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Objective: Despite several clinicopathological factors being integrated as prognostic
biomarkers, the individual variants and risk stratification have not been fully elucidated in
lower grade glioma (LGG). With the prevalence of gene expression profiling in LGG, and
based on the critical role of the immune microenvironment, the aim of our study was
to develop an immune-related signature for risk stratification and prognosis prediction
in LGG.

Methods: RNA-sequencing data from The Cancer Genome Atlas (TCGA), Genome
Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) were used.
Immune-related genes were obtained from the Immunology Database and Analysis
Portal (ImmPort). Univariate, multivariate cox regression, and Lasso regression were
employed to identify differentially expressed immune-related genes (DEGs) and establish
the signature. A nomogram was constructed, and its performance was evaluated by
Harrell’s concordance index (C-index), receiver operating characteristic (ROC), and
calibration curves. Relationships between the risk score and tumor-infiltrating immune
cell abundances were evaluated using CIBERSORTx and TIMER.

Results: Noted, 277 immune-related DEGs were identified. Consecutively, 6 immune
genes (CANX, HSPA1B, KLRC2, PSMC6, RFXAP, and TAP1) were identified as risk
signature and Kaplan–Meier curve, ROC curve, and risk plot verified its performance
in TCGA and CGGA datasets. Univariate and multivariate Cox regression indicated
that the risk group was an independent predictor in primary LGG. The prognostic
signature showed fair accuracy for 3- and 5-year overall survival in both internal (TCGA)
and external (CGGA) validation cohorts. However, predictive performance was poor
in the recurrent LGG cohort. The CIBERSORTx algorithm revealed that naïve CD4+

T cells were significant higher in low-risk group. Conversely, the infiltration levels of
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M1-type macrophages, M2-type macrophages, and CD8+T cells were significant higher
in high-risk group in both TCGA and CGGA cohorts.

Conclusion: The present study constructed a robust six immune-related gene signature
and established a prognostic nomogram effective in risk stratification and prediction of
overall survival in primary LGG.

Keywords: lower grade glioma, The Cancer Genome Atlas, Chinese Glioma Genome Atlas, immune-related
signature, prognosis

INTRODUCTION

Lower-grade gliomas (LGG) constitute the prevalent primary
malignances of the central nervous system, demonstrating great
intrinsic heterogeneity in terms of their biological behavior
(Ostrom et al., 2013; Zeng et al., 2018). So far, maximum
surgical resection combined with postoperative radiotherapy
and chemotherapy is the standard treatment for LGG. Despite
numerous efforts to improve the clinical outcome, more than half
of the LGG cases evolve and progress to therapy-resistant high-
grade aggressive glioma over time (Claus et al., 2015). Thus, it is
imperative to identify novel prognostic factors for LGG. Several
biomarkers, including the isocitrate dehydrogenase (IDH)
mutation, co-deletion of chromosome arms 1p and 19q (1p/19q
codeletion), and O-6-methylguanine-DNA methyltransferase
(MGMT) methylation have been integrated to the 2016 WHO
classification, to illustrate the histological features and guide
the therapeutic strategy (Hartmann et al., 2010; Wick et al.,
2013; Hainfellner et al., 2014; Louis et al., 2016). However,
these widely utilized biomarkers do not fully elucidate the
individual variants and properly address risk stratification
in LGG. Thus, it would only be reasonable to attempt to
integrate various methods, including gene expression profiles
that have gathered enormous attention, to further improve
stratification of LGG.

The immune microenvironment has been identified as playing
a critical role in tumor biology (Hanahan and Weinberg,
2011), and recently, numerous promising preclinical and clinical
immunotherapeutic treatments, including immune-checkpoint
inhibitors, active or passive immunotherapy, and gene therapy,
have been achieved in malignant gliomas (Mahmoodzadeh
Hosseini et al., 2015; Xu et al., 2015; Reznik et al., 2018;
Simonelli et al., 2018; Vismara et al., 2019), further establishing
the vital role of immunotherapy in the management of gliomas.
Hence, the molecular profiles of the immune components within
the tumor microenvironments represent tremendous value in
serving as prognostic biomarkers. Recently, several studies have
proposed immune gene expression-based signatures for risk
stratification and for predicting clinical outcomes in breast,
gastric, thyroid, and ovarian cancers (Ascierto et al., 2012; Kim
et al., 2018; Shen et al., 2019; Yang et al., 2019). In terms
of the prognostic value of an immune-related risk signature
in glioma, Cheng et al. (2016) revealed that not only did
the immune-related risk signature had prognostic significance
in the stratified patients for glioblastoma, but moreover the
immune status and local immune response could be illustrated

by the risk signature. However, implementation of an immune
gene expression-based signature has not been fully elucidated
in LGG.

In a previous study, Li and Meng (2019) identified an
immune-related long non-coding RNA (lncRNA) signature
based on 529 low-grade glioma cases. It was found that the
8-lncRNAs model could serve as an independent predictor
in low-grade glioma, not enrolling cases of grade III glioma.
However, the predictive accuracy of the lncRNA-based model
needed to be enhanced and the external validation was warranted.
Furthermore, the correlation between the immune-related model
and immune cell phenotypes was not illustrated. To our
knowledge, the latest version of Cell type Identification By
Estimating Relative Subsets Of RNA Transcripts (CIBERSORTx)
has been investigated as a highly sensitive and specific algorithm
set to reveal the immune landscape of 22 human immune cell
compositions in solid tumors (Newman et al., 2019) and thus
might provide new insights into potential therapeutic candidates
for the management of LGG.

In the present study, a large cohort of patients with primary
LGG from The Cancer Genome Atlas (TCGA) database and
normal control cases from the Genome Tissue Expression
(GTEx) database were employed to screen differentially expressed
immune-related genes (IRGs). After construction of the risk
signature based on the immune related genes, patients with
primary LGG with gene sequencing data from the Chinese
Glioma Genome Atlas (CGGA) database were adopted as
the external validation. In addition, the CIBERSORTx and
Tumor Immune Estimation Resource (TIMER) algorithm were
utilized to clarify the correlation between the risk signature
and the abundances of the infiltrative immune cells in
primary LGG samples.

MATERIALS AND METHODS

Acquisition of LGG Expression Profiles
From TCGA Datasets
The RNA-seq data (level 3) and clinical information of LGG
samples were collected from UCSC Xena1. Expression of genes
analyzed in normal tissues was collected using the Genome Tissue
Expression (GTEx) (Consortium, 2015; Gentles et al., 2015)
tool. Normalized gene expression was measured as fragments
per kilobase of transcript per million mapped reads (FPKM)

1http://xena.ucsc.edu/
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and log2-based transformation. Then, the “sva” package of R
software was utilized for the normalization of RNA expression
profiles and to remove the batch effects. Principal component
analysis (PCA) was used for detecting batch effects from the
GTEx and TCGA datasets.

