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Abstract: Cancer represents the disease of the millennium, a major problem in public health.
The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and
the components of the extracellular matrix are important in the events of carcinogenesis, and these
pathways are being used as targets for new anticancer treatments. Various venoms and their toxins
have shown possible anticancer effects on human cancer cell lines, providing new perspectives in
drug development. In this review, we observed the effects of natural toxins from bee and snake
venom and the mechanisms through which they can inhibit the growth and proliferation of cancer
cells. We also researched how several types of natural molecules from venom can sensitize ovarian
cancer cells to conventional chemotherapy, with many toxins being helpful for developing new
anticancer drugs. This approach could improve the efficiency of standard therapies and could allow
the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom
could become potential candidates for the future treatment of different types of cancer. It is important
to continue these studies concerning therapeutic drugs from natural resource and, more importantly,
to investigate their mechanism of action on cancer cells.
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1. Introduction

Cancer represents the disease of the millennium, a major problem in public health. Ovarian cancer
is the fifth cause of death among the female population with an estimated 152,000 deaths worldwide
and 239,000 new cases diagnosed annually, according to Reid et al. [1]. The American Cancer Society
estimates that in the year 2018, 22,240 women will be diagnosed with ovarian cancer and 14,070 women
will die from the disease in the USA [2,3]. Because of the undefined signs and symptoms, most patients
are diagnosed in the advanced stages of the disease [4]. The management of ovarian cancer consists
of initial surgery with staging [5], followed by chemotherapy and immunotherapy according to the
disease stage [6].

Among the therapies used for ovarian cancer, chemotherapy remains the major option in cases
where surgical treatment cannot be performed. The chemotherapeutic resistance or the incapacity
of administrating chemotherapy because of the poor health status of the patient are important
issues in these cases [7]. Development in the oncology field of new drugs from natural resources
holds an important role in modern medicine, mostly because the standard treatments have serious
side effects [8,9]. In some experimental studies, several plants and their compounds with possible
anticancer effects have been reported [10–12], with their mechanisms being explained through the
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inhibition of angiogenesis, decreased cell growth and proliferation, apoptosis, and prevention of
oxidation and inflammation [13,14]. However, compounds from plants are not enough nowadays.
Therefore, in the last years, studies have focused on the anticarcinogenic effects of toxins from animal
venom. Researchers have tried to develop different types of anticancer drugs from natural resources,
considering them a new line of treatment, hoping that these substances could increase the efficiency of
chemotherapeutic drugs [7,8,15].

2. Carcinogenesis Mechanism

Because of the need to develop new therapies that target genes or pathological pathways, various
studies have been carried out to understand the events that transform a normal cell into a tumor
cell [16]. As we described in our previous paper [17], carcinogenesis is a complex process that exerts
several changes in a normal cell—namely initiation, promotion, and progression—and is a process
that requires critical molecular and targeted pathways.

Figure 1 represents the process of carcinogenesis and shows the activity of natural toxins from
venom that may block the main events of tumor formation.
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Figure 1. Carcinogenesis and the effects of toxins from snake and bee venom on the different steps of
the process (adapted from [17,18]).

3. Toxins from Animal Venom—Compounds and Activity

3.1. Bee Venom

Bee venom (BV) has been found to be useful in the treatment of different pathologies in traditional
medicine: rheumatism, skin disease, arthritis, and malignant tumors [19]. Several studies have pointed
out that bee venom stimulates an increased secretion of cortisol from the adrenal glands, a fact that can
be observed as an anti-inflammatory effect, being used in the treatment of rheumatism and arthritis [20].
The anti-arthritis and anti-inflammatory activities (decreased expression of cyclooxygenase-2 and
phospholipase A2 and decreased levels of interleukin-1, interleukin-6, tumor necrosis factor alpha,
oxygen reactive species, and nitric oxide) have been reported in recent studies [19–24].

The effects of bee venom have been extensively studied by numerous researchers with recent
studies pointing to several cytotoxic mechanisms such as apoptosis and necrosis, effects on growth
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inhibition and proliferation, and cytotoxicity and cell cycle alterations in various malignant cells.
Several studies have reported the effects of natural toxins from bee venom on various types of cancers:
breast [25], ovarian [26], bladder [27], lung [28], liver [29], and prostate cancer [30].

Compounds and Activity of Bee Venom

BV contains a variety of active compounds with various pharmaceutical activities, divided as follows:
peptides including melittin, mast cell degranulating peptide (MCD), apamin and adolapin, enzymes
(phospholipase A2), biogenic amines (histamine, dopamine, and norepinephrine), and non-peptic
compounds (carbohydrates) [31]. Recent studies have investigated the effects of BV compounds, pointing
out that some peptides (melittin, apamin, MCD, and adolapin) possess biological activity [32,33].

Melittin is the major component of bee venom, accounting for approximately 40–50% of dry
weight. It is a protein that contains 26 amino acid residues. It is water soluble but also integrates and
disrupts the phospholipid bilayers (natural or synthetic) [34,35]. Several reports have observed that
melittin has various effects, including cell cycle arrest, apoptosis, and growth inhibition in different
malignant cells, as well as antibacterial, anti-inflammatory, and antiviral properties [35–38].

