
1Scientific RepoRts | 5:13172 | DOi: 10.1038/srep13172

www.nature.com/scientificreports

Improving the accuracy of the 
k-shell method by removing 
redundant links: From a 
perspective of spreading dynamics
Ying Liu1,2,3, Ming Tang1, Tao Zhou1,4 & Younghae Do5

Recent study shows that the accuracy of the k-shell method in determining node coreness in a 
spreading process is largely impacted due to the existence of core-like group, which has a large  
k-shell index but a low spreading efficiency. Based on the analysis of the structure of core-like groups 
in real-world networks, we discover that nodes in the core-like group are mutually densely connected 
with very few out-leaving links from the group. By defining a measure of diffusion importance 
for each edge based on the number of out-leaving links of its both ends, we are able to identify 
redundant links in the spreading process, which have a relatively low diffusion importance but lead 
to form the locally densely connected core-like group. After filtering out the redundant links and 
applying the k-shell method to the residual network, we obtain a renewed coreness ks for each node 
which is a more accurate index to indicate its location importance and spreading influence in the 
original network. Moreover, we find that the performance of the ranking algorithms based on the 
renewed coreness are also greatly enhanced. Our findings help to more accurately decompose the 
network core structure and identify influential nodes in spreading processes.

The development of network science has made it a powerful tool to model and analyze complex systems 
in nature and society1. One fundamental aspect is to understand the complex structures and behaviors 
of real-world networks2–4. Network structure can be described from the local, global and meso-scale 
levels5 such as node degree, clustering, degree distributions, degree correlations, motifs, communities, 
hierarchies, etc. The k-shell decomposition is a method used to partition a network into hierarchically 
ordered sub-structures6. It decomposes a network in an iterative way, removing all nodes of degree less 
than current shell index until no removing is possible (see Methods for details). Each node is assigned 
an index ks to represent its coreness in the network. Nodes with the same ks constitute the ks-shell. A 
large ks indicates a core position in the network, while a small ks defines the periphery of the network. 
The k-core, nodes with ks ≥  k, obtained in the decomposition process is a highly interconnected substruc-
ture in network topology7, which has found its application in different fields of science, like biology8,9, 
economics10, and social science11–14. For example, nodes in the inner core (large ks region) have a rela-
tively high probability of being essential and evolutionary conserved in the protein interaction network8. 
Nodes in the innermost core (the shell with the largest ks value in the network) of the global economic 
network are most probable to trigger out an economic crisis10. High k-cores of the air transportation 
network in USA are extremely resilient to both the node removal and edge removal11. Because of its low 
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computational complexity of O(N +  E)15, where N is the network size and E is the number of edges in 
the network, the k-shell method is extensively used in analyzing the hierarchical structure of large-scale 
networks, such as visualizing networks16, depicting the network core-periphery features17,18, and analyz-
ing the Internet and its core19–21. In addition, the k-core is used to construct network model22, applied 
in community detection23 and k-core percolation is extensively studied which gives a notion of network 
resilience under random attack24,25. The k-shell method is also extended to weighted networks26, dynamic 
networks27 and multiplex networks28.

Considering that the k-shell method decomposes the network into ordered shells from the core to 
the periphery, researchers found that core nodes of the network are more influential than the periphery 
nodes in a spreading dynamics29. Following the work, there is growing interest in using the ks index 
to rank nodes of their spreading efficiency. Nodes with large ks are considered to be more influential 
and effective than others in a spreading process10,30–32. Furthermore, some works devise ranking algo-
rithms based on ks of nodes33–35. Despite its effectiveness, however, the coreness determined by the k-shell 
method has some limitations in identifying influential spreaders. In the rumor spreading model, nodes 
with high coreness are not influential spreaders but act as firewall to prevent the rumor from spreading 
to the whole network36. For dynamics with steady state, nodes with the highest degree act more impor-
tantly than the core nodes in uncorrelated networks if the degree distribution of the network has a decay 
exponent larger than 5/237. In network with tree structure or BA model network, most of the nodes are 
assigned a same ks value, thus the k-shell index is unable to distinguish node importance38. In particular, 
in our recent study39 we show that in some real-world networks the core nodes as identified by the k-shell 
decomposition are not the most influential spreaders. Specifically speaking, there exist core-like groups 
which are identified as cores with large ks but are in fact only locally densely connected groups with 
relatively low spreading efficiency. This implies that the ks index may be inaccurate to reflect the location 
importance of nodes in networks with such local structure, which proposes a great challenge for works 
using the k-shell method to identify network cores and rank nodes.