Acquisition of Immune-Related Genes
A comprehensive list of IRGs was downloaded from the
Immunology Database and Analysis Portal (ImmPort) database2.
The list comprised a total of 2,498 IRGs, covering 17 immune
categories (Bhattacharya et al., 2014).

Inclusive and Exclusive Criteria of
Enrolled Patients for the Construction of
Risk Signature
The inclusive criteria of patients with LGG for model
construction were as follows: (1) only patients with primary
glioma were enrolled, (2) pathologic types of WHO II or III
grade, (3) complete clinicopathological parameters, (4) only
samples with RNA-sequencing data, (5) overall survival (OS) as
the primary endpoint, (6) minimum follow-up of 90 days. The
exclusive criteria included (1) patients with recurrent LGG, (2)
pathologic type was glioblastoma, (3) incomplete survival status
and clinical information.

Establishment of the Immune-Related
Risk Signature
Using the “survival” package in R, we employed univariate Cox
regression on IRGs and OS of primary LGG in the TCGA
database to identify survival-associated IRGs. Next, using the
“glmnet” package in R, the least absolute shrinkage and selection
operator (Lasso) regression model was selected to minimize the
over-fitting and identify the most significant survival-associated
IRGs in primary LGG. After testing for collinearity, stepwise
multivariate Cox regression analysis was performed to establish
the IRG-derived risk signature in primary LGG. The following
formula based on a combination of Cox coefficient and gene
expression was used to calculate the risk score (Lossos et al., 2004;
Chen et al., 2007; Hu et al., 2019):

Model:Risk score =
k∑

i=1

βiSi

where k, βi, Si represent the number of signature genes, the
coefficient index, and the gene expression level, respectively.

To stratify patients into low- and high-risk groups, the
optimum cutoff value for the risk score was determined using the
“survminer” package in R. In order to ensure the comparability
of the sample size between two groups, we set the min.prop
parameter = 0.3 in applying the “survminer” package. Next, the
Kaplan Meier survival curve and log-rank test was performed
to evaluate the survival rates between low- and high-risk
groups. The area under the receiver operating characteristic
(ROC) curve (AUC) was calculated using the “survival ROC”

2https://immport.niaid.nih.gov

package in R. In addition, the risk plot was illustrated using the
“pheatmap” package in R.

Identification of the Prognostic Factors
for OS in Primary LGG
All patients with primary LGG in TCGA were randomly
divided into the training and testing groups at a ratio of 7:3
using the “caret” package. Seven predominant clinical and
prognostic factors, including age, gender, grade, radiotherapy,
chemotherapy, IDH status, and the risk scores of the
immune-related signature were evaluated using univariate
and multivariate Cox regression analyses. Before that, we tested
the proportional hazards assumption (Therneau, 1994) by
Schoenfeld residuals analysis (Schoenfeld, 1982), using the
statistical script language R (R Development Core Team, 2014).
By employing “rms,” “foreign,” and “survival” R packages,
we formulated a nomogram consisting of relevant clinical
parameters and independent prognostic factors based on the
multivariate Cox regression analysis. The performance of the
prognostic nomogram was assessed by calculating Harrell’s
concordance index (C-index) (Harrell et al., 1996), the AUC
of the time-dependent ROC curve, and calibration curves of
the nomogram for 3-, and 5-year OS plotted to estimate the
accuracy of actual observed rates with the predicted survival
probability. Time-dependent ROC analyses were conducted by
“timeROC” R package.

External Validation of the Signature in
CGGA Datasets for Primary LGG
The prognostic capability of the immune-related risk signature
was externally validated using CGGA database. The RNA-seq
data and corresponding clinicopathological information were
obtained from the CGGA database3. The specific risk score for
each patient was calculated with the use of the prognostic gene
signature. Similarly, patients were divided into low- and high-
risk groups based on the constructed formula in TCGA database.
The optimal cutoff of risk scores for CGGA dataset kept the same
as that in primary TCGA cohorts. Survival curves for the low-
and high-risk groups were plotted using Kaplan-Meier analysis.
Next, the predictive accuracy of the signature was investigated
using ROC curves, and the performance of the nomogram was
also assessed by the time-dependent ROC curve and calibration.

Investigation of the Signature in Patients
With Recurrent LGG
For testing the prediction model in patients with recurrent
LGG, the main inclusion criteria were: (1) patients suffering
from recurrent glioma with histologically confirmed WHO II
or III grade, (2) evidence of tumor recurrence and complete
clinicopathological factors, (3) available recurrent glioma RNA-
sequencing profiling, (4) minimum follow-up of 90 days. The
exclusive criteria were as follows: (1) incomplete survival status
and clinical information, (2) primary LGG samples. Time-
dependent ROC curve and calibration plots were created to

3http://www.cgga.org.cn
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investigate whether the built model could effectively predict
survival in recurrent LGG.

Tumor-Infiltrating Immune Cell Analysis
To characterize the abundance of 22 immune cell types based
on the RNA-seq data in lower grade glioma tissues, the
CIBERSORTx web tool was applied4. Using a deconvolution
algorithm (Newman et al., 2019), CIBERSORTx computed
that the 22 cell types encompassed among others B cells,
T cells, natural killer (NK) cells, macrophages, and dendritic
cells (DCs). CIBERSORTx derived an empirical P-value for the
deconvolution of each case using Monte Carlo sampling, and
samples with P < 0.05 were adopted for analysis because of
high reliability of the inferred cell composition (Ali et al., 2016).
Therefore, cases with a P value of ≥0.05 were not retained
for subsequent analysis. For validating the accuracy of the
CIBERSORTx, TIMER (Tumor Immune Estimation Resource)
database was also employed to illustrate the abundance of six
immune cells containing B cells, CD4+ T cells, CD8+ T cells,
macrophages, neutrophils, and dendritic cells5. Subsequently, the
box plots were utilized to present the difference of infiltrative
immune cells, T cell activated and inhibitory receptors, and
macrophage associated molecules between high and low risk
groups using the “ggplot2” package. In addition, the Cox
regression model was also applied to calculate the hazard ratios
(HRs) of the abundance of immune cells between high-and
low-risk groups and illustrated by the forest plot.