Apamin contains 10 amino acids with two disulfide bonds and is the smallest neurotoxin in
bee venom. The main effect is the selective inhibition of Ca2+-activated K+ channels [39]. Apamin
blocks the channels at a minimum concentration, enhancing the synaptic plasticity and neuronal
excitability. Ichii et al. reported the effect of apamin on tracheal contraction along with the release of
histamine from lung tissues, pointing out that it decreases allergic airway inflammation [40]. A study
from 2003 shows that apamin also inhibits nitric oxide-inducing relaxation of the myometrium in
non-pregnant women [41].

Another important compound, MCD has 22 amino acid and includes two disulfide bonds between
Cys5,19 and Cys3,15. The main effect is the inhibition of the release of histamine from mast cells at
minimum concentrations with anti-allergic activity [42,43]. In the case of the inhibition of mast cell
degranulation, studies suggest that this process is possible at concentrations higher than those that
increase the release of histamine, mostly because it interacts with immunoglobulin E molecule [44].

Adolapin is another peptide from BV that possesses anti-inflammatory, antipyretic, and analgesic
effects and inhibits the activity of phospholipase A2 [45]. The properties of this compound are due to
the inhibition of the synthesis of prostaglandins through cyclooxygenase inhibitory properties [46].

Table 1 summarizes the major compounds of bee venom and their biological effects.
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Table 1. Bee venom components and their biological effects (adapted from Son [19] and Osrolic [47]).

Compound Biological Effects

Peptides

Melittin
anti-inflammatory, immunostimulatory, immunosuppressive, antibacterial, antifungal, antiviral, cytotoxic effect, ↑ the activity of phospholipase
A2, anti-atherosclerotic, endosomolytic, stimulates smooth muscles, activates the hypophysis and adrenal glands, ↑ capillary permeability by ↑
blood circulation and ↓ blood pressure, ↓ blood coagulation

Apamin cytotoxic effect, anti-inflammatory, anti-serotonin action, immunosuppressive, activates the hypophysis and adrenal glands, nociceptive effect

MCD peptide lyses mast cells, releases histamine, serotonin and heparin, ↑ capillary permeability, anti-inflammatory, analgesic effect, simulates the central
nervous system

Adolapine inhibits PLA2 activity, inhibits COX activity, ↓ inflammation and ↓ pain, antipyretic, inhibits the aggregation of erythrocytes

Protease inhibitor inhibits the activity of trypsin, chymotrypsin, plasmin, thrombin, ↓ inflammation, anti-rheumatic

Procamine A, B, Secapine, Panime, Minimine, Tertiapine, Cardiopep, Melittin F

Proteins
(Enzymes)

Phospholipase A2 immunomodulatory, anti-inflammatory, destroys phospholipids and dissolves the cell membrane of blood bodies; ↓ the blood coagulation and
blood pressure, prevents neuronal cell death caused by prion peptides, cytotoxic effects against cancer cells, antitumor effects

Phospholipase B detoxicating activity

Hyaluronidase catalyzes the hydrolysis of proteins, dilates blood vessels and ↑ permeability, causing an ↑ in blood circulation; immune response, tissue
spread activity

Glucosidase, Acid phosphomonoesterase

Biogenic
Amines

Histamines dilates blood vessels, ↑ the permeability of blood capillaries and ↑ blood circulation; stimulates smooth muscles

Dopamine, Norepinephrine

Others Carbohydrates, r-Aminobutyric acid, B-aminoisobutyric acid
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3.2. Snake Venom

Snake venom is synthesized from the venom glands of venomous snakes. It contains several
different proteins, enzymes, peptides, and nucleotides [48,49]. It is well known that many snakes are
harmless but some produce venom with different degrees of toxicity. The venom of every snake is
different and researchers have observed that the venom differs among different species and according
to the age of the snake and even their habitat or climate [50].

About 90–95% of the dry weight of snake venom consists of proteins that are responsible for the
main biological effects. The venom has two main functions: (1) causes paralysis and (2) starts the
digestive process. Hydrolysis of proteins and membrane components are due to the enzymes from the
snake venom, the result being necrosis of the tissue and blood clotting.

Venom is classified—according to its mode of action and its effects—into the following groups:
cytotoxin, neurotoxin, cardiotoxin, and hemotoxin, containing several bioactive components that have
various pharmacological activities [51]:

• Neurotoxins act at the level of the central nervous system, causing breathing difficulties or
heart failure. These toxins affect the cholinergic neurons and block the binding of acetylcholine.
Another effect is the inhibition of ion movement through the cell membrane, which blocks the
communication between neurons [52].

• The toxins from snake venom that cause the destruction of the red blood cells are known as
hemotoxins and mainly affect the circulatory system, blood function, and muscle tissue (causing
gangrene and scarring). Viperidae species members (copperhead, rattlesnake, and cotton head)
possess hemotoxic venom while mambas, cobras, krait, sea snakes, and coral snakes have
neurotoxic venom. However, some species contain both neurotoxins and hemotoxins.

• The third group, the cardiotoxins, are those toxins that affect the heart muscle, binding to the cells
of the heart and blocking muscle contraction [53].

• One of the most important and researched toxins from snake venom is the cytotoxin. It targets
specific cellular sites, affecting the cell membrane or interfering with the transport of substances
or the transduction of signals across the membranes [54].

Even if snake venom has important toxicological effects, new research regarding some of
the venom compounds (proteins and peptides) points out that these substances could be used as
pharmaceutical agents [9,55,56]. These compounds have proven antiviral effects against some types
of viruses (yellow fever and dengue [57] and herpes simplex virus [58]), antimicrobial effects on
Gram-positive and Gram-negative bacteria [59,60], antifungal activity [61], and antiparasitic effects on
Plasmodium falciparum [62] and Leishmania.