In this paper, we explore the topological feature of the core-like groups and find out the connec-
tion pattern that causes the failure of the ks index to accurately determine the location importance and 
spreading influence of nodes in networks with such local structure. Furthermore, we propose a way 
to improve the accuracy of the k-shell method in determining node coreness from the perspective of 
spreading dynamics. Motivated by the research advances in core-periphery structure40–42, in which core 
nodes are not only densely connected among themselves but also well connected to the periphery nodes, 
which are sparsely connected to any other, we consider the characteristics of links a core node should 
have. Specifically speaking, links of core nodes should not only connect to core nodes, but also connect 
to nodes that are not in the core. To quantitatively determine the effect of a link in a spreading process, 
we define a measure of diffusion importance based on the connection patterns of its two ends. We find 
that there exist some redundant links in real-world networks, which have a low diffusion importance 
but lead to form the core-like group. By filtering out the redundant links from the original network and 
applying the k-shell decomposition on the residual network, we obtain a renewed coreness ks for each 
node. This ks is a much more accurate index to indicate the node importance in a spreading dynamics 
in the original network. We validate this by simulating the susceptible-infected-recovered (SIR) epidemic 
process on networks and comparing the spreading efficiency of nodes from the core to the periphery, 
which is used in many research works29,31. Furthermore, we find that ranking algorithms based on the 
k-shell method are also greatly enhanced once using the renewed ks obtained from the residual network.

Results
We first present the structural feature of the locally densely connected groups that cause the inaccuracy 
of the k-shell method in determining coreness of nodes in a spreading dynamics. We then define the dif-
fusion importance of edges and remove the redundant edges. Finally, we validate the improved accuracy 
of the renewed coreness from the perspective of spreading dynamics.

Structural feature of the locally densely connected group. We first focus on six real-world net-
works in which the k-shell method fails to identify the core shells because of the existence of the core-like 
groups39 (For the identification of core-like groups, see Methods for details). The properties of the stud-
ied networks are listed in Table 1.

Based on in-depth analysis of the network local structure, we find that the core-like group has a 
clique-like local structure as shown in Fig. 1(a). Most of the nodes in the core-like group have a similar 
connection pattern. Let’s take node i for example. Neighbors of node i are mutually connected, with only 
one neighbor having a few out-leaving links, that are links connecting outside the neighborhood of node 
i. In the k-shell decomposing process, node i will be assigned a ks value equal to its degree. Considering 
the feature of core in the core-periphery structure40,42, which is densely connected among themselves and 
well connected to the periphery, we think that the cohesive group shown in Fig. 1(a) is not a true core, 
because it is only densely connected within a group but not well connected to the remaining part of the 
network. When a disease origins from node i, most of the infections are limited in the neighborhood of 
node i. As for the true core in Fig. 1(b), core nodes are well connected and at the same time connect well 
to the outside of the core. When a disease or rumor origins from node i, it is easier to spread to a broad 
area of the network through neighbors of node i whose links are connecting to the external parts of i's 
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neighborhood. We take the innermost core of the network CA-Hep and Router for example and visualize 
the connection pattern of the innermost core by the software Gephi of version 0.8.243. We find that for 
the innermost core of CA-Hep (core-like group), which is the 31-shell composed of 32 mutually con-
nected nodes, has a structure very similar to the structure shown in Fig. 1(a), with only five nodes having 
a small number of links out leaving the group, as shown in Fig. S1 (a) in Supporting Information (SI). 
As for the innermost core of Router (true-core), which is the 7-shell composed of 26 nodes, each node 
connects to a large amount of nodes that are not in the core-shell, as shown in Fig. S1 (b). Motivated by 
the structural difference of the core-like group and the true core, we think that the importance of links 
of a node i varies depending on the connection pattern of its neighbor nodes (e.g. node j): if node j has 
many connections out-leaving node i's neighborhood, the probability of infecting more nodes increases 
when the spreading origins from node i, and thus the edge linking node i and node j is important for 
node i. On the contrary, if node j has very few or even no out-leaving links from node i's neighborhood, 
the probability of infecting a large population by node i decreases, and thus the edge linking node i and 
node j is less important.