Validation of Gene Expression in Cell
Lines and Glioma Tissues
The Cancer Cell Line Encyclopedia (CCLE) was generated
to provide a compilation of mRNA expression, copy number
variation, and preclinical datasets for mutations in various cancer
types. Details regarding the acquisition of mRNA expression
of six genes profiled by RNA-Seq were downloaded from the
data portal6 (Barretina et al., 2012). The genomic data were
utilized to analyze the mRNA expression status of the six immune
genes in LGG cell lines. Cell lines of LGG were identified
through six dedicated websites7,8,9,10,11,12. We only retained the
consistent LGG cell lines across six websites. Furthermore, the
level of protein expression for these six IRGs were confirmed
using immunohistochemistry data publicly available at http:
//www.proteinatlas.org/. This database was explored to verify
the gene-specific expression information across normal human
tissues, as well as LGG.

4https://cibersortx.stanford.edu/
5https://cistrome.shinyapps.io/timer/
6https://portals.broadinstitute.org/ccle
7https://web.expasy.org/cellosaurus/
8https://www.atcc.org/
9https://www.phe-culturecollections.org.uk/products/celllines/generalcell/search.
jsp
10http://igrcid.ibms.sinica.edu.tw
11https://cansarblack.icr.ac.uk/
12https://www.dsmz.de/

Statistical Analysis
All statistical analyses were conducted using R (version
3.6.0). The Wilcox test was used to screen statistically
differentially expressed genes and infiltrative immune cells.
Pearson’s chi-square tests were executed for the comparison of
categorical variables. Kaplan–Meier curve using the log-rank test
was used to evaluate the statistical significance of the survival
rates between different risk groups. The predictive accuracy
of the risk signatures were determined by ROC curves. The
proportional-hazards assumption was tested with Schoenfeld
residuals. Then, univariate and multivariate Cox regression
analysis were performed to evaluate significantly prognostic
factors. Finally, results of multivariate Cox regression analyses
were visualized with nomogram. Concordance index, time-
dependent ROC, and calibration were also important indicators
used to assess the nomogram. P value < 0.05 was considered
statistically significant.

RESULTS

Preparation of Glioma Datasets
The workflow of our study is delineated in Supplementary
Figure S1. A total of 916 patients who met the inclusion
criteria, including 432 patients with primary LGG from the
TCGA database, 353 patients with primary LGG from the
CGGA database, and 131 patients with recurrent LGG from
the CGGA database were obtained for further analysis. The
clinicopathological characteristics of patients from the two
databases are listed in Table 1.

Identification of DEGs
Before the identifying of DEGs, the normalization and batch
effects removal from GTEx and TCGA datasets was conducted
by “sva” package. As shown in Supplementary Figures S2A,C,
the normalization of the data was performed well by the “sva”
package. Additionally, the PCA plot found that TCGA and GTEx
datasets separated obviously (Supplementary Figures S2B,D).
To identify DEGs between the TCGA and GTEx databases,
we considered the absolute value of the log2-transformed fold
change (FC) > 1 and the adjusted P-value (adj.P) < 0.05 as the
threshold levels of significance. Compared to non-tumor tissues,
a total of 5,490 DEGs consisting of 2,718 upregulated and 2,772
downregulated genes were identified. The heatmap and volcano
plot of the DEGs are shown in Supplementary Figures S3A,B.
IMMPORT13 is a web server for acquiring immune gene lists.
From this set of DEGs, a total of 277 differentially expressed IRGs
were extracted. The heatmap of 277 differentially expressed IRGs
was shown in Figure 1A.

Identification of Prognostic IRGs
Based on the univariate Cox regression model (P < 0.05), a total
of 36 IRGs were discovered to be significantly associated with
OS. A forest plot of HR showed that 29 IRGs were risk factors,
whereas 7 IRGs were protective factors (Figure 2).

13http://immport.org

Frontiers in Genetics | www.frontiersin.org 4 April 2020 | Volume 11 | Article 363

http://www.proteinatlas.org/
http://www.proteinatlas.org/
https://cibersortx.stanford.edu/
https://cistrome.shinyapps.io/timer/
https://portals.broadinstitute.org/ccle
https://web.expasy.org/cellosaurus/
https://www.atcc.org/
https://www.phe-culturecollections.org.uk/products/celllines/generalcell/search.jsp
https://www.phe-culturecollections.org.uk/products/celllines/generalcell/search.jsp
http://igrcid.ibms.sinica.edu.tw
https://cansarblack.icr.ac.uk/
https://www.dsmz.de/
http://immport.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00363 April 11, 2020 Time: 20:1 # 5

Zhang et al. Identification of an Immune-Related Signature in LGG

TABLE 1 | Summary of risk scores and clinical pathological characteristics for
different cohorts.

Primary LGG

Internal External Recurrent LGG

Training Validation Validation

Cohort Cohorts Cohorts Investigation

TCGA TCGA CGGA CGGA

Characteristic (n = 304) (n = 128) (n = 353) (n = 131)

Age (y)1

≤40 152 (50%) 53 (41%) 189 (54%) 69 (53%)

>40 152 (50%) 75 (59%) 164 (46%) 62 (47%)

Gender

Male 175 (58%) 62 (48%) 205 (58%) 76 (58%)

Female 129 (42%) 66 (52%) 148 (42%) 55 (42%)

Grade

II 139 (46%) 66 (52%) 196 (56%) 32 (24%)

III 165 (54%) 62 (48%) 157 (44%) 99 (76%)

Radiation

No 109 (36%) 47 (37%) 59 (17%) 26 (20%)

Yes 195 (64%) 81 (63%) 294 (83%) 105 (80%)

Chemotherapy

No 134 (44%) 61 (48%) 147 (42%) 34 (26%)

Yes 170 (56%) 67 (52%) 206 (58%) 97 (74%)

IDH2 status

Wild-type 53 (17%) 27 (21%) 94 (27%) 31 (24%)

Mutation 251 (83%) 101 (79%) 259 (73%) 100 (76%)

Risk score

Low risk 209 (69%) 88 (69%) 248 (70%) 94 (72%)

High risk 95 (31%) 40 (31%) 105 (30%) 37 (28%)

1Age, Age at pathological diagnosis of glioma; 2 IDH, Isocitrate dehydrogenase.