Compounds and Activity of Snake Venom

Snake venom contains a mixture of different peptides, enzymes, proteins, chemicals, inorganic cations
(sodium, zinc, calcium, magnesium, potassium), carbohydrates, free amino acids, and lipids [63]. At least
25 enzymes have been identified in different concentrations and combinations in snake venom [64].

Among the common enzymes identified are acetylcholinesterase, serine proteases, L-amino acid
oxidase, phospholipases A(2) and metalloproteinases. We will discuss the most important enzymes
from snake venom.

Cholinesterase is the enzyme responsible for the effects on the central nervous system, having a
major role in the cholinergic system where it is responsible for blocking nerve impulse transmission.
It possesses high reactivity towards organophosphorus compounds. A study from 2011 pointed out
that cholinesterase can be used as a treatment and prophylaxis of organophosphorus poisoning [65].

Being an endoglycosidase, hyaluronidase degrades the beta-N-acetyl-glucosaminidic linkages in
HA polymers [66]. It is found in all snake venom and is known as a “spreading factor”, destroying the
integrity of the extracellular matrix at the site of the bite and minimizing the local tissue destruction [67].
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Phospholipase A2 can be found in high concentrations in snake venom. It is indispensable for
various biological effects: cell growth and cell signaling, antiplatelet, anticoagulant, and hemolytic
effects [68], as well as toxic effects such as neurotoxicity, cardiotoxicity, hypotensive, cytotoxicity,
and proinflammatory [69,70]. Phospholipase A2 is composed of 120 amino acids and 14 cysteine
residues that form seven disulfide bonds. It produces free fatty acids and lysophosphatidic lipid
through catalyzing the calcium-dependent hydrolysis of the 2-acyl ester bond. It can also induce
hydrolysis of phospholipid membranes, the consequence being the release of bioactive compounds [68].
It is categorized into two groups: 1PLA, identified mainly in the venom of cobras, sea snakes, and kraits
and 2PLA from the venom of vipers and pit vipers [35,71,72].

L-amino acid oxidase (LAAO) represents 1–9%. It is a flavoprotein that catalyzes the stereospecific
de-amination of L-amino acid substrate to an alpha-keto acid, producing ammonia and hydrogen
peroxide [73]. It has been observed that LAAO from snake venom has an affinity for hydrophobic
amino acids and through the generation of high levels of hydrogen peroxide may induce apoptosis in
endothelial cells [73].

Table 2 summarizes the main compounds of snake venom and their activity.
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Table 2. Snake venom components and properties (adapted from Koh [74] and Fatima [75]).

Proteins

Enzymes

Compound Major Activity

Acetylcholinesterase Paralysis
Bglucosaminidase Tissue damage
Phosphoesterase Anticoagulant, paralysis

Phospholipase A2 Membrane damage, anticoagulant
Hyaluronidase ECM damage, apoptosis

L-amino acid oxidase Platelet effect, anticoagulant
Snake venom metalloproteases Anticoagulant, cell damage
Snake venom serine proteases Anticoagulant, fibrinogenemia

Non-Enzymes

Protein C activator Anticoagulant
Growth factors (INGF, VEGF) Endothelial damage, edema

Inhibitor of the prothrombinase complex formation Anticoagulant
Lectins Platelet effect

Precursors of bioactive peptides Smooth muscle inhibitor
Von Willebrand factor binding proteins Anticoagulant

Cysteine-rich secretory proteins Anticoagulant

Peptides

Cytotoxic, cardiotoxic, myotoxic, neurotoxic Anticoagulant, inflammatory
Disintegrins Apoptosis, myotoxicity
Natriuretic Platelet effect, vascular

Bradykinin potentiator Hypotensive

Organic Compounds
Biogenic amines Serotonin, histamine

Amino acids, carbohydrates, citrate, nucleosides

Inorganic Compounds Calcium, cobalt, copper, iron, phosphorus, potassium, magnesium, sodium, zinc
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4. Effects of Bee and Snake Venom on Cancer Cells

4.1. The Effects of Bee Venom on Cancer Cells

Bee venom acts through several mechanisms to induce apoptosis of malignant cells and inhibit
tumor growth. The activation of phospholipase A2 by the main compound of BV, melittin, is the most
important mechanism [47]. Gajski et al. observed that melittin has an inhibitory effect on calmodulin
as an antiproliferation agent of bee venom and contributes to the increased PLA2 activity, calcium
influx and necrosis [76].

Several studies have reported that melittin causes hemolysis by disrupting erythrocyte membranes.
It also exerts a cytotoxic effect on malignant cells by inhibiting tumor growth and inducing the
activation of matrix metalloproteinases (MMP) and caspase, which are responsible for apoptosis
and necrosis [77–79]. The lytic activity is low when melittin is associated with target peptides
(immunoconjugate of melittin, melittin–avidin conjugate, adenovirus–melittin and RGD–melittin
conjugate) [78,80,81]. Other researchers have reported that the conjugation of melittin with gene
therapy and hormone receptors can be considered as a new target therapy for different types of
cancer, such as breast and prostate cancer, but extended research is needed [82,83]. A study from
2011 has reported on the activities of bee venom compounds regarding their cancer mechanisms,
concluding that venom can inhibit prostate cancer by inactivating NF-κB and in this way alters the
caspase pathway [30]. The report by Holle et al. [78] used a melittin–avidin conjugate, pointing out
that this association has a strong cytotoxic activity on prostate malignant cells. They investigated the
cytolytic effects against normal cells in vitro, concluding that the conjugate had decreased cytotoxic
activity against normal L-cells. When tumors were injected in vivo with the melittin–avidin conjugate,
the tumor size decreased compared to non-injected tumors.