To confirm the relationship between the structural feature and spreading behavior of the network, we 
use the SIR spreading model44 to simulate the spreading process on networks. We record the spreading 
efficiency of each node, which is the size of the final infected population M when a spreading origins 
from the node (see Methods for details). Then we study the correlation between the total number of 
out-leaving links nout of a node, that is the sum of out-leaving links over all neighbors of the node, and 
its spreading efficiency M. To compare the difference between the core-like group and the true core, we 
choose two groups of nodes for each network. The first one is the shell that is a core-like group (there 
may be several core-like groups in the network, and we choose the one with the largest ks value); the 
second one is the shell with the highest average spreading efficiency. From Fig.  2 we can see that in 
general nodes in core-like groups (blue squares), which have a relatively low spreading efficiency, have 
a lower number of out-leaving links than nodes in the highest spreading efficiency shell (red circles). 
What is worth noticing is that although most nodes in core-like groups have a relatively low spreading 

Network N E k kmax Hk r C kSmax λc λ

Email 1133 5451 9.6 71 1.942 0.078 0.220 11 0.06 0.08

CA-Hep 8638 24806 5.7 65 2.261 0.239 0.482 31 0.08 0.12

Hamster 2000 16097 16.1 273 2.719 0.023 0.540 24 0.02 0.04

Blog 3982 6803 3.4 189 4.038 − 0.133 0.284 7 0.08 0.27

PGP 10680 24340 4.6 206 4.153 0.240 0.266 31 0.06 0.19

Astro 14845 119652 16.1 360 2.820 0.228 0.670 56 0.02 0.05

Router 5022 6258 2.5 106 5.503 − 0.138 0.012 7 0.08 0.27

Emailcontact 12625 20362 3.2 576 34.249 − 0.387 0.109 23 0.01 0.10

AS 22963 48436 4.2 2390 61.978 − 0.198 0.230 25 0.004 0.13

Table 1.  Properties of the real-world networks studied in this work. Structural properties include number 
of nodes (N), number of edges (E), average degree k( ), maximum degree (kmax), degree heterogeneity 
(H k kk

2 2= / ), degree assortativity (r), clustering coefficient (C), maximum ks index (kSmax), epidemic 
threshold (λ c), infection probability used in the SIR spreading in the main text (λ ) (see Method for details). 
For the first six networks, there exist core-like groups. While for the last three networks, there is no core-like 
group in the network, which we will discuss in the last part.

Figure 1. Illustration of structural feature of the core-like group and the true core. (a) Core-like group. 
(b) True core. For the core-like group, core nodes are mutually connected and have very few out-leaving 
links. While for the true core, core nodes are connected and each of them has a lot of out-leaving links.
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efficiency, there may be some nodes that have a high spreading efficiency, corresponding to some blue 
squares in Email and PGP, which also have a relatively high number of out-leaving links. On the other 
hand, in the highest spreading efficiency shell, there are nodes with relatively low spreading efficiency 
whose number of out-leaving links is correspondingly low, such as some red circles in Email and Blog. 
These indicate a positive correlation between the spreading efficiency and the number of out-leaving 
links of a node through its neighbors.

Considering the structural feature of core-like groups and the correlation between the number of 
out-leaving links and the spreading efficiency of a node, we realize that in the locally densely connected 
structures, there exist some links which lead to form a clique-like local structure but contribute little to 
the spreading process. This causes the failure of k-shell method in accurately determining node coreness 
and identifying true cores in many real-world networks in a spreading dynamics. Next we will step fur-
ther to find a way to eliminate the negative effect of these links and improve the accuracy of the k-shell 
method in determining network core structure.