Evaluation of IRGs With Prognostic Value
Considering collinearity and following refinement by the
Lasso, only 11 genes were remained in Lasso regression
from 36 significant prognosis associated IRGs in univariate
Cox regression model. Ultimately, a prognostic signature
comprisingsix IRGs, including calnexin (CANX), heat shock
protein family A (HSP70) member 1B (HSPA1B), killer cell
lectin like receptor C2 (KLRC2), proteasome 26S subunit,
ATPase 6 (PSMC6), regulatory factor X associated protein
(RFXAP), and transporter 1, ATP-binding cassette subfamily B
member (TAP1) was selected to construct a prediction model by
stepwise multivariate Cox regression analysis. Correspondingly,
the coefficients of the six genes were 0.38625, 0.18073, −0.27702,
−0.71285, −0.68077, and 0.34100. Ultimately, the hazard ratios
of the six genes were 1.4714, 1.1981, 0.7580, 0.4902, 0.5062, and
1.4064, respectively. The comprehensive risk score was imputed
as follows: (0.38625 × expression level of CANX) + (0.18073 ×
expression level of HSPA1B) + (−0.27702 × expression level of
KLRC2)+ (−0.71285× expression level of PSMC6)+ (−0.68077
× expression level of RFXAP) + (0.34100 × expression level of
TAP1). Optimal cutoff values for the risk scores were calculated
using the “survminer” package. Thus, patients were stratified into

low- (risk score < 1.28) and high-risk (risk score ≥ 1.28) groups.
In addition, the differential expression of six risk genes between
normal brain and LGG tissues were shown in Figure 1B.

Performance of Risk Signature in
Primary LGG From TCGA
Four hundred and thirty-two patients with primary LGG from
the TCGA database were included in subsequent survival
analyses and divided into low- and high-risk groups. Kaplan–
Meier plots indicated that patients with high-risk scores
presented a worse OS probability (Figure 3A). To verify the
diagnostic competence of the immune-related risk signature,
theAUC was calculated. The AUC of the ROC was 0.914,
indicating that the risk score literally played a significant
performance in the efficacy of this diagnosis (Figure 3B).
The heatmap demonstrated that KLRC2 exhibited the lowest
expression in the high-risk group, whereas CANX, HSPA1B,
PSMC6, RFXAP, and TAP1 had medium and high expression
levels (Figure 3C). Consecutively, patients appeared to have an
increased mortality rate with an increase in risk scores according
to the risk plot (Figure 3D).

Construction of Prognostic Signature in
Primary LGG From TCGA
Using the “caret” package, the 432 patients with primary LGG
in the TCGA dataset were randomly separated into training
and testing cohorts at a ratio of 7:3. Seven clinicopathological
parameters recorded as binary variables: age (≤40 vs. >40),
gender (male vs. female), grade (grade II vs. grade III),
radiotherapy (yes vs. no), chemotherapy (yes vs. no), risk
(low vs. high), and IDH status (wild-type vs. mutation)
were employed into further analyses, following testing of
the proportional hazards assumption with Schoenfeld residual
plots (Supplementary Figure S4). To evaluate the independent
prognostic force of the signature, both the univariable and
multivariable Cox proportion hazard regression models were
applied (Figures 4A,B). Results from univariable analysis showed
that risk (HR = 5.807, P < 0.001), age (HR = 3.029, P < 0.001),
grade (HR = 3.455, P < 0.001), radiation therapy (HR = 2.841,
P < 0.001), and IDH status (HR = 0.084, P < 0.001) had
prognostic value for OS in primary LGG. Likewise, the risk
group (HR = 2.383, P = 0.008), age (HR = 2.356, P = 0.005),
grade (HR = 2.233, P = 0.007) and IDH status (HR = 0.189,
P < 0.001) maintained their prognostic values in multivariable
stepwise cox regression analysis. Next, risk, age, gender, grade,
radiotherapy, chemotherapy, and IDH status were visualized in
the nomogram. Nomograms of 3- or 5-year OS in the cohort
are presented in Figure 4C. Then, the C-index for the training
group was 0.8642. The AUC of the nomogram was up to 0.88,
indicating the excellent ability to discriminate patients of poor
from patients of favored prognosis (Figure 4D). Meanwhile,
the calibration curve also manifested a satisfactory agreement
between predictive and observational values at the probabilities
of 3- and 5-year survival (Figures 4E,F). These results revealed
that the nomogram signified good accuracy in predicting the 3-
or 5-year survival of patient with LGG.
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FIGURE 1 | Heatmaps of differentially expressed genes between normal tissue and lower-grade glioma. (A) Heatmap demonstrating the differential expressed 277
immune-related genes. (B) Heatmap demonstrating the differential expressed six immune-related risk genes.
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FIGURE 2 | Forest plot of hazard ratios demonstrating the prognostic values of immune-related genes (IRGs). The dash line was used to mark the location of
HR = 1. The red box represents the adverse prognostic factor; Blue box represents the favorable prognostic factor.

Internal Validation of Prognostic
Signature in Primary LGG From TCGA
A total of 128 patients with primary LGG in the TCGA dataset
were randomly assigned in the internal cohort and the predictive
power of the signature was accordingly confirmed. Each of the
cases was divided into low- and high-risk groups. The C-index for
the internal validation group was 0.8309. Time-dependent ROC
analyses at 3- and 5-year were conducted to assess the prognostic
accuracy of the six-gene-based classifier. The 3- and 5-year AUC
were 0.836 and 0.761, respectively (Figure 5A). The calibration
curve also manifested a satisfactory agreement between predictive
values and observational values at the probabilities of 3- and
5-year survival (Figures 5B,C).

External Validation of Prognostic
Signature in Primary LGG From CGGA
To determine whether the six-gene prognostic signature had
similar prognostic value in different populations, its prediction
performance was validated in another 353 primary LGG
samples with RNA-seq transcriptome data and corresponding
clinicopathological information from the CGGA database. The
primary LGG samples were divided into two groups according
to the cutoff value (<1.28 vs. ≥1.28). Consistent with the
above findings, the Kaplan-Meier survival curves revealed a
significant difference in OS between the low- and high-risk
groups (Figure 6A). The AUC was 0.727, showing a fair

prognostic power of the model (Figure 6B). To evaluate the
prognostic accuracy of the model, time-dependent ROC analysis
was conducted, with the AUC for 3, and 5-year survival being
0.836 and 0.798, respectively (Figure 6C). The C-index for the
CGGA group was 0.7555. The calibrations plot for survival
probability at 3- or 5-year showed an optimal consensus between
the prediction and observation in both the external validation and
training cohorts (Figures 6D,E).