Ip et al. studied the activity of BV on different cancer cells, concluding that in the case of human
breast cancer (MCF7 cells), the bee venom compounds can induce apoptosis by activating caspase-9
and -3 or through the release of EndoG and AIF from mitochondria [25]. The authors also investigated
the mechanism through which bee venom induces apoptosis in human bladder cancer TSGH-8301 cells.
They reported multiple pathways: inducing the release of reactive oxygen species and Ca2+ and ER
stress-mediated apoptotic death, and promoting the activation of the initiation of caspases and effector
caspase with adaptor proteins (Fas/CD95), and acting as a receptor for BV [25]. Regarding lung cancer,
a study from 2010 reported that the compounds of bee venom have anti-angiogenic effects through
blocking tyrosine phosphorylation of VEGFR-2 [28]. The pharmacological activity of melittin was also
evaluated in leukemic U937 cells. BV produces downregulation of ERK and Akt signal pathways with
Bcl-2 and caspase-3 as the key regulators, inducing apoptosis [79].

4.2. The Effects of Snake Venom on Cancer Cells

The cytotoxicity of various compounds from snake venom is explained by the alterations in the
cellular metabolism that leads to several effects on cancerous cells [8]. According to these observations,
many researchers have tried to develop several chemotherapeutic drugs based on the results of the
cytotoxic ability of the toxins produced by animals. The first report was conducted by DeWys et al.
who observed that the defibrination process resulted after the administration of Ancrod (a polypeptide
from Agkistrodon rhodostoma) and, followed by cyclophosphamide, decreases the tumor weight and
activates fibrinolysis. In the same report, other mechanisms such as platelet aggregation were observed
to be involved in the decrease in the tumor dimensions [84]. A study in vivo concluded that the venom
of Naja nigricollis inhibited, through these mechanisms, the growth of melanoma [85].

Another researcher studied the inhibitory effects of this venom on tumors in vivo and in vitro,
with a possible application in cancer therapy. Song et al. concluded that this activity was proven by
the expression of pro-apoptotic proteins such as caspase-3 and Bax, which increased while the levels of
Bcl-2 (an anti-apoptotic protein) decreased [86].
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In the last decades, studies have been carried out to point out the antitumoral potential of peptides
(cytotoxins and cardiotoxins) from different species of snakes.

The first studies regarding the effects of snake venom on sarcoma cells were performed by
Braganca et al. [87,88]. The researchers investigated the effects of the venom from Naja naja snake on
sarcoma cell cultures, calling it cobra venom factor (CVF). The mechanism through which cardiotoxin-3
(CTX-3) from Naja naja atra venom exercises its effects on tumors was studied by Yang et al. [89] who
reported that apoptosis is followed by increased expression of Bax and endonuclease G and decreased
expression of Bcl-x in K562 cells. Another report showed that CTX-3 possesses apoptotic effects
through the activation of the JNK pathway and caspase-12 by triggering Ca2+ influx, the consequence
being the rapid increase in the cytosolic Ca2+ concentration [90].

Chien et al. reported in two studies on the antiproliferative effects of CTX-3 on HL-60 leukemia cells.
They concluded that CTX-3 induces apoptosis by activating the c-JUN-N-terminal kinase and increasing
the sub-G1 population, and by activating the mitochondrial apoptosis pathway and endoplasmic
reticulum pathway, resulting in an increased level of related protein 78 (GRP 78) and Ca2+ [91,92].

Several investigations were conducted on human breast cancer cells too, more exactly,
on MDA-MB-231 cells [93] and MCF-7 cells [94]. In the first case, apoptosis was confirmed by the loss of
mitochondrial membrane potential and accumulation of the sub-G1 population, while in the second cell
type it was observed that CTX-3 suppressed the proliferation and induced apoptosis by downregulating
NF-kB in the cells.

The toxins from snake venom also showed activity on metastasis [95]. The integrins, being an
important cell surface receptor, are demonstrated to be involved in cell–cell and cell–matrix interactions.

Disintegrins are found in snake venom and are an inhibitor of integrin-dependent cell adhesion
and platelet aggregation [96,97]. Hong et al. in 2003 described a disintegrin purified from the venom
of a Korean snake, salmosin. Disintegrins induce apoptosis by competing with the extracellular
matrix through direct binding to integrin [98]. Contortrostatin (CN) is another disintegrin that has
been purified from the venom of the southern copperhead snake. CN has high affinity interactions
with different integrins from cancerous cells and vascular endothelial cells, resulting in antitumor
activity. A study from 2004 described a more relevant delivery system for CN, the liposomal CN (LCN),
and concluded that this antitumor agent accumulates at the tumor site where it exercises its action
on tumor growth and angiogenesis and curtails tumor metastasis [99]. The antimetastatic activity of
CTX III isolated from Naja naja atra [100] was investigated by Lin et al. The downregulation of the
activity and expression of matrix metalloproteinase MMP-9 was observed. This effect was caused by
the inactivation of PI3K/Akt signaling pathways and p38 MAPK and NF-κB activity. This activity
inhibits the migration and invasion of cells that cause breast cancer.