Defining the diffusion importance for links. We define the diffusion importance of links in the 
following way. Consider an edge eij. When a disease spreads along it, there are two possible directions. 
In one direction, the disease origins from node i and spreads along eij to node j, and then spreads to the 
other parts of the network through node j. We record the number of links of node j connecting outside 
the nearest neighborhood of node i as ni→j. In the other direction, the disease origins from node j and 
spreads along eji (the same edge as eij because it is undirected edge) to node i, and then spreads through 
node i to the other parts of the network. We record the number of links of node i connecting outside the 
nearest neighborhood of node j as nj→i. Then the diffusion importance of edge eij is defined as

D n n 2 1ij i j j i= ( + )/ . ( )→ →

This value quantifies the average potential influence of an edge in both directions. Let’s take edge eij in 
Fig. 1 as an example to calculate the diffusion importance. In Fig. 1(a), ni→j =  0, which is the number of 
links of node j that connect outside the neighborhood of node i. At the same time, nj→i =  0, which reflects 
that node i has no link connecting to nodes that are not in the neighborhood of node j. Thus the Dij =  0. 
In Fig. 1(b), ni→j =  3, nj→i =  2, and thus Dij =  2.5. In this way, we can calculate the diffusion importance 
for all edges in the network. When each edge is assigned a diffusion importance, the unweighted graph 
becomes weighted graph. The weight on edge contains the information of the potential spreading cov-
erage when a disease spreads along the edge. For a general discussion of the weighted network is not 
in the scope of this paper, which we will explore in the future. Here, we concentrate on identifying 
links that are less important in the spreading process but lead to form a locally densely connected local 

Figure 2. Correlation of spreading efficiency and the number of out-leaving links. For each network, 
we present the nodes in the core-like group (blue squares) and in the highest spreading efficiency shell 
(red circles). A positive correlation between the spreading efficiency and the number of out-leaving links is 
demonstrated.
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structure, which results in the failure of the k-shell method to accurately determine the coreness of nodes 
in spreading dynamics.

Filtering out redundant links and applying the k-shell method to obtain a new coreness for 
nodes. From the analysis of Fig. 1, we come to the idea that links with low diffusion importance are 
redundant links, which contribute much to a densely connected local structure and a high ks for nodes 
but have a limited diffusion influence. We set a redundant threshold Dthr to determine redundant links. 
If Dij <  Dthr, edge eij is considered as a redundant link. If we use G =  {V, E} to represent a graph, where 
V is the set of nodes and E is the set of edges, then the residual network that is obtained by filtering out 
redundant links is represented as G′  =  {V′ , E′ }, where V′  =  V and E E′ ⊆ . If all edges in the network have 
a Dij ≥  Dthr, then E′  =  E.

We first apply the k-shell decomposition to the original networks and obtain the coreness for each 
node, recorded as kS

o. Then we identify and filter out the redundant links. Given that filtering out too 
many edges may destruct the main structure of the network, the Dthr should not be too large which will 
lead to a large proportion of links being identified as redundant links. Meanwhile, the Dthr should not be 
too small because the redundant links that contribute much to the local densely connected structure may 
have a diffusion importance greater than 0 but are still not so important in a spreading process. We adopt 
a diffusion threshold of Dij =  2. For a discussion of the diffusion threshold, please see SI for details. In 
this case, edges with Dij ≥  2 are remained in G′ . We apply the k-shell method to G′  and obtain a renewed 
coreness for each node, recorded as kS

r. We use the imprecision function, which is initially proposed by 
Kitsak et al.29 and modified by Liu et al.39, to compare the accuracy of kS

o and kS
r in determine node 

coreness in the network. The imprecision function is defined as
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where ks is the shell index ranging from 0 (for isolated nodes in the residual network) to the maximum ks 
value in the network. Mcore(ks) is the average spreading efficiency of nodes with coreness k S′ ≥  kS (nodes in 
ks-core), and Meff(ks) is the average spreading efficiency of n nodes with the highest spreading efficiency, 
where n equals to the number of nodes in ks-core. This function quantifies how close to the optimal 
spreading is the average spreading of nodes in ks-core. A small ε(ks) value means nodes identified as in 
core shells have a correspondingly high spreading efficiency.