Investigating the Application of Six
Genes Based Signature in Recurrent
LGG
Next, we investigated the feasibility of the six -immune-gene
related risk signature in recurrent LGG. According to inclusive
and exclusive criteria, 131 patients with recurrent LGG were
enrolled for further analysis. Risk scores were calculated using
the same formula and yielded similar results on Kaplan-
Meier survival curves as those observed for primary LGG
(P < 0.05; Supplementary Figure S5A). However, the AUC
value was only 0.550, indicating a poor prognostic power in
recurrent LGG (Supplementary Figure S5B). The C-index for
the recurrent LGG group was 0.6135. Then, the AUC for 3-,
and 5-y OS predictions for the recurrent cohort was 0.631, and
0.638, respectively (Supplementary Figure S5C). Meanwhile, the
verification of the recurrent LGG cohort using the calibration plot
was not satisfactory (Supplementary Figures S5D,E).
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FIGURE 3 | Development of risk score based on the six immune-related gene signature of patients with primary LGG in TCGA. (A) Kaplan-Meier plot for overall
survival (OS) based on risk score of the six gene based signature of patients with primary LGG in the TCGA cohort. (B) ROC curve with an AUC of 0.914, indicating
that risk score plays a significant performance in the efficacy of this diagnosis. (C) Heatmap demonstrating the distribution of the six immune-related gene
expression in the TCGA cohort. (D) Risk plot presenting each point sorted based on risk score, representing one patient. Blue, and red represent patients with low-
and high-risk, respectively.
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FIGURE 4 | Construction of prognostic signature in primary LGG from TCGA. Univariate (A) and multivariable Cox proportion hazard regression for OS (B) of primary
LGG in training group. (C) A nomogram consisting of risk score and other clinical indicators for predicting 3-, and 5-year OS of primary LGG. (D) Time-dependent
ROC for 3-, and 5-year OS predictions for the nomogram compared with actual observations. Calibration plot of nomogram for predicting probabilities of 3-year (E),
and 5-year (F) overall survival of patients. Blue line indicates actual survival.
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FIGURE 5 | Internal validation of prognostic signature in primary LGG from
TCGA. (A) Time-dependent ROC curve based on the six genes based risk
score for 3-, and 5-year OS probability in the internal validation cohort.
Calibration plot for internal validation of 3-year (B), and 5-year (C) OS of
patients.

The Association Between Risk Score and
Clinicopathological Parameters
Subsequently, we analyzed the relationship between the six-
gene signature and clinicopathological parameters (age, gender,
grade, radiotherapy, chemotherapy, and IDH mutation status)
in LGG. In terms of grade and IDH status, patients of grade
III or of the IDH wild type had higher risk scores than those
with grade II or of the IDH mutant type, consistent with the
findings in patients with primary LGG from CGGA. Moreover,
data of patients with primary glioma from TCGA revealed that
older patients had significantly higher risk scores than those of
younger. Risk scores were also comparable across recurrent LGG
in CGGA, with results revealing a preference for higher levels
of risk scores in males. However, no significant difference was
observed between the IDH wild and mutant groups in recurrent
LGG (Supplementary Figures S6A,C).

Correlation of the Risk Score With
Tumor-Infiltrating Immune Cells
By applying the CIBERSORTx algorithm to RNA-seq data,
the relative proportions of 22 immune cell subsets of LGG
were acquired. Consecutively, 432 cases of primary LGG in
the TCGA dataset, 351 cases of primary LGG in the CGGA
dataset were enrolled for further analysis after the filter criteria
with P value < 0.05 via CIBERSORTx algorithms. As shown
by bar plot in Figure 7A, the abundance of the 22 infiltrative
immune cells by using CIBERSORTx were significantly different
between high-risk and low-risk groups in primary LGG cohorts.
Among them, the macrophage M2 was the most significant
enrichment of immune cells. Subsequently, as shown in the
box plots (Figure 7B), the infiltration levels of CD8+T cells,
resting memory CD4+T cells, follicular helper T cells, regulatory
T cells, activated NK cells, monocytes, macrophages (M0, M1,
M2), activated DCs, resting mast cells, and neutrophils were
significantly higher in high-risk group than that in low-risk
group. On the contrary, the infiltration levels of naïve CD4+T
cells, and resting DCs were significantly higher in low-risk
group. The differential abundance of the 22 infiltrative immune
cells were summarized in Table 2. Furthermore, to validate the
infiltrative abundance of immune cells in CIBERSORTx, the
TIMER database was enrolled. As shown in Figure 7C, the B cells,
CD4+T cells, CD8+T cells, DCs, macrophages, and neutrophils
were all significantly higher in the high-risk group. To further
investigate the prognostic values of the infiltrative immune
cells, the univariate Cox proportion hazard regression models
were applied. Results from Cox regression analysis showed that
high abundance of Tregs, neutrophils, M2-type macrophages
were significantly associated with unfavorable survival outcome
(P < 0.001, P < 0.001, P = 0.012, respectively). Conversely, high
abundance of macrophage M1 (HR = 0.203, P < 0.001), and
activated DCs (HR = 0.416, P < 0.001) were identified as the
protective factors in primary LGG (Figure 7D).

In addition, we also investigated the differential expressions of
the T-cells activated and inhibitory receptors, and macrophage
associated molecules between the high and low risk groups.
As shown in Supplementary Figure S7, the T cells activation
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FIGURE 6 | External validation of the six gene signature in primary LGG inform the CGGA dataset. (A) Kaplan-Meier survival curves of the six gene signature of
patients with primary LGG in the CGGA cohort. (B) ROC curve for assessing diagnostic competence of the risk score in the CGGA cohort. (C) ROC curves for 3-,
and 5-year OS predictions for the six gene signature in the external validation cohort. Calibration curves for predicting probabilities of 3-year (D), and 5-year (E) OS
of patients in external validation.
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FIGURE 7 | Correlation of the risk score with infiltrative immune cells. (A) Barplot showing the percentages of 22 infiltrative immune cells calculated by CIBERSORTx
between high-and low-risk groups in primary LGG from TCGA and CGGA cohorts (high-risk, 232 samples; low-risk, 551 samples); (B) Boxplot showing the
differential abundance of 22 infiltrative immune cells calculated by CIBERSORTx between high-and low-risk group in primary LGG; (C) Boxplot showing the
differential abundance of six infiltrative immune cells by TIMER database between high-and low-risk group in primary LGG; (D) Forest plot of hazard ratios
demonstrating the prognostic values of 22 immune cells calculated by CIBERSORTx in primary LGG. The dash line was used to mark the location of HR = 1. The
red box represents the adverse prognostic factor,and the blue box represents the favorable prognostic factor.
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TABLE 2 | The differential abundances of 22 infiltrative immune cell types between
high-and low-risk groups of with primary LGG as calculated by CIBERSORTx.

