment was repeated three times in each group, and the
average number of clones in each group was calculated.
The results were represented by the growth curve of
strains.

Association analysis for microbiome a-diversity and
B-diversity

The microbiome B-diversity (between-sample diver-
sity) based on genus-level abundance data were gener-
ated wusing the “vegdist” function (Bray—Curtis
dissimilarities). Then, we performed principal coordi-
nates analysis (PCoA) based on the calculated beta-
diversity dissimilarities using the “capscale” function in
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“vegan”. Finally, associations for B-diversity (a two-axis
MDS) were performed using the manova() function from
the “stats” package, in a multivariate analysis using
genotypes and the same covariates stated above as
variables.

Association analysis for host environmental factors

As part of the 4D-SZ cohort, all participants in this
study had records of multi-omics data, including
anthropometric measurement, stool form, defecation
frequency, diet, lifestyle, blood parameters, hormone,
etc.”!. A total of 423 host environmental factors are
available in this cohort. Environmental metadata were
first log-transformed and checked for collinearity using
the Spearman correlation coefficient. Collinearity was
assumed if a Spearman’s p>0.6 or p < —0.6. Collinear
variables were considered redundant and one variable
from each pair was removed from further analysis,
resulting in a final set of 340 variables.

To investigate the potential associations of top loci
identified in microbiome GWAS with environmental
variables especially for serum metabolites, we also
performed GWAS analysis for the 340 environmental
variables. Among the 340 environmental traits, the
log;o-transformed of the mean-normalized values was
calculated for each quantitative phenotype (such as
amino acids, vitamins, microelements, etc.) and a linear
regression model for the quantitative trait implemented
in the PLINK v1.9 was used for association analysis.
Samples with missing values and values beyond 4 s.d.
from the mean were excluded from the association
analysis. For each binary phenotype (such as diet, life-
style, etc.), a logistic regression model was used for
association analysis. Age, gender, and the top four PCs
were included as covariates for each association
analysis.

Environmental factors explained the variance of the oral
microbiome

We next searched for associations between the 340
environmental variables selected above and the oral
microbiome compositions. We performed Bray—Curtis
distance-based redundancy analysis (dlbRDA) to identify
variables that are significantly associated with B-diversity
and measure the fraction of variance explained by the
factors, using the “capscale” function in the vegan pack-
age. The significance of each response variable was con-
firmed with an analysis of variance (ANOVA) for the
dbRDA (anova.cca() function in the vegan package).
Only the variables that were significantly associated
(Benjamini-Hochberg FDR <0.05) with the P-diversity
estimates in the univariable models were included in the
multivariable model. The additive explanatory value (in %)
of significant response variables (e.g., environmental
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parameters, vitamins, serum amino acids, etc.) was
assessed with a variation partitioning analysis of the vegan
package (“adj.r.squared” value using RsquareAd;j option).

Construct PRS for diseases prediction

To obtain the predictions of human genetics on dental
diseases, we used gradient boosting decision trees from
the LightGBM (v.3.1.1) package®® implemented in Python
(v3.7.8) and a fivefold cross-validation scheme to con-
struct risk-prediction models. In every fold of the fivefold
cross-validation scheme, we calculated the associations
between SNPs and dental diseases within the training
dataset, and then selected independent and significant
SNPs (LD r*<0.2, p<10~°) to calculate the PRS as an
unweighted sum of risk alleles, and finally we trained a
model on the PRS and predicted the disease risk in the
test dataset. During the process, we obtained the optimal
values of the tuning parameters using fivefold cross-
validation and evaluated the results using the coefficient
of determination (R*) as variance explained and AUC as
disease discriminative efficiency.

Acknowledgements

We sincerely thank the support provided by the China National Gene Bank. We
thank all the volunteers for their time and for self-collecting the oral samples
using our kit.