In Fig.  3 we compare the imprecision of kS
o and kS

r. The number of shells may be different for the 
original graph G and the residual graph G′ , so we normalized the shell index ks by the maximum shell 

Figure 3. The imprecision of kS
o and kS

r as a function of shell index. kS
o is the coreness obtained from the 

original network, and kS
r is the coreness obtained from the residual network. Shell index ks ranges from 0 to 

kSmax and is normalized by kSmax. The imprecision of kS
r is obviously smaller than that of kS

o.
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index kSmax in G and G′  respectively. The imprecision based on kS
r is in general obviously lower than the 

imprecision based on kS
o. For the networks of Email, CA-Hep, Hamster and Blog, the imprecision of kS

o 
is high for large values of kS, close to or above 0.4. This means that in these networks nodes identified as 
core by the kS

o are in fact not very influential in a spreading process. In the network of PGP and Astro, 
there are sudden jumps in kS

o imprecision, which correspond to the locally densely connected structure 
that does not exist in the innermost core but exists in some outer shells of the network39. On the contrary, 
when the kS

r is used to determine node coreness, a much lower imprecision is obtained. In all the studied 
real-world networks, the absolute value of the imprecision based on kS

r is close to or smaller than 0.1. 
This means that the kS

r is a good indicator of spreading efficiency. After removing the redundant links 
with low Dij values, the accuracy of the k-shell method in determining cores is greatly improved.

In many cases, people are more interested in top ranked nodes, which correspond to leaders in the 
society. We rank nodes by their coreness kS

o and kS
r respectively and compare the accuracy of coreness in 

identifying the most influential spreaders. Results show that the coreness obtained from the residual 
network is much more accurate than the original coreness in identifying the most influential spreaders. 
See Fig. S3 in SI for more details.

Then we focus on the spreading efficiency of shells. A good partition of the network is supposed to 
display a concordant trend between the shell index obtained from network topology and the spreading 
efficiency of that shell. One would expect that shells with large kS should have a higher spreading effi-
ciency than shells with small kS. We plot the spreading efficiency M of each shell (expressed as the dis-
tance d of a shell from the innermost core), where the spreading efficiency of a shell is the average 
spreading efficiency of nodes in that shell. As shown in Fig.  4, the spreading efficiency of shells is in 
general decreasing monotonically with the increase of distance from the innermost core in all studied 
networks when kS

r is used. In the networks of Email, CA-Hep and Blog, the spreading efficiency of each 
shell and its coreness kS

r is completely concordant. A large kS
r indicates a higher spreading efficiency of 

the shell. In the networks of Hamster, PGP and Astro, the spreading efficiency and its coreness kS
r are 

concordant in most shells. There are a limited number of shells where the trend is not so monotonic, 
however the fluctuation in spreading efficiency is relatively small compared to that of the kS

o. As for the 
kS

o, the trend is not as monotonic as kS
r. In other words, the coreness obtained from the residual network 

predicts the spreading efficiency much more accurately than the original one.

Comparing with random deletion and other way of targeted removing of links. Our way of 
removing redundant links obviously improves the accuracy of the k-shell method in determining the 
influence of nodes in a spreading. Now we compare the effectiveness of our way of targeting the 

Figure 4. Spreading efficiency of a shell and its distance from the innermost core. kS
o is the coreness 

obtained from the original network, and kS
r is the coreness obtained from the residual network. d is the 

distance from the innermost core. d =  0 corresponds to the innermost core.
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redundant links with random deletion, as well as targeting links whose importance is determined by the 
degree of nodes on its two ends. To compare with random deletion, we randomly select a set of edges 
and delete them from the network. The number of edges that is to be deleted is the same as the number 
of identified redundant links. Then we apply the k-shell decomposition to the residual network and 
obtain a kS for each node. We realize the random deletion for 50 times and average the kS obtained at 
each realization as coreness for node i, which we record as kS

a to represent random or arbitrary deletion. 
A comparison of the imprecision as a function of shell index are shown in Fig.  5. In most cases, the 
imprecision of kS

a is very close to that of the kS
o obtained from the original network, and is obviously 

higher than the imprecision of kS
r obtained from the residual network. This implies that the core-like 

groups still exist in the residual network after random deletion of links. Although the imprecision of kS
a 

is slightly improved in some networks, we think it is because that when the links are selected randomly, 
there is a chance that a redundant link is selected.