Mean Mean

Immune cell type (high risk) (low risk) Difference P value

B cells naive 0.050 0.045 0.005 0.126

B cells memory 0.021 0.018 0.003 0.819

Plasma cells 0.015 0.007 0.008 0.179

T cells CD8 0.073 0.035 0.037 0.000

T cells CD4 naive 0.007 0.010 −0.003 0.001

T cells CD4 memory resting 0.107 0.083 0.024 0.001

T cells CD4 memory activated 0.011 0.006 0.004 0.539

T cells follicular helper 0.040 0.034 0.007 0.001

T cells regulatory (Tregs) 0.008 0.005 0.003 0.016

T cells gamma delta 0.016 0.007 0.009 0.167

NK cells resting 0.029 0.030 −0.001 0.298

NK cells activated 0.040 0.030 0.009 0.009

Monocytes 0.170 0.153 0.017 0.033

Macrophages M0 0.025 0.007 0.018 0.000

Macrophages M1 0.024 0.010 0.013 0.000

Macrophages M2 0.415 0.306 0.109 0.000

Dendritic cells resting 0.015 0.017 −0.003 0.001

Dendritic cells activated 0.006 0.005 0.000 0.000

Mast cells resting 0.055 0.039 0.015 0.021

Mast cells activated 0.069 0.054 0.015 0.170

Eosinophils 0.020 0.017 0.003 0.673

Neutrophils 0.016 0.011 0.005 0.001

associated genes containing CD40L, GITR, 4-1BB, OX40, CD27,
ICOS, and CD28 were significant higher in high-risk group. T
cells inhibition associated genes containing CTLA4, PD-L1, PD-1,
CD80, CD244, TIM3, BTLA, CD160 were also significant higher
in high-risk group. Moreover, macrophage chemo-attractant
and phagocytosis related genes containing CSF1, CSF1R, CCL2,
CCR2, andCXCR4were also significant higher in high-risk group.

Six Genes Based Signature Expression
Analysis in Databases
The expression of the six genes were queried from CCLE14.
Results were sorted according to tumor type. The mRNA
expression of CANX, HSPA1B, PSMC6, and TAP1 was high
in gliomas, whereas that of KLRC2 was low (Supplementary
Figures S8A–F). The expression of the six genes in 14 LGG cell
lines is illustrated in Table 3. The Human Protein Atlas database
was used to explore the protein expression levels of these six genes
and results are shown in Supplementary Figure S9.

DISCUSSION

Emerging evidence has demonstrated that the immune
microenvironment plays an essential role in tumor biology,
and recently, numerous inspiring clinical trials have established
the role of immunotherapy in gliomas. Thus, immune related
biomarkers show great potential in risk stratification and in

14https://portals.broadinstitute.org/ccle

exerting prognostic value. In previous studies, immune-gene
related signatures have been identified as independent prognostic
factors in several solid tumors (Ascierto et al., 2012; Kim et al.,
2018; Shen et al., 2019; Yang et al., 2019), revealing that the
immune status and local immune response could be illustrated
by the risk signatures employed. However, the prognostic
value and the association between immune status and risk
signatures have not been fully elucidated in LGG. In the current
study, 277 immune-related DEGs were identified. After Lasso
regression and multicox analysis, six immune genes (CANX,
HSPA1B, KLRC2, PSMC6, RFXAP, and TAP1) were identified
as components of the risk signature to divide LGGs into low-
and high-risk groups. Subsequently, KM curve, ROC curve
and risk plot analyses verified that the six-based risk signature
performs well in stratifying the risk groups of primary LGG
in TCGA and CGGA datasets. Furthermore, in univariable
analysis, the risk group, age, grade, radiation therapy and IDH
status exhibited their predictive value regarding OS in primary
LGG. Correspondingly, in multivariable stepwise cox regression
analysis, with the exception of radiation therapy showing
borderline significance, all other factors retained their prognostic
values. Consecutively, it was found that the prognostic signature
showed fair accuracy regarding the 3- and 5-year OS in the
internal (TCGA) and external (CGGA) validation cohorts.
However, predictive performance was poor in the recurrent
LGG cohort.

At first, it was shown that the IRG-based risk signature could
function as a proper index in stratifying risk groups in LGG.
Similar to our study, Shen et al. (2019) also found that an
immune gene based signature could significantly stratify patients
into different risk groups in ovarian cancer. Correspondingly,
another study also revealed that the immune-related gene
signature was capable of stratifying patients into responder and
non-responder groups in human breast cancer, with the odds
ratios of the immune-related risk signature making it the most
significant predictor of pathological complete remission (odd
ratio: 4.6, 95% confidence interval: 2.7 to 7.7, P < 0.001) (Sota
et al., 2014). Second, we found that the risk group, age, grade,
radiation therapy and IDH status had predictive values for OS
in primary LGG. According to National Comprehensive Cancer
Network guidelines, the prognostic values of age (≤40 years
vs. >40 years), tumor grade (II vs. III), and IDH status (wild-
type vs. mutation) have been well-established in clinical practice
(National Comprehensive Cancer Network, 2019). Compared
with the above mentioned well-established clinicopathological
prognostic factors, the risk group remained an independent
prognostic value in univariate and multivariate cox regression
analysis. In accordance with the present findings, Qian et al.
(2018) also found that patients identified as high-risk by the IDH
associated immune signature exhibited unfavorable prognosis
in LGGs. The prognostic value of the local immune signature
was also verified in glioblastomas. Risk scores were significantly
associated with poor OS and progression-free survival (Cheng
et al., 2016). Surprisingly, receiving or not radiation therapy was
associated with OS in univariate analysis, but the relationship was
borderline significant in multivariate analysis. In addition, the
prognostic value of chemotherapy was also insignificant in our
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TABLE 3 | List the expression of the six genes in 14 LGG cell lines.