Cytotoxins from Naja species of snakes possess activity against the A549 cells (human lung
adenocarcinoma) and HL 60 cells (promyelocytic leukemia); more exactly CT1 and CT2 from
Naja oxiana, CT1 from Naja haje, and CT3 from Naja kaouthia [101]. Vierira Santos et al. also observed
in their study on Ehrlich ascites tumor (EAT) growth that Bothrops jararaca venom (BjV) induces an
increase in mononuclear leukocytes and inhibits EAT growth [102].

Among other toxins from the snake venom from the Viperidae and Crotilidae families,
metalloproteinases (SVMPs) are major components with different biological properties. The effects of
these toxins vary from inhibition of platelet aggregation, coagulation factor activation, and fibrinolytic
activities to possible anticancer properties such as apoptotic and proinflammatory activities [103].
A study from 2014 [104] pointed out that cancer cell adhesion is interrupted by Jararhagin, a purified
snake venom metalloproteinase from Bothrops jararaca. The authors concluded that the potential
effect on melanoma cells is exerted through the increased antiproliferative and caspase-3 activities.
Wan et al. [105] also investigated metalloproteinases from snake venom and identified a basic
SVMP from Trimeresurus stejnegeri venom that induces morphological modifications and inhibits
the proliferation of ECV304 cancer cells.
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Another major compound of snake venom that has the potential to inhibit cancer cells is the lectins
(polyvalent carbohydrate-binding proteins). Pereira–Bittencourt et al. [106] showed an inhibitory effect
of BJcuL (lectin isolated from Bothrops jararacussu snake venom) on eight cancer cell lines of which
CFPAC-1 (pancreatic cancer cell line), Caki-1, and A-498 (renal cancer cell lines) showed the most
promising results with an inhibitory concentration of 50%. A study from 2001 [107] pointed out the
cytotoxic effects of BJcuL in MKN45 and AGS cells (gastric cancer cell lines), through altering cell
adhesion and inducing apoptosis. In the same study, the authors investigated lebecetin, a C-type
lectin from Macrovipera lebetina venom. The results showed that this lectin has anti-integrin activity,
being able to inhibit the adhesion, migration, and invasion of the tumor cells [35].

5. Studies Regarding the Effects of Toxins from Bee and Snake Venom on Ovarian Cancer Cells

In the case of ovarian cancer, surgery is the main therapy depending on the staging [4], followed
by chemotherapy, which is used for the purpose of removing the residual cancer cells. Among the
chemotherapeutic drugs used for the management of ovarian carcinoma are cisplatin, paclitaxel,
and carboplatin; however, many patients develop chemoresistance [18,108]. Several studies were
conducted during the last years to improve the treatment modalities for ovarian cancer, especially
with natural toxins that can be added to the therapeutic drugs in order to increase the response to
therapy. Researchers have investigated the effects of bee venom components on ovarian cancer cells,
pointing out the activity of toxins from the venom on this type of cancerous cell [109].

5.1. Bee Venom and Ovarian Carcinoma

Holle et al. designed an MMP2 cleavable melittin–avidin conjugate, the study being based on the
affirmation that melittin administered alone is very toxic for cells, inducing cell lysis, but in association
with avidin it becomes inactive. They observed with in vitro studies that this conjugate exerts a high
cytolytic effect on ovarian cancer cells (SKOV-3), cells that possess a strong MMP2 activity, and decreased
activity on normal L-cells that possess low MMP2 activity. In vivo studies showed decreased tumor
dimensions of the ones injected with melittin–avidin conjugate, concluding that through the cytolytic
activity and tumor targeting ability, the conjugate melittin–avidin can be used in the treatment of
ovarian carcinoma and is being considered as a promising approach for cancer therapy [78].

Another study from 2007 [110] pointed out the effect of melittin on ovarian cancer by describing
that in vivo the ovarian cancer tumors were decreased in the group treated with melittin and in vitro
they observed that melittin inhibits the growth and proliferation of ovarian cancer cells.

The mechanism through which melittin and other bee compounds can inhibit the ovarian cancer
cells were described by Jo et al. in 2012 [26]. The authors investigated the pathways of inhibition of
ovarian cell growth when bee venom and melittin were used. They concluded in their report that
bee venom at a dose of 1–5 µg/mL and melittin (0.5–2 µg/mL) can induce apoptosis in the SKOV-3
and PA-1 ovarian cancer cells, depending on the administered dose. The mechanism of action on
carcinogenesis is linked to the expression of death receptor 3 and 6 that were found to be increased in
both ovarian cellular cancer lines and DR 4 that was found in an increased level only in the PA-1 cells.
After the treatment with melittin and bee venom, the phosphorylation of JAK2 and STAT3 and the
expression of Bcl-2 was inhibited, while the expression of caspase-3, caspase-8, and Bax was increased.

Liu et al. [29] generated a fusion protein that can inhibit tumor growth in vivo since cytokines,
such as IL-2, are very important in the immune response in the case of cancer cells. They observed
that melittin increases the immune function by enhancing Th1 cells function and chose to develop a
fusion protein (melittin–MhIL-2) consisting of a mutant hIL-2 genetically linked to melittin. This fusion
protein exerts activities of both IL-2 and melittin, thereby inhibiting the growth and proliferation of
the ovarian cancer cells SKOV-3 in vitro and in vivo. This makes the fusion protein melittin–MhIL-2 a
potential anticancer agent.