A widely used way of determining edge importance is considering the degree of nodes on its two 
ends. The weight (also the importance) of an edge eij is proportional to the product of ki and kj as 
wij =  (ki kj)θ, where ki and kj are the degree of node i and node j respectively45–47 and θ is a tunable param-
eter. This measure is also strongly correlated with the betweenness centrality of an edge48. We use a 
parameter θ =  1 to determine the edge importance, and remove the edges of the smallest weight from 
the network to see its effect on the k-shell method. The number of edges removed is the same as the 
number of redundant links identified. We find that the imprecision of coreness kS

w obtained from the 
residual network in this way is almost the same as the original kS

o, as shown in Fig. S4 in SI.
The above analysis implies us two points. First, our way of identifying and removing the redundant 

links is effective in improving the accuracy of k-shell method in profiling the core structure of the net-
work in a spreading dynamics. Second, the k-shell index has a robustness against random failure, which 
is consistent with the result in Ref. 29. In that work, authors pointed out that the k-shell method is robust 
under random deletion of even up to 50% of the edges, which means the relative ranking of the kS value 
for the same nodes in the original network and the network after random deletion are almost the same.

Discussion
Profiling the network hierarchical structure is very important in understanding the behaviors on it. The 
k-shell decomposition is a basic method to describe network structure and identify core areas that is used 
in many fields of science. We study the k-core structure of real-world networks and the spreading process 
on it. We find that the accuracy of the k-shell method in identifying influential spreaders is impacted 
by the locally densely connected group in the network, which corresponds to real-world scenarios such 

Figure 5. The imprecision of kS
o, kS

r and kS
a as a function of shell index. kS

o is the coreness obtained from 
the original network, kS

r is the coreness obtained from the residual network and kS
a is the coreness obtained 

from the network after random deletion of edges. Shell index ks ranges from 0 to kSmax and is normalized by 
kSmax. The imprecision of kS

r is obviously smaller than that of kS
o and kS

a.
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as extensive communication and cooperation within a small group or community. Based on in-depth 
analysis of network local structure and motivated by research advances in core-periphery structure, we 
realize that the links of nodes contribute differently to the affected population in a spreading process. 
For the first time we define a diffusion importance for each link in the network based on its potential 
influence in a spreading process. By filtering out redundant links and then applying the k-shell decom-
position to the residual graph, we get a renewed coreness for nodes. Experimental results show that this 
renewed coreness is much more accurate in determining the spreading influence of node from the core 
to the periphery. Specifically speaking, the imprecision of coreness in identifying influential spreaders 
is greatly reduced. Nodes with high renewed coreness are in general have a higher spreading efficiency 
than nodes with low renewed coreness.

There are many algorithms using the kS index as a global importance of nodes and ranking nodes. 
Among them, the iterative resource allocating (IRA) algorithm33 greatly enhance the accuracy of central-
ity measures in ranking node influence by iteratively relocating sources to each node based on the cen-
trality of its neighbors (see Methods for details). After iteration, the resource of a node will be stable and 
is used to rank node of its spreading influence. As above, we filter out the redundant links of G and apply 
the k-shell decomposition to the residual graph G′  to obtain a kS

r and then implement the IRA algorithm 
on G′ . We find that the ranking accuracy is greatly improved, as shown in Fig. S5. The effectiveness of 
our method in another ranking algorithm, which defines a neighborhood coreness Cnc of node i as 
C k jnc j i S= ∑ ( )∈Γ( )  34, where Γ (i) is the set of neighbors of node i and ks(j) is the coreness of node j, is 
shown in SI Fig. S6. We still come to a great improvement in the ranking accuracy.