Gene expression (TPM)

Cell lines CANX HSPA1B KLRC2 PSMC6 RFXAP TAP1 RRID

H4 448.522 22.6035 0.0220068 15.7311 2.2642 34.2997 CVCL_1239

HS683 355.23 15.2679 0.278926 14.4031 3.26084 51.7626 CVCL_0844

KG1C 363.096 13.9961 0.113268 18.5451 3.64382 26.4942 CVCL_2971

LN215 288.476 26.108 2.48677 14.8853 4.68699 87.4974 CVCL_3954

LN235 235.629 27.8249 0.0447866 17.1381 4.57199 19.3359 CVCL_3957

LN319 271.245 21.0797 0 20.656 3.41301 17.9863 CVCL_3958

LNZ308 169.63 17.2783 0 22.7476 3.24888 17.519 CVCL_0394

NMCG1 264.062 16.9103 0.0049317 14.6614 2.81961 37.3184 CVCL_1608

SF268 272.357 27.68 0.0245476 9.43665 1.16183 31.9634 CVCL_1689

SNU738 144.254 17.2946 0.0770556 12.636 1.80947 31.244 CVCL_5087

SW1088 290.749 23.2654 0.0473503 17.416 4.36785 29.0014 CVCL_1715

SW1783 351.565 27.6688 0.0224892 18.6383 2.55953 33.8329 CVCL_1722

TM31 134.804 7.78124 0.0414412 21.8484 5.08505 60.5928 CVCL_6735

U178 220.836 8.10508 0.552537 17.0014 1.73231 37.2859 CVCL_A758

analysis. Our result is likely to be related to the undefined timing
of radiation therapy (postoperative or palliative treatment), and
differences in radiation dose or frequency. To our knowledge,
numerous trials have investigated the prognostic values of
chemotherapy and radiotherapy in gliomas, as well as their
significant contribution in improving survival. The RTOG 9802
trial evaluated radiotherapy followed by adjuvant procarbazine,
CCNU, and vincristine (PCV) chemotherapy in 251 patients with
low-grade glioma and showed an improvement in median OS
with the addition of PCV from 7.8 to 13.3 years (HR = 0.59;
P = 0.002) (van den Bent, 2014). In the CATNON trial, the
5-year survival in patients with anaplastic glioma receiving
combined chemo-radiotherapy was significant higher than that in
patients receiving radiotherapy alone (55.9 vs. 44.1%, HR = 0.65;
P = 0.0014) (van den Bent et al., 2017). The lack of prognostic
values of chemotherapy and radiotherapy in our study, might be
owing to several reasons: (1) undefined chemotherapy strategy
(pre-radiotherapy or concurrent or adjuvant chemotherapy);
(2) undefined chemotherapy regimens in the TCGA datasets;
(3) undefined radiation regimens (postoperative or palliative
treatment strategy, differences in radiation dose or frequency).
Therefore, new trials are encouraged to further develop and verify
our risk signature in standard treatment cohorts.

Emerging evidence have confirmed the prognostic values of
immune genes in various cancers (Patel et al., 2013; Surmann
et al., 2015; Yang et al., 2015; Ling et al., 2017; Ding et al., 2018).
In current study, six IRGs were identified as the risk signature.
Among them, CANX, HSPA1B, and TAP1 were shown to be
risk-associated genes, whereas KLRC2, PSMC6, and RFXAP were
identified as protective genes. They have been reported to be
involved in the regulation of immune response. Calnexin, an
essential endoplasmic reticulum (ER) chaperone protein, plays
a vital role in the synthesis of HLA class I surface antigen
complex. Calnexin was revealed to inhibit the proliferation and
activation of CD4+T and CD8+T cells, and it may impair
the function of T cells by upregulating the expression of PD-
1 in oral squamous cancer (Chen et al., 2019). Consistent

with our results, it was found that decreased expression of
CANX was associated with favorable survival outcome (Patel
et al., 2013) and served as a biomarkers for tumor response
in glioblastoma (Demeure et al., 2016). TAP1, an essential
component of the major histocompatability complex (MHC)
class I antigen-presenting pathway. It was found to be associated
with tumor immune escape and prognosis (Leone et al., 2013).
Ling et al. (2017) found that the expression of TAP1 was
significantly associated with infiltrative general T cells (CD3+),
CD8+ cytotoxic T cells, M1-type macrophages, and M2-type
macrophages, and the expression of TAP1 could serve as an
independent prognostic factor in colorectal cancer. In term
of HSP70, encoded by HSPA1B, has emerged as a promising
antitumor target in various cancer. Recently, it is also revealed
that HSP70 may serve as a diverse immunoregulatory factors
by acting as a cytokine in antigen presentation, DC maturation,
the activities of NK cells, and myeloid-derived suppressor cells
(Jego et al., 2019). Correspondingly, it was illustrated that up-
regulation of HSPA1B was associated with poor outcomes in
hepatocellular carcinoma (Yang et al., 2015). Comparatively,
the investigations of KLRC2 in cancer research is rare. To our
knowledge, as a transmembrane activating receptor in NK cells,
KLRC2 is expressed in most NK cells and subsets of CD8+T
cells (Wischhusen et al., 2005; Borrego et al., 2006). PSMC6, as
a critical component of 26S-proteasome complex, involving in
numerous pathways: antigen presentation (Livneh et al., 2016),
cell proliferation and migration (Guo and Dixon, 2016). Zhu
et al. (2018) demonstrated that PSMC6 may involve in the
downstream of silencing cat eye syndrome critical region protein-
1 in targeting the proliferation of TAM in glioma. RFXAP, as a
vital transcription factor for major histocompatibility complex
(MHC) class II. It was revealed to downregulate the expression
of MHC class II in DCs (Ding et al., 2015) and macrophages
(Wu et al., 2019), resulting inhibition of CD4+T cells infiltration
(Surmann et al., 2015). It was associated with survival outcomes
in solid tumors (Surmann et al., 2015; Ding et al., 2018). Overall,
the prognostic values of the six risk genes have been exploited
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in various cancers, and their contribution to immune regulations
were mainly concentrated on antigen presenting cells and effector
T lymphocytes. Hence, further investigation is warranted to
illustrate the correlations between risk groups and infiltrative
immune cells in primary LGG.