Because more patients are becoming chemoresistant to the usual chemotherapeutic drugs, several
studies have been conducted to investigate the synergistic effects of bee venom in combination with
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cisplatin on ovarian cancer cells. In 2012, Alizedehnohi et al. [111] evaluated the cytotoxic effects
of bee venom alone and in combination with cisplatin on A2780cp cells, cisplatin-resistant ovarian
cancer cells. The treatment with 8 µg/mL bee venom or 25 mg/mL cisplatin for 24 h resulted in
almost 50% cisplatin-resistant A2780cp cell death. Similar results were observed in the simultaneous
treatment with bee venom at 4 µg/mL and cisplatin at 10 mg/mL for 24 h, concluding dose-dependent
effects. The authors also investigated the effects on the expression of Bcl-2, the results showing that
the expression of Bcl-2 in A2780cp cells decreased when the cells were treated with bee venom and
cisplatin. The conclusions of the study were that bee venom has an effect on human ovarian cancer
cells and an enhanced cytotoxic effect on the antitumor agent cisplatin. Another study from 2015 [112]
investigated the potential cytotoxic and pro-apoptotic effects of bee venom and chrysin (natural
flavonoid derived from honey and propolis) on A2780cp cisplatin-resistant human ovarian cancer
cells. Their results pointed out that bee venom 8 µg/mL, chrysin 40 µg/mL and 6 + 15 µg/mL bee
venom + chrysin resulted in approximately 50% cell death in A2780cp cells compared with the control
group. This study is concordant with the one of Alizedehnohi et al. [111] regarding the downregulation
of Bcl-2. They concluded that the mechanism through which bee venom and chrysin decreased the
expression of ovarian cancer cells are the following: ROS accumulation, inhibition of Bcl-2, and caspase
activation via a mitochondrial pathway. The increased expression of caspase-3 and caspase-9 and the
downregulation of Bcl-2 indicate that this type of treatment has antitumor activity through the intrinsic
apoptotic pathway. New research needs to be done in this field since bee venom can improve ovarian
cancer therapy and also the platinum agent resistance, the result being the possible decrease of the
mortality in this type of cancer.

In Table 3 the studies regarding the effects of bee venom compounds on different ovarian cancer
cells are exemplified.

5.2. Snake Venom and Ovarian Carcinoma

We identified two studies related to the activity on ovarian cancer cells of contortrostatin (CN),
a disintegrin from snake venom. In 2001, Markland et al. [113] investigated the effects of CN on
OVCAR-5 (human epithelial carcinoma cell line of the ovary). They observed that this disintegrin inhibits
tumor invasion and blocks the adhesion of OVCAR-5 to extracellular matrix proteins [103]. Another
study by Swenson et al. [114] observed the anti-angiogenic and antitumor effects of contortrostatin from
the venom of Agkistrodon contortrix contortrix. The authors used human ovarian cancer cells (A2780)
injected intraperitoneally into 40 female Athymic nude mice. They concluded after examination that
the group treated with CN showed a dramatic decrease in the numbers and size of the tumors formed.
The authors also developed an effective method of delivery with less adverse effects—the liposomal
encapsulation of CN (LCN)—that possesses a high efficiency in inhibiting tumor dissemination and
angiogenesis in human ovarian cancer cell line following intravenous administration.

Another disintegrin recently investigated is saxatilin from Gloydius saxatilis [115]. The observations
from the report of Kim et al. [116] showed that another type of ovarian cancer cell line named MDAH
2774 was inhibited under the effects of TNF-α and decreased MMP-9 mRNA expression.

De Carvalho et al. [117] investigated the effect of BJcuL, an important lectin from snake venom,
on human ovarian cancer cells (OVCAR-5). They observed a weak adherence of the cancer cells to BJcuL.
They could not demonstrate the inhibition of adhesion to the extracellular matrix proteins of lectin but
concluded that the viability of the tumor cells was suppressed by BJcuL and, therefore, concluded that
the lectin BJcuL can inhibit the proliferation and growth of tumor cells and endothelial cells.

Another mechanism of snake venom is the programmed cell death of ovarian cancer cells by
inhibiting the translocation of p65 and p50 and inhibiting NF-kB and STAT3 signaling. This pathway was
observed in the case of toxin from Vipera lebentina turnica. The authors observed that the toxin upregulated
the expression of caspase-3 and Bax and decreased the expression of Bcl-2 anti-apoptotic protein [86].

Table 4 shows the studies regarding the effects of snake venom on the ovarian cancer cell.
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Table 3. Studies of the effects of bee venom and their components on ovarian cancer cells.

Study Compound Mechanism Cancer Cell Results

Alizadehnohi et al. [111] Melittin
induces apoptosis in
cisplatin-resistant ovarian
cancer cells

• A2780CP
• cell death and cytotoxic effect, cells exposed entered an early stage of apoptosis
• simultaneous treatment with both BV and cisplatin ~50% A2780cp cell death; Bcl2

expression was markedly decreased compared to the control group

Alonezi et al. [118] Melittin
compared the effects of
melittin in combination
with cisplatin

• A2780
(cisplatin-sensitive)

• A2780CR (resistant
ovarian cancer cells)

• reduction of metabolites in the TCA cycle, oxidative phosphorylation, purine and
pyrimidine metabolism, and the arginine/proline pathway.

• melittin-cisplatin combination—stronger effect on the A2780 cell line compared to
the A2780CR cell line

Amini et al. [112] Bee venom and
chrysin

cytotoxic and
pro-apoptotic effects of BV
and chrysin

• A2780CP (cisplatin-
resistant human
ovarian cancer cells)

• co-treatment induced 50% cell death in A2780cp cells compared with controls,
showed down-regulation of Bcl-2; ROS generation and apoptotic cell death with
exposure to BV or chrysin or BV + chrysin co-treatment.