As our way of filtering out redundant links works well for networks with locally densely connected 
structure, one may ask the performance of kS

r on networks with no such local structure. For the networks 
of Router, Emailcontact and AS listed in Table  1, in which there is no core-like group and the k-shell 
method works well on the original network, we find that by filtering out redundant links, the perfor-
mance of kS

o and kS
r are nearly exactly the same. The imprecision of kS

r is very low, and high shells always 
have a high spreading efficiency. This implies that there is no negative effect on the k-shell method on 
networks where it works well. We present the coreness imprecision as a function of shell index and per-
centage of nodes p in SI Fig. S7 and S8 respectively, as well as the spreading efficiency of each shell in 
Fig. S9. It is again due to the robustness of the k-shell method. This feature is meaningful in that our way 
of filtering out redundant links will greatly improve the accuracy of the k-shell method in networks 
where it doesn’t work well while at the same time doesn’t impact its performance in networks where it 
already works well. We also test the effects of filtering out redundant links on other centrality measures 
such as degree centrality, betweenness centrality and eigenvector centrality in ranking node’s spreading 
influence. Results show that the ranking performance of the centrality obtained from the residual net-
work remains very close to the centrality obtained from the original network. This means the redundant 
links have little influence on these centrality measures, which is a proof of the redundancy of these links.

Many real-world networks are fractal, which means a topological self-similarity at all length scales, 
such as the world-wide web, actor collaboration network, protein-protein interaction network and cel-
lular network49. An important feature of the fractal network is the disassortativity between hub nodes. 
Hubs are dispersed making the network more robustness against malicious attack50. When applying 
our method to the fractal network, the links that connect the hub node and the non-hub node will be 
assigned a relatively large diffusion importance because of the asymmetry of degree on its two ends, thus 
the number of identified redundant links between hub nodes may be relatively small in fractal networks. 
In this case, the improvement in identifying the most influential spreaders by our method may be less 
obvious. Meanwhile, the fractal network is featured by modularity and self-similarity between modules51. 
Modules with local hubs are connected by weak ties52. The weak ties between modules may be more 
important than weak ties within the module in a diffusion process. How to distinguish their influence 
and define the diffusion importance need to be further studied.

As we use the SIR model to simulate the spreading process, a challenging question is how the algo-
rithm will work when considering real diffusion dynamics, which is much more complex than the model 
dynamics. When considering information diffusion on Twitter, for example, the attributes of the node 
(such as its activity level, the social role of whether a mass media, a celebrity or an ordinary user, levels 
of expertise on various fields, and the biological limits of maintaining stable social relationship) and 
the tweets itself (such as the topics and spanning time) will largely influence the dynamics53,54. In addi-
tion, the flow of information is directed from the followed one to the follower, and the influence of the 
information origin is measured by either the number of retweets or mentions55. In fact some researchers 
have addressed the problem of validating the k-shell method in diffusion process on Twitter and find 
that the kS index is a good predictor of spreading influence12,32. However, in behavior spreading, such as 
the adoption of innovation56 and health behavior57, the social reinforcement effect of multiple adoption 
from neighbors will increase the probability of a user to adopt and spread the behavior. In this case, the 
spreading in a community will be promoted when there are redundant links. The performance of our way 
in finding good spreaders is worthy of further study when considering different real diffusion processes.

The identification of redundant links gives us implication that redundancy has an effect on the anal-
ysis of network structure. While we only concentrate on its effectiveness in k-shell method and from 
the perspective of SIR spreading dynamics, the influence of redundant links on other network analysis 
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remains unexplored. This proposes two challenges. First, we need to decide which structural features of 
the network are affected much by redundant links, such as the community structure. Second, how to 
define the importance of links in the network may depend on the real diffusion dynamics on it, such as 
the rumor spreading, behavior spreading and information diffusion. In addition, while our way of deter-
mining the redundant threshold Dthr is obtained from simulation experiments, a parameter-free way of 
identifying the redundant links is worthy of further explore.