The immune microenvironment has been identified as playing
a critical role in tumor biology (Hanahan and Weinberg,
2011). Numerous studies have exploited the critical roles of
infiltrative immune cells in glioma (Perus and Walsh, 2019; Wang
et al., 2020). In current study, it was found that the M2-type
macrophage was significantly enriched in primary LGG. Despite
the glioma was defined as “cold tumor” with very little infiltrative
immune cells, the proportions of macrophage can still constitute
up to 30–50% in the TME of glioma (Guadagno et al., 2018).
Additionally, the predictive values of immune cells have been
extensively investigated. It was demonstrated that high levels
of M2-type macrophages (marked as CD204 or CD206) (Ding
et al., 2014), neutrophils (Liang et al., 2014), Tregs (Iwata et al.,
2019) were defined as the adverse prognostic factors in glioma.
Conversely, high levels of M1-type macrophages (Ding et al.,
2014), CD8+T cells (Kmiecik et al., 2013) were identified as
protective factors in glioma. Likewise, our results also revealed
that elevated abundance of M2-type macrophages, neutrophils,
and Tregs were associated with adverse survival outcomes. On
the contrary, increased abundance of M1-type macrophages, and
CD8+T cells were associated with favorable survival outcomes.
As mentioned above, the six risk genes can not only have intrinsic
roles in tumor growth and apoptosis (i.e., Guo and Dixon,
2016; Chen et al., 2019; Jego et al., 2019), but also serve as the
immune-regulatory factors via antigen-presenting cells (APCs)
and effector T lymphocytes (Borrego et al., 2006; Surmann et al.,
2015; Ling et al., 2017; Zhu et al., 2018; Chen et al., 2019; Wu et al.,
2019). Hence, it is worthwhile to explore the relationship between
the risk groups and infiltrative immune cells in primary LGG.
Interestingly, it was found that the abundance of macrophages,
activated DCs, NK cells, CD8+T cells were significantly higher,
while that of naïve CD4+T cells were significantly lower in
high-risk group. Moreover, our results also demonstrated that
high riskscores were associated with aggressive tumor subtypes,
rapid proliferation and shorter survival time. Therefore, we
hypothesized that malignant proliferation in high-risk patients
may be accompanied with elevated tumor mutation burden
and increased necrosis and apoptosis, which lead to continuous
exposure of neoantigens and subsequent activation of the
immune response. Consequently, high levels of infiltrative APCs
and effector cells (including NK, CD4+T, and CD8+T) were
observed in TME of primary LGG. Correspondingly, our results
in Supplementary Figure S6 also illustrated that macrophage
associated chemo-attractant molecules and T cell activating
receptors were significant higher in high-risk group. Meanwhile,
as a compensation response to increased immune activation
(Perus and Walsh, 2019), the expressions of inhibitory molecules
containing CTLA-4, PD-1, PD-L1, TIM-3, etc. (Wherry and
Kurachi, 2015) were relatively higher in high-risk group.
Noteworthy, it is necessary to clarify the positive relationship
between riskscores and increased infiltrative immune cells. The
aggressive phenotypes determined by the dysregulation of the

six risk genes was fluctuated with the proportions of immune
cells in TME, indicating that these genes may involve in the
process of neoantigen presence and trigger the immune response.
Considering that tumor cell is the large group of the antigen-
presenting cells, 14 LGG cells lines were employed to validate
the expression of six risk genes. It is obvious that all the six risk
genes were commonly expressed, even some were high expressed
in LGG cell lines. Further in vivo and in vitro experiments are
warranted to investigate the mechanisms of six genes in LGG and
the communications with immune cells in TME.

Our study, however had several limitations that should be
addressed. First, because of the retrospective design and despite
strict inclusive and exclusive criteria, selection and recall bias
are unavoidable; Second, due to lack of complete chemotherapy
and radiotherapy regimens in the current study, their prognostic
values could not be fully elucidated. Third, although the 1p19q
codeletion status constitutes a vital prognostic factor in clinical
practice, such information was unavailable in the TCGA datasets
and hence, was not employed in our prognostic signature. Fourth,
although the six-based genes risk signature indicated a fair
predictive ability for 5-year survival, more key factors are still
needed to be brought into analysis. This is owing to the poor
performance in predicting the survival outcome in recurrent
LGG. Thus, it is reasonable to aim to utilize more factors into
building a prognostic model that could enable risk stratification
of recurrent LGG. Fifth, as molecular mechanism have not been
investigated in the current study, it is necessary to explore the
underlying mechanisms behind the risk scores and poor survival
outcomes of LGG in further in vitro or in vivo experiments. Sixth,
the “sva” package was applied in current study to remove the
batch effects of Level 3 data from TCGA and GTEx. Despite the
two groups separated obviously, however, several outliers can be
found in the PCA plots. It should be noted that the reasons of
several outliers may be caused by the insufficient batch effect
removal of Level 3 data by “sva” (Wang et al., 2018) or others such
as different parts of brain tissues or lacking reference of normal
controls in TCGA, all of them warranting further investigations.

CONCLUSION

In this study, we demonstrated that a six immune-related genes
based risk signature might be effective in risk stratification and in
serving as an independent prognostic factor of the overall survival
in patients with primary LGG. Further in vitro and in vivo
experiments are warranted to explore the underlying mechanisms
behind immune genes and survival outcome in primary LGG.
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FIGURE S1 | The flowchart of the project.

FIGURE S2 | The normalization and batch effect removal from TCGA and GTEx
datasets. (A) Box plots illustrated the data distributions from TCGA and GTEx
datasets before normalization. (B) PCA plot illustrated the cluster of the samples
from TCGA and GTEx datasets before batch effect removal. (C) Box plots
illustrated the data distributions from TCGA and GTEx datasets after
normalization. (D) PCA plot illustrated the cluster of the samples from TCGA and
GTEx datasets after batch effect removal.

FIGURE S3 | (A) Heatmaps showing that the 5,490 differentially expressed genes
(DEGs) can effectively distinguish tumors from non-tumor tissues after integrated
analysis. (B) Volcano plot presenting DEGs between LGG and non-tumor tissues.
Red dots, and green dots represent up-regulated genes, and down-regulated
genes, respectively.

FIGURE S4 | Schoenfeld residual plots showing P value of all factors were
greater to 0.05.

FIGURE S5 | Investigating the application of six genes based signature in
recurrent LGG. (A) Kaplan-Meier plot for overall survival based on risk score of the
six gene based signature of recurrent LGG patients in CGGA cohort. (B) ROC
curve based on the risk score for diagnostic competence verification of recurrent
LGG patients in CGGA cohort. (C) Time-dependent ROC curve based on the six
genes based risk score for 3-, and 5-year overall survival probability of recurrent
LGG patients in CGGA cohort. Calibration curve for predicting probabilities of
patients’ 3-year (D), and 5-year (E) overall survival of recurrent LGG
patients in CGGA cohort.

FIGURE S6 | Association between risk score and clinical-pathological
parameters. Association between risk score and age, gender, grade, radiotherapy,
chemotherapy, and IDH mutation status of primary LGG patients in TCGA cohort
(A), in CGGA cohort (B), while patients of recurrent LGG patients in CGGA cohort
are shown in (C).

FIGURE S7 | The differential expressed T cell associated activated and inhibitory
genes, macrophage chemo-attractant and phagocytosis related genes between
high and low risk groups in primary LGG.

FIGURE S8 | Expression data were sorted by the tumor type. The expression of
the CANX (A), HSPA1B (B), KLRC2 (C), PSMC6 (D), RFXAP (E), and TAP1 (F) in
Cancer Cell Line Encyclopedia.

FIGURE S9 | Number of patients with staining (A). The typical protein expression
of six genes of immunohistochemistry (IHC) images in LGG tissue and paired
non-tumor samples (B). Data was queried from the human protein atlas
(https://www.proteinatlas.org/).
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