• BV and chrysin triggered apoptosis through the intrinsic pathway

Holle et al. [78] Melittin/avidin
conjugate cytotoxic effects • SK-OV-3

• activity higher in SK-OV-3 compared to L-cells; melittin/avidin conjugate lysed
SK-OV-3 cells

• induced cell lysis in cultured cells, dependent on MMP2 activity (since significant
MMP2 activity is observed only in SK-OV-3);

• cell death was observed in SK-OV-3 cells; decreased tumor size in vivo.

Jo et al. [26] Melittin
inhibits cell growth
through enhancement of
DR expressions

• SKOV3
• PA-1

• induced programmed cell death; ↑ expression of DR 6 and DR3 in both cancer
cells, but expression of DR4 ↑ only in PA-1 cells

• ↑expression of death receptors pro-apoptotic proteins (Bax, caspase-3,
and caspase-8)

• inhibited the phosphorylation of STAT3 and JAK2 and also the expression of Bcl-2;
• cleaved caspase-3 was ↑ in SKOV3 while cleaved caspase-8 was ↑ in PA-1 cells

Lee et al. [119] Melittin
suppresses the
proliferation and growth
of tumor cells

• SKOV3
• PA-1

• induced programmed cell death; expression of DR6 and DR3 ↑ in both cancer cell
lines, expression of DR4 ↑ only in PA-1 cells

• inhibited the STAT3 pathway

Liu et al. [29] Melittin-MhIL-2 fusion
protein

inhibits cell growth and
proliferation of ovarian
carcinoma

• SKOV3
• directly inhibited the growth of human ovarian cancer cells in vitro; inhibited

tumor growth in human ovarian cancer cells in mice model and exhibited
enhanced antitumor activity compared to rhIL-2

Su et al. [120] Recombinant human
Upa1-43-melittin

inhibits growth of ovarian
cancer cells • SKOV3

• suppressed growth of SKOV3
• induced cell cycle arrest and induced SKOV3 cells apoptosis
• fusion protein does not have any obvious toxicity on normal tissues

Su et al. [121] ATF-melittin cytolytic activity • SKOV3
• rATF-melittin inhibited the proliferation and growth of SKOV3 cells
• no cytotoxicity effect on normal cells

Xu et al. [110] Melittin
inhibits the growth and
activity of proliferation of
ovarian cancer

• SKOV3
• the average weight of ovarian cancer in the melittin group was lower than that of

the control group.
• in vitro melittin inhibited the growth of SKOV3 cells
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Table 4. Studies of effects of snake venom and their components on ovarian cancer cells.

Study Compound Species Mechanism Cancer Cell Results

Markland et al. [113] Contortrostatin Agkistrodon
contortrix

• inhibits tumor cell
invasion
and adhesion

• OVCAR-5

• inhibited ovarian cancer dissemination;
• inhibited angiogenesis
• inhibited cancer cell line adhesion and invasion
• CN blocked the invasion of cancer cells through the inhibition of the vß5 function

Swenson et al. [114] Contortrostatin Agkistrodon
contortrix

• CN has cytotoxic and
anti-angiogenic
activity in human
ovarian cancer
animal model

• A2780 SEAP
• inhibited A2780 SEAP tumor formation
• inhibited tumor burden
• inhibited cancer cell proliferation and angiogenesis

Lipps et al. [122] Atroporin and
Kaotree

Crotalus atrox
Naja naja kaouthia

• Atroporin has higher
cytolytic activity on
SKOV-3 than the
compound Kaotree

• SKOV-3
• HBT 77

• the combination of the two compounds showed elevated cytotoxic activity on the
ovarian cancer cells

Kim et al. [116] Saxatilin NR

• decreased cell
invasion through the
regulation of MMP-9
activity in
MDAH 2774

• inhibits
tumor progression

• MDAH 2774

• regulated integrin-mediated signaling
• reduced cell migration by physically blocking integrin.
• levels of MMP-9 mRNA decreased after saxatilin treatment; bFGF or actin levels

were unchanged
• TNF-α-induced MMP-9 activities were suppressed by saxatilin treatment

Carvalho et al. [117] BJcuL Bothrops jararacussu

• BJcuL binds the
tumor cells but does
not inhibit adhesion
of these cells to
fibrobronectin,
laminin, and type
I collagen.

• BJcuL does not
interfere with ECM
protein-binding cell
surface receptors
such as integrins.

• OVCAR-5

• Ovarian cells adhered to BJcuL but significantly weaker when compared to
fibronectin; BJcuL was ineffective in blocking adhesion of OVCAR-5 to fibronectin,
laminin, and type I collagen.

• when the cell lines OVCAR-5 were exposed to BJcuL for 96 h, a cytotoxic effect of this
lectin could be seen

• BJcuL had different effects on the viability of tumor cells, depending on its
concentration; cytotoxic to the cells at concentrations higher than 1 mM. Using
OVCAR-5 cells, the effect of FBS in the medium on BJcuL cytotoxicity was
clearly demonstrated

• BJcuL exerted a higher cytotoxic effect on the cells suspended in medium containing
5% FBS than on those suspended in medium containing 2.5% FBS.

Song et al. [86] NR Vipera lebetina
turanica

• induces programmed
cell death

• inhibits the
proliferation and
growth of
ovarian cancer

• PA-1
• SK-OV3

• In SKOV-3 human ovarian cancer cells the inhibition of growth and proliferation
was observed

• ↑ the expression of the Bax and caspase-3 pro-apoptotic proteins and ↓ the expression
of Bcl-2 anti-apoptotic protein

• In the control group not treated with toxin an increased DNA binding activity of
NF-κB was observed

• In the group treated with snake venom, the inhibition of the translocation of p65 and
p50 and an inhibition of DNA binding activity of STAT3 was observed
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6. Conclusions and Future Perspectives

Ovarian cancer is the fifth neoplasm among women worldwide, especially in developing countries
such as Romania where the annual mortality rate has increased with an average of 1%/year since 1990.
It represents a major problem for public health mainly because of the undefined signs and symptoms
that are an impediment to early diagnosis and treatment.

Various toxins from venom have shown cytotoxic effects on human ovarian cancer cell lines,
providing new perspectives in drug development. Natural toxins from animal venom are bioactive
compounds that have been demonstrated to have possible anticarcinogenic properties. The potential
therapeutic uses of animal toxins have received great interest from researchers and are currently
in the early stages of observation. Several studies have been published that have evaluated the
involvement of snake and bee venom on specific points of carcinogenesis. The proliferation of tumor
cells, angiogenesis, and the relationship between cancer cells and the components of the extracellular
matrix are important in the events that occur in carcinogenesis; these pathways are being used as
targets for new anticancer treatments.

In this review, we identified the effects of toxins from bee and snake venom, mostly the
anticarcinogenic activity in several types of cancer, focusing on ovarian cancer. The anticarcinogenic
activity of animal venom depends on the origin of the cancer line. Nowadays, knowledge about
the cytotoxic mechanism of venoms is still not fully known. Only a few in vivo and in vitro studies
focusing on the anticarcinogenic effects of snake and bee venom on ovarian cancer and how they can
contribute to the development of new drugs have been conducted.

We pointed out that natural toxins from bee and snake venom hold potential in the therapy
of ovarian cancer because they interfere in carcinogenesis by modulating the critical processes of
cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Specifically, these toxins
inhibit the proliferation and growth of ovarian cancer cells by inducing apoptosis and growth arrest,
by interacting with integrins via glycoprotein receptors located on cellular surfaces, and by modulating
the signal transduction pathways.

Another important problem in the management of ovarian cancer is the resistance to chemotherapy.
In the case of ovarian cancer, chemotherapy is an important tool in the treatment. Chemotherapy
increases patient survival rates and destroys cancerous cells, but the main issue is that these agents
also destroy other dividing cells such as hematopoietic stem cells and epithelial cells. In this paper,
we pointed out that various compounds from bee and snake venoms can sensitize ovarian cancer
cells to conventional chemotherapy, with the target tumor toxins being helpful for developing novel
anticancer therapeutics. This combined approach could improve the efficiency of standard therapies
and allow decreases in the doses of chemotherapy drugs, leading to reduced adverse side effects.

An important challenge is to integrate the new molecular findings into clinical practice and to
identify the major venom components and their specific targets and to investigate them in clinical
trials. With the advancements made in the field of molecular biology, it is now possible to produce
recombinant toxins and to use them to design new drugs. Studies that focus on the natural toxins
from animal venom should continue to provide researchers with an improved understanding of
carcinogenesis and anticancer mechanisms.

In conclusion, the studies from our review indicate that several toxins from bee and snake
venom could become potential candidates for the future treatment of ovarian cancer. We summarized
some of the bee and snake bioactive compounds that have been studied to date for their possible
anticancer therapeutic properties. It is important to continue searching for therapeutic drugs from
natural resources, as well as investigate their mechanism of action in cancer cells.
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Abbreviations

The following abbreviations are used in the manuscript:
AIF apoptosis-inducing factor
Akt protein kinase B
ASR age standardized rate
Bax BCL2-associated X protein
Bcl-2 B-cell lymphoma 2
bFGF basic fibroblast growth factor
BJcuL lectin from the venom of the snake Bothrops jararacussu
BjV Bothrops jararaca venom
BV bee venom
CN contortrostatin
COX cyclooxygenase
CTX-3 cardiotoxin-3
CVF cobra venom factor
DR death receptor
DU 145 a prostate cancer cell line
EAT Ehrlich ascites tumor
ECM extra cellular matrix
EndoG endonuclease G
ER endoplasmic reticulum
ERK extracellular signal-regulated kinase
GRP 78 protein 78
hIL-2 human interleukin-2
IL-2 interleukin-2
JAK2 Janus-associated kinase 2
JNK c-Jun N-terminal kinases
LAAO L-amino acid oxidase
LCN liposomal encapsulation of contortrostatin
MAPK mitogen-activated protein kinase
MCD mast-cell degranulating peptide
MCF-7 human breast adenocarcinoma cell line
MCF7- cells human breast adenocarcinoma cell line
MhIL-2 melittin human interleukine-2
MMP matrix metalloproteinases
NF-κB nuclear factor-kappa B
NR not reported
OVCAR 5 human epithelial carcinoma cell line of the ovary
PLA2 phospholipase A2
RGD arginyl-glycyl-aspartic acid
rhIl-2 recombinant human IL-2 protein
STAT 3 signal transducer and activator of transcription 3
TCA tricarboxylic acid
Th1 lymphocyte T helper 1
TNF-α tumor necrosis factor-α
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor
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