Author details

'BGI-Shenzhen, Shenzhen, Guangdong, China. “College of Life Sciences,
University of Chinese Academy of Sciences, Beijing, China. *Department of
Biology, University of Copenhagen, Universitetsparken 13, Copenhagen,
Denmark. “Qingdao-Europe Advanced Institute for Life Sciences, BGI-
Shenzhen, Qingdao, Shandong, China. °School of Bioscience and
Biotechnology, South China University of Technology, Guangzhou,
Guangdong, China. 5China National Genebank, BGI-Shenzhen, Shenzhen,
Guangdong, China. “James D. Watson Institute of Genome Sciences,
Hangzhou, Zhejiang, China. ®Shenzhen Key Laboratory of Human Commensal
Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, Guangdong,
China

Author contributions

H.J. and T.Z. conceived and organized this study. JW. initiated the overall
health project. XX, H.Y,, S.Z, XJ, YH, Y. Zong, and W. Liu contributed to the
organization of the cohort, the sample collection, and questionnaire collection.
H. Lu led the DNA extraction and sequencing. X. Liu and X.T. processed the
whole-genome data. J.Z, LT, ZJ, Y. Zou, X. Lin, H. Liang, W. Li, Y.J, Y.Q. and L.Z.
processed the metagenome data. X. Liu performed the metagenome-
genome-wide association analyses. X. Liu and H.J. wrote the manuscript. All
authors contributed to data and texts in this manuscript.

Data availability

All summary statistics that support the findings of this study including the
associations between host genetics and tongue dorsum microbiome, host
genetics, and saliva microbiome are publicly available from https://db.cngb.
org/search/project/CNP0001664. The release of these summary statistics data
was approved by the Ministry of Science and Technology of China (Project ID:
2021BAT1539). According to the Human Genetic Resources Administration of
China regulation and the institutional review board of BGI-Shenzhen related to
protecting individual privacy, sequencing data are controlled-access and are
available via the application on request (https://db.cngb.org/search/project/
CNP0001664).

Conflict of interest
The authors declare no competing interests.

Page 15 of 16

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/541421-021-00356-0.

Received: 10 August 2021 Accepted: 15 November 2021
Published online: 07 December 2021

References

1. Humphrey, S. P. & Williamson, R. T. A review of saliva: normal composition,
flow, and function. J. Prosthet. Dent. 85, 162-169 (2001).

2. Atarashi, K et al. Ectopic colonization of oral bacteria in the intestine drives
TH1 cell induction and inflammation. Science 358, 359-365 (2017).

3. Schmidt, T. S. Extensive transmission of microbes along the gastrointestinal
tract. Elife 8, e42693 (2019).

4. Liu, X. et al. A genome-wide association study for gut metagenome in Chi-
nese adults illuminates complex diseases. Cell Discov. 7, 9 (2021).

5. Human Microbiome Project, C. A framework for human microbiome research.
Nature 486, 215-221 (2012).

6. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheu-
matoid arthritis and partly normalized after treatment. Nat. Med. 21,
895-905 (2015).

7. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature
513, 59-64 (2014).

8. Jie, Z et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat.
Commun. 8, 845 (2017).

9. Qin, J. et al. A metagenome-wide association study of gut microbiota in type
2 diabetes. Nature 490, 55-60 (2012).

10.  Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards
targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70-78
(2017).

11. Blekhman, R. et al. Host genetic variation impacts microbiome composition
across human body sites. Genome Biol. 16, 191 (2015).

12. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat.
Genet. 48, 1407-1412 (2016).

13, Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins.
Cell Host Microbe 19, 731-743 (2016).

14. Turpin, W. et al. Association of host genome with intestinal microbial com-
position in a large healthy cohort. Nat. Genet. 48, 1413-1417 (2016).

15. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin
D receptor and other host factors influencing the gut microbiota. Nat. Genet.
48, 1396-1406 (2016).

16.  Rothschild, D. et al. Environment dominates over host genetics in shaping
human gut microbiota. Nature 555, 210-215 (2018).

17. Gomez, A. et al. Host Genetic Control of the Oral Microbiome in Health and
Disease. Cell Host Microbe 22, 269-278e3 (2017).

18, Demmitt, B. A. et al. Genetic influences on the human oral microbiome. BMC
Genomics 18, 659 (2017).

19.  Freire, M. et al. Longitudinal study of oral microbiome variation in twins. Sci.
Rep. 10, 7954 (2020).

20. Shaw, L. et al. The human salivary microbiome is shaped by shared envir-
onment rather than genetics: Evidence from a large family of closely related
individuals. mBio 8, e01237-17 (2017).

21. Poole, A. C. et al. Human salivary amylase gene copy number impacts oral and
gut microbiomes. Cell Host Microbe 25, 553-564 (2019).

22. Zhu, J. et al. Over 50,000 metagenomically assembled draft genomes for the
human oral microbiome reveal new taxa. Genomics Proteomics Bioinformatics
https//doi.org/10.1016/j.gpb.2021.05.001 (2021).

23, Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey
data. PLoS Comput. Biol. 8, €1002687 (2012).

24. Jobin, C. Human intestinal microbiota and colorectal cancer: Moving beyond
associative studies. Gastroenterology 153, 1475-1478 (2017).

25. Wang, B. et al. The adaptor protein APPL2 controls glucose-stimulated insulin
secretion via F-actin remodeling in pancreatic beta-cells. Proc. Natl. Acad. Sci.
USA 117, 28307-28315 (2020).

26.  Mao, L. et al. Absence of Appl2 sensitizes endotoxin shock through activation
of PI3K/Akt pathway. Cell Biosci. 4, 60 (2014).


https://db.cngb.org/search/project/CNP0001664
https://db.cngb.org/search/project/CNP0001664
https://db.cngb.org/search/project/CNP0001664
https://db.cngb.org/search/project/CNP0001664
https://doi.org/10.1038/s41421-021-00356-0
https://doi.org/10.1016/j.gpb.2021.05.001

Liu et al. Cell Discovery (2021)7:117

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

Lukkunaprasit, T. et al. The association between genetic polymorphisms in
ABCG2 and SLC2A9 and urate: an updated systematic review and meta-
analysis. BMC Med. Genet. 21, 210 (2020).

Ruiz, A, Gautschi, I, Schild, L. & Bonny, O. Human mutations in SLC2A9 (Glut9)
affect transport capacity for urate. front. Physiol. 9, 476 (2018).

Doring, A. et al. SLC2A9 influences uric acid concentrations with pronounced
sex-specific effects. Nat. Genet. 40, 430-436 (2008).

Ishigaki, K. et al. Large-scale genome-wide association study in a Japanese
population identifies novel susceptibility loci across different diseases. Nat.
Genet. 52, 669-679 (2020).

Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese popu-
lation links cell types to complex human diseases. Nat. Genet. 50, 390-400
(2018).

Wierzbicki, I. H. et al. Group A Streptococcal S protein utilizes red blood cells as
immune camouflage and is a critical determinant for immune evasion. Cell
Rep. 29, 2979-2989 (2019). e15.

Teo, S. M. et al. The infant nasopharyngeal microbiome impacts severity of
lower respiratory infection and risk of asthma development. Cell Host Microbe
17, 704-715 (2015).

Noguchi, S. et al. The clinical features of respiratory infections caused by the
Streptococcus anginosus group. BMC Pulm. Med. 15, 133 (2015).

Deng, Z-L, Szafrariski, S. P,, Jarek, M, Bhuju, S. & Wagner-Débler, I. Dysbiosis in
chronic periodontitis: key microbial players and interactions with the human
host. Sci. Rep. 7, 3703 (2017).

Mark Welch, J. L., Ramirez-Puebla, S. T. & Borisy, G. G. Oral microbiome
geography: micron-scale habitat and niche. Cell Host Microbe 28,
160-168 (2020).

Consortium, G. T. The genotype-tissue expression (GTEx) project. Nat. Genet.
45, 580-585 (2013).

Jiao, X. et al. DAVID-WS: a stateful web service to facilitate gene/protein list
analysis. Bioinformatics 28, 1805-1806 (2012).

Watanabe, K, Taskesen, E, van Bochoven, A. & Posthuma, D. Functional
mapping and annotation of genetic associations with FUMA. Nat. Commun. 8,
1826 (2017).

Kim, B. S. et al. Comparison of the gut microbiota of centenarians in longevity
villages of South Korea with those of other age groups. J. Microbiol. Biotechnol.
29, 429-440 (2019).

Tong, Y. et al. Oral microbiota perturbations are linked to high risk for rheu-
matoid arthritis. Front. Cell Infect. Microbiol. 9, 475 (2019).

Liu, S. et al. The host shapes the gut microbiota via fecal microRNA. Cell Host
Microbe 19, 32-43 (2016).

Liu, S. et al. Oral administration of miR-30d from feces of MS patients sup-
presses MS-like symptoms in mice by expanding akkermansia muciniphila. Cell
Host Microbe 26, 779-794 (2019). e8.

Lamont, R. J, Koo, H. & Hajishengallis, G. The oral microbiota: dynamic com-
munities and host interactions. Nat. Rev. Microbiol. 16, 745-759 (2018).

Rabe, A. et al. Metaproteomics analysis of microbial diversity of human saliva
and tongue dorsum in young healthy individuals. J. Oral. Microbiol. 11,
1654786 (2019).

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

Page 16 of 16

Hall, M. W. et al. Inter-personal diversity and temporal dynamics of dental,
tongue, and salivary microbiota in the healthy oral cavity. NPJ Biofilms
Microbiomes 3, 2 (2017).

Wilbert, S. A, Mark Welch, J. L. & Borisy, G. G. Spatial ecology of the human
tongue dorsum microbiome. Cell Rep. 30, 4003-4015.e3 (2020).

Caselli, E. et al. Defining the oral microbiome by whole-genome sequencing
and resistome analysis: the complexity of the healthy picture. BMC Microbiol.
20, 120 (2020).

Ding, T. & Schloss, P. D. Dynamics and associations of microbial community
types across the human body. Nature 509, 357-360 (2014).

Segata, N. et al. Composition of the adult digestive tract bacterial microbiome
based on seven mouth surfaces, tonsils, throat and stool samples. Genome
Biol. 13, R42 (2012).

Yatsunenko, T. et al. Human gut microbiome viewed across age and geo-
graphy. Nature 486, 222-227 (2012).

He, Y. et al. Regional variation limits applications of healthy gut microbiome
reference ranges and disease models. Nat. Med. 24, 1532-1535 (2018).
Zhang, J. et al. A phylo-functional core of gut microbiota in healthy young
Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 9,
1979-1990 (2015).

David, L. A. et al. Diet rapidly and reproducibly alters the human gut micro-
biome. Nature 505, 559-563 (2014).

Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell
175, 962-972 (2018).

Liu, X. et al. Mendelian randomization analyses support causal relationships
between blood metabolites and the gut microbiome. Nat. Genet. https//doi.
0rg/10.1038/541588-021-00968-y (2021).

Jie, Z. et al. A transomic cohort as a reference point for promoting a healthy
human gut microbiome. Med. Microecol. 8, 100039 (2021).

Fang, C. et al. Assessment of the cPAS-based BGISEQ-500 platform for
metagenomic sequencing. Gigascience 7, 1-8 (2018).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics
25, 2078-2079 (2009).

McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303
(2010).

Purcell, S. et al. PLINK a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575 (2007).
Loh, P-R. et al. Reference-based phasing using the haplotype reference
consortium panel. Nat. Genet. 48, 1443-1448 (2016).

Das, S. et al. Next-generation genotype imputation service and methods. Nat.
Genet. 48, 1284-1287 (2016).

Wang, K, Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164
(2010).

Ke, G. et al. LightGBM: A highly efficient gradient boosting decision tree. In
31st Conference on Neural Information Processing Systems (NIPS, 2017).


https://doi.org/10.1038/s41588-021-00968-y
https://doi.org/10.1038/s41588-021-00968-y

	Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome
	Introduction
	Results
	The oral microbiome according to metagenomically assembled microbial genomes
	Host genetic variants strongly associated with the tongue dorsum microbiome
	mgGWAS of the salivary microbiome confirm and extend human genetic contribution to the oral microbiome
	Gene set enrichment analysis for oral mgGWAS signals
	Potential modulation of oral bacteria by host miRNA
	Host genetics influence oral microbiome more than environments
	Host genetics and oral microbiome predict dental diseases

	Discussion
	Materials and methods
	Study subjects
	High-depth whole-genome sequencing for the discovery cohort
	Low-depth whole-genome sequencing for the replication cohort
	Oral metagenomic sequencing and quality control
	Oral metagenomic profiling
	Tongue dorsum and salivary microbiome comparison
	Association analysis for oral microbial taxa
	Functional and pathway enrichment analysis
	miRNA target prediction and bacterial growth experiments
	Association analysis for microbiome &#x003B1;-diversity and &#x003B2;nobreak-nobreakdiversity
	Association analysis for host environmental factors
	Environmental factors explained the variance of the oral microbiome
	Construct PRS for diseases prediction

	Acknowledgements