Methods
The k-shell decomposition. The algorithm starts by removing all nodes with degree k =  1. After 
removing all nodes with k =  1, there may appear some nodes with only one link left. We iteratively 
remove these nodes until there is no node left with k =  1. The removed nodes are assigned with an index 
kS =  1 and are considered in the 1-shell. In a similar way, nodes with degree k ≤  2 are iteratively removed 
and assigned an index kS =  2. This pruning process continues removing higher shells until all nodes are 
removed. Isolated nodes are assigned an index kS =  0. As a result, each node is assigned a kS index, and 
the network can be viewed as a hierarchical structure from the innermost shell to the periphery shell.

Identify core-like groups in real-world networks. The link entropy of a shell with index kS is 
defined39 as
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rk kS S
 is the average link strength of nodes in the kS-shell to the k S′-shell and L is the number of 

shells in the network. The link strength of node i to the k S′-shell is the ratio of the number of links orig-
inating from node i to the k S′-shell to the total number of links of node i. The shells which have a rela-
tively low entropy compared with its adjacent shells are usually locally connected core-like groups.

SIR model. We use the susceptible-infected-recovered (SIR) spreading model to simulate the spread-
ing process on networks and obtain the spreading efficiency for each node. In the model, a node has 
three possible states: S (susceptible), I (infected) and R (recovered). Susceptible individual become 
infected with probability λ if it is contacted by an infected neighbor. Infected nodes contact their neigh-
bors and then change to recovered state with probability μ. For generality we set μ =  1. Recovered nodes 
will neither be infected nor infect others any more, and they remain the R state until the spreading stops. 
Initially, a single node is infected and all others are susceptible. Then the disease spreads from the seed 
node to the others through links. The spreading process stops when there is no infected node in the 
network. The proportion of recovered nodes M when spreading stops is considered as the spreading 
capability, or spreading efficiency, of the origin node. We realize the spreading process for 100 times and 
take the average spreading efficiency of a node as its spreading efficiency.

As we have discovered that the infection probability will not change the relative spreading efficiency 
of nodes39, in this paper we chose an infection probability λ >  λc, where k k kc

2λ = /( − ) is the 
epidemic threshold determined from the heterogenous mean-field method58. Under the infection prob-
ability of λ, the final infected population M is above 0 and reaches a finite but small fraction of the 
network size for most nodes as the spreading origin, in the range of 1%–20%29.

Ranking algorithm of IRA. This algorithm considers that the spreading influence of a node is deter-
mined by both its centrality and its neighbor’s centrality33. In an iterative resource allocation process, 
the resource of nodes is distributed to its neighbors according to their centrality. The resource node i 
receive is
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where Rj→i(t +  1) is the amount of resource distributed from node j to node i at time t +  1, Γ i is the sets 
of node i's neighbors. θi is the centrality of node i, and α is a tunable parameter to adjust the influence 
of centrality. u belongs to the neighborhood Γ j of node j. δij =  1 if there is a link between node i and 
node j, otherwise δij =  0. Ij(t) is the resource hold by node j at time step t. Initially, each node has a unit 
resource. After iterations the resource distributed to each node will be stable, and the final resource of 
nodes are used to rank their spreading influence. The coreness centrality kS is used here, and α is set to 1.

Data sets. The real-world networks studied in the paper are: (1) Email (e-mail network of University 
at Rovira i Virgili, URV)59; (2) CA-Hep (Giant connected component of collaboration network of arxiv 
in high-energy physics theory)60; (3) Hamster (friendships and family links between users of the website 
hamsterster.com)61; (4) Blog (the communication relationships between owners of blogs on the MSN 
(Windows Live) Spaces website)62; (5) PGP (an encrypted communication network)63; (6) Astro physics 
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(collaboration network of astrophysics scientists)64; (7) Router (the router level topology of the Internet, 
collected by the Rocketfuel Project)65; (8) Emailcontact (Email contacts at Computer Science Department 
of University College London)29; (9) AS (Internet at the autonomous system level)66.